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1. INTRODUCTION 

Adaptive Resonance Theory (ART) architectures 
are neural networks that carry out stable self-orga- 
nization of recognition codes for arbitrary sequences 
of input patterns. ART first emerged from an anal- 
ysis of the instabilities inherent in feedforward adap- 
tive coding structures (Grossberg, 1976a, 1976b). 
More recent work has led to the development of 
three classes of ART neural network architectures. 
specified as systems of differential equations. The 
first class. ART 1, self-organizes recognition cate- 
gories for arbitrary sequences of binary input pat- 
terns (Carpenter & Grossberg. 1987a). A second 
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class, ART 2, does the same for either binary or an- 
alog inputs (Carpenter & Grossberg. 1987b). A third 
class. ART 3, is based on ART 2 but includes a model 
of the chemical synapse that solves the memory 
search problem of ART systems embedded in net- 
work hierarchies, where there can, in general. be 
either fast or slow learning and distributed or com- 
pressed code representations (Carpenter & Gross- 
berg. 1990). 

This article introduces ART 2-A. a simple com- 
putational system that models the essential dynamics 
of the ART 2 analog pattern recognition neural net- 
work. The ART 2-A system accurately reproduces 
the behavior of ART 2 in the fast-learn limit, suggests 
an efficient method for simulating slow learning. and 
sharply delineates the essential computations per- 
formed by ART 2. ART 2-A runs approximately 
two to three orders of magnitude faster than ART 2 
in simulations on conventional computers. thereby 
making it easier to use in solving large problems. 
The ART 2-A algorithm also suggests efficient par- 
allel implementations. 

The improved speed of the ART 2-A algorithm 
is due. in part. to the explicit specification of steady- 
state variables as a composition of a small number 
of nonlinear operations. The steady-state equations 
replace a time-consuming multilayer iterative com- 
ponent of ART 2. 



A second feature of the ART 2-A system is its 
speed at intermediate learning rates. Intermediate 
learning rates capture many of the desirable prop- 
erties of slow learning, including noise tolerance. 
However, the property of fast commitment. 01 
asymptotic learning when a category first becomes 
active, allows the ART 2-A algorithm to be used as 
efficiently in this case as in the fast-learn limit. Thus. 
ART 2 may be needed in some cases not covered by 
ART 2-A; but ART 2-A can be efficiently suhsti- 
tuted for ART 2 in most applications. 

Section 2 characterizes ART 2; Section 3 moti- 
vates and describes the ART 2-A algorithm: and 
Section 4 presents the results of simulations com- 
paring ART 2 and ART 2-A with fast learning, and 
comparing fast and intermediate learning rates in 
ART 2-A. 

2. ANALYSIS OF ART 2 
SYSTEM DYNAMICS 

Carpenter and Grossberg (1987b) described several 
ART 2 systems, all having approximately equivalent 
dynamics. For definiteness, we consider one such 
system, shown in Figure 1. This ART 2 module in- 
cludes the principal components of all ART modules. 
namely an attentional subsystem, which contains an 
input representation field F, and a category repre- 
sentation field Fz, and an orienting subsytem, which 
interacts with the attentionai subsystem to carry out 
an internally controlled search process. The two 
fields are linked by both a bottom-up F, -+ Fz adap- 
tive filter and a top-down Fz -+ F, adaptive filter. A 
path from the ith F, node to the jth F2 node contains 
a long term memory (LTM) trace. or adaptive 
weight, z+ a path from the jth F2 node to the ith F, 
node contains a weight z,,. These weights gate. or 
multiply, path signals between fields. 

Figure 1 also illustrates some ART 2 features that 
are not shared by all ART modules. One such feature 
is the three layer F, field. Both F, and F?, as well as 
the preprocessing field Fo, are shunting competitive 
networks that contrast-enhance and normalize their 
activation patterns. 

2.1. The Preprocessing Field F,, 

We will now outline how an M-dimensional input 
vector I” is transformed at F,, and F,. All equations 
describe the steady-state values of a corresponding 
system of differential equations (Carpenter & Gross- 
berg, 1987b). Each layer of the F,, and F, short-term 
memory (STM) fields carries out two computations: 
intrafield and interfield inputs to that layer are 
summed; and the resulting activity vector is then nor- 
malized. At the lower layer of Ft,, vector w” is the 
sum of an input vector I0 and the internal feedback 

ORIENTING 
SUBSYSTEM 

ATTENTIONAL 
SUBSYSTEM 

FIGURE 1. ART 2 ar&&ecture. brgq tl@ed .ci&es represent 
normalization opeietfono carded 0th by the network. 
Adapted from Carpeftter and Growberg (l@k%h, FigriN IO). 

signal vector au”, so that 

w” zz I” + a”<‘, 

Next this vector is normalized to yield 

(11 

where the operator 

carries out Euclidean normalization. This normali- 
zation step, denoted by large fihed circles in Figure 
1, corresponds to the effects of shunting inhibition 
in the competitive system of differential equations 
that describe the full F,, dynamics. Next, x” is trans- 
formed to Y” via a nonlinear signal function defined 

bY 

where 

v” = :t,,x”, (4) 

(&IX”)< = f(xl’) = 1 x:’ if .x:1 2 II 
0 otherwise. 

(5) 
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The threshold 0 is assumed to satisfy the constraints 

0 < 0 5 -&. 

so that the M-dimensional vector #‘is always nonzero 
if I” is nonuniform. If 0 is made somewhat larger than 
l/%/C/M. input patterns that are nearly uniform will 

not be stored in STM. 
The nonlinearity of the function f‘. embodied in 

the positive threshold 0, is critical to the contrast 

enhancement and noise suppression functions of the 
STM field. Subthreshold signals are set to zero, while 

suprathreshold signals are amplified by the subse- 
quent normalization step at the top F,, layer. which 
sets 

“‘1 = $)&‘I, (7) 

As shown in Figure 1, vector u” equals that the output 
vector from field F,, to the orienting subsystem. the 

internal f,, feedback signal in (I), and the input vec- 
tor I to field F,: 

1 = u”. (8) 

2.2. The Input Representation Field F, 

The b;, + F, input vector 1 reaches asymptote after 

a single F,, iteration, as follows. Initially all STM 
variables are zero, so w” = I” when I” is first pre- 

sented, by (1). Eqns (3)-(S) next imply that 

fi’/ilI”~l if I)’ > O~/I”I~ 
0 otherwise. 

Let 0 denote the supruthreshold index set, defined 

b!, 

11 = (i:Ij’ > O~II”~~}. 

By (7) and (9). there is a constant K : 
that 

on the first 6, iteration. Next, by (l), 

,,,,, = 

’ i 

I:’ (1 + UK) if i E IZ 
1:’ ifi+ 

(11) 

(12) 

Thus, at the second iteration, the suprathreshold por- 

(I()) 

1 /llI”j such 

tion of w” (where i E fl) is amplified. The subsequent 
normalization (2) therefore attenuates the subthresh- 
old portion of the pattern. Hence, the suprathresh- 
old index set remains equal to R on the second it- 
eration, and the normalized vector u” is unchanged 
so long as I” remains constant. In summary, the 
F,, -+ F, input I is given by 

1 = as,aI” (13) 

3Y5 

after a single F,, iteration. Note that 

I, ) I! iff i E 12. 

and 

(13) 

I, = 0 iff i $S II. 

where i2 is defined by ( IO). 

(15) 

The F,, preprocessing stage is designed to allow 

ART 2 to satisfy a fundamental ART design con- 

straint; namely, an input pattern must be able to 
instate itself in F, STM, without friggerirzg resef, at 
least until an F2 category representation becomes 

active and sends top-down signals to F, (Carpenter 

& Grossberg, lY87a). As described in Section 2.8, 

the orienting subsystem has the property that no re- 
set occurs if vectors I and p arc parallel (Figure 1). 
We will now see that, in fact. p equals I so long as 

F2 is inactive. 
As in F,), each F, layer sums inputs and normalizes 

the resulting vector. The operations at the two lowest 
F, layers are the same as those of the two F,, layers. 

At the top F, layer p sums both the internal F, signal 
u and all the Fz --+ F, filtered signals. That is. 

I’, = II, + x s(!‘,)-.,, (16) 

where I is the output signal from the jth F2 node 

and ;,, is the LTM trace in the path from the jth F2 
node to the ith F, node. 

2.3. The Category Representation Field Fl 

If F2 is inactive. all K(J’,) = 0. so ( lb) implies 

p = Il. (17) 

An active Fl competitive field is said to be designed 

to make a choice if only one node (j = 1) has su- 

prathreshold STM. This is the node that receives the 
largest total input from F,. In this cast s ( y,) equals 

a constant L/. and the sum in cqn (16) reduces to a 
single term: 

1) = 11 + rl:, ( 1x1 

2.4. F, Invariance When F2 is Inactive 

Whether or not F2 is active, the F, vector p is nor- 
malized to q at the top F, layer. At the middle layer, 

vector v sums intrafield inputs from the bottom layer, 
where the Fi, --+ F, bottom-up input I is read in, and 
from the top layer. where the F2+ F, top-down input 
is read in. Thus 

u, = J’(4) + f$(y,,. (19) 

where f is defined as in eqn (5). 

Let us now compute the F, STM values that evolve 
when I is first presented, with F2 inactive. First. w 



(Figure 1) equals I. By (13), x also equals I, since I 
is already normalized. Next, (5). (14), (15), and (19) 
imply that v, too, equals I. on the first iteration, when 
q still equals 0. Similarly. u = p = q = I. On 
subsequent iterations w and v are amplified by in- 
trafield feedback, but all F, STM nodes remain pro- 
portional to I so long as F2 remains inactive. 

LTM weight vector approaches p. By ( 18). when .i 
is an uncommitted node, the norm of p rises from i 
toward l/(1 . d). By (20), the norm of the rap 
down LTM weight vector rises : tx~rn 7cro tc>wari! 
l/(1 ~ cl) while 

j, 
z, -f -c--i. 1231 

2.5. Fi Invariance During New Code Learning 

With p equal to I, ART 2 satisfies the design con- 
straint that no reset occur when F2 is inactive. An- 
other ART design constraint specifies that there be 
no reset when a new F? category representation be- 
comes active. That is, no reset should occur when 
the LTM traces in paths between F, and an active F2 
node have not been changed by pattern learning on 
any prior input presentation. When F2 is designed to 
make a choice and when the active F.! node with index 
j = J has never been active previously. we say that 
the active node is uncommirred. After learning oc- 
curs. this node is said to be committed. 

2.6. Fr Aetivation: Code Selectioa 

The F2 -+ F, input is a sum of weighted path signals, 
as in (16). The F, -+ F2 input is also a sum of weighted 
path signais, the input to the jth t-2 node being pro- 
portional to the sum 

2 p z,, 

When F2 is inactive, the F, + F2 input is proportional 
to 

x I,=,,. 
Suppose that the active F2 node is uncommitted. 

One ART 2 system hypothesis specifies that the top- 
down LTM traces are initially equal to zero. Recall 
that p = I when F2 is inactive. By (18). p remains 
equal to I immediately after F2 becomes active as 
well. The no-reset constraint will continue to be sat- 
isfied if the ART 2 learning laws are chosen so that 
p remains proportional to I during learning by an 
uncommitted node. We will now see that this is the 
case. 

The ART 2 top-down adaptive filter is composed 
of a set of outstars (Grossberg, 1967). That is. when 
the Jth F2 node is active, top-down weights in paths 
fanning out from node J learn the activity pattern at 
the border of this star-like formation. In ART 2, an 
active F2 + F, outstar learns the F, activity pattern. 
That is, while the Jth Fz node is active 

(73 

When F2 is designed to make a choice, the fth node 
becomes active if 

C I,z,, = max 2 I,z,, 
i i 

(251 
I I 

In ART 2, all F, -+ F2 LTM traces to an uncommitted 
node are initially chosen randomly around a constant 
value. This constant needs to Abe small enough so 
that, after learning, an input will subsequently select 
its own category node over an uncommitted node. 
Larger values of this constant bias the system toward 
selection of an uncommitted node over another node 
whose LTM vector only partially matches the input ~ 
The initial choice of LTM values includes small ran- 
dom noise so that not all termsi24) to uncommitted 
nodes are exactly equal. 

By (18). therefore. 

dz,, 
- = (1 - d) 
nt L & - z,, , I (21) 

where 0 < d < 1. At the start of learning, u equals 
I. Since pi is a linear combination of ui and Zji, pi will 
remain proportional to 1, during learning by an un- 
committed node if z,, remains proportional to u,. By 
(21), this will be true since the F2 ---, F, LTM traces 
from an uncommitted node are initiahy zero. 

In summary, during learning by an uncommitted 
node J, the normalized & STM vectors q, u, and x 
remain identically equal to I, while the remaining 
STM vectors p, v, and w remain proportional to I. 
During ART 2 learning, moreover, the top-down 

2.7. F, -+ Fz Leaming 

If an uncommitted node does become active, p re- 
mains proportional to I throughout~learning (Section 
2.5). The top-down filter performs outstar learning 
(20). The bottom-up filter performs @tar learning 
(Grossberg, I976a), which is duaI_to outstar learning 
in the sense that, when the Jth F2 node is active, 
bottom-up weights in paths fanning into~node J learn 
the activity pattern from the -border into the center 
of this star-like formation. In ART 2, an active 
F, + F2 instar learns the Fi activity pattern. That 
is, while the Jth I;z node is active 

cl%, -= & p, - Z,l. (96) 
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Thus if J is an uncommitted node. 

4 
z,, + - 

l-d 
(27) 

during learning. as in (22) for the top-down LTM 
traces. 

2.8. Match and Reset 

While the initial FL node selection is determined by 
(25). the LTM trace pattern of the chosen category 
may or may not be considered a good enough pattern 
match to the input I. If not, the orienting subsystem 
resets the active category, thus protecting that cat- 
egory from adventitious recoding. The match and 

reset process proceeds as follows. 
Let z, denote the vector of top-down LTM traces. 

The vector r (Figure 1) monitors the degree of match 

between the F, bottom-up input I and the top-down 

input tiz,. System reset occurs iff 

llrl’ -c I). (2x1 

where 1) is a dimensionless vigilance parumetrr be- 
tween 0 and 1. Vector r obeys the equation 

1 + C'Q 
r = lit/l + l~cpl~' 

where c > 0. Thus 

If p is proportional to I. llrll = 1, so reset does not 

occur. This is always the case when J is an uncom- 
mitted node (Section 2.5). 

Suppose, on the other hand, that J is a committed 
node. By (21), zI has previously converged toward 
the vector p = u/(1 - d) which was active at F, 
when node J was active at Fz. We will illustrate how 
llril reflects the degree of match between I and z, by 
analyzing a special case of ART 2 dynamics. Con- 
sider the fast-learn limit, in which LTM convergence 

is complete on each input presentation. and assume 
that parameter d is close to 1. Then, in the sum 

Q = U f CiZ,, (31) 

the norm of the first term on the right is 1 while the 
norm of the second term is d/(1 - d), which is much 
greater than 1. In this case, 

Q = dZ,. (32) 

Then, since ((I(/ = 1 and (/p/j = d/(1 - d), (30) and 
(31) imply that 

27 cos(I, 2,) + CT’]’ 2 
, (33) 

where 

Thus (lr(l is an increasing function of cos(1, z,,) such 
that 

( 1 + 0’)’ 1 5 lIrll ?_ , 

1 +ri 
(35) 

and /lr/l = 1 iff cos(1. z,) = 1. In fact. by (2X) and 

(33). reset occurs iff 

cos(l. z,) < /’ (36) 

where 

p, = 
/I‘( 1 + a)’ - (1 + 6) 

‘n 
(37) 

Note that p’ = 1 iff p = 1 and that p’ < 0 if p = 

0. Since all components of I and z, are non-negative, 
reset never occurs if /I’~’ 5 0. thereby eliminating the 

search/reset process altogether. On the other hand. 
reset would always occur if I)” were greater than 1. 
Thus, by hypothesis. 0 4 /)‘,’ 5 1. 

Remark. ART 2 includes the additional constraint 

(55 I. (38) 

This implies that ilrli in (33) is a decreasing function 

of (T for each fixed value of cos( I. z,) (Carpenter & 

Grossberg, lC)87b. Figure 7). In ART 2. (3X) implies 
that. during fast or slow learning, llrli in (30) decreases 

as ((z,(( increases, all other things being equal. This 
corresponds to the idea that l(z,J reflects the degree 
oj’ commitment of category J. For a given pattern 

match, i.e.. for a fixed value of cos(1, p). the match- 
ing criterion defined jointly by (28) and (30) becomes 
stricter as I(z,ll grows toward its asymptotic limit of 

d/( I - d). In fast learning. this limit is reached on 
a single input presentation. With slow learning. con- 

straint (3X) implies that more learning by a commit- 

ted node carries a greater tendency for mismatched 
bottom-up and top-down vectors to trigger reset and 
hence greater permanence of that node’s category 

LTM representation. For both the fast learning and 
the intermediate learning cases considered below, 
ilz,ll = rll( 1 ~ ti) once J becomes a committed node. 

This is why constraint (3X) does not appear in the 
ART 2-A algorithm. 

2.9. Search and Resonance 

Once one Fz node is reset. ART 2 activates the F2 
node J with the next highest input (24). As above. 
the search process will cease if .I is uncommitted. 
Among committed nodes, the order of search is de- 
termined by the product of the norm of the bottom- 
up LTM vector times the cosine of the angle between 
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I and that vector. With slow learning, bottom-up 
weights may be small if little coding has already oc- 
curred at that node. In this case an extended search 
may ensue. However. in the special case where 
weights are normalized by the end of each input pre- 
sentation, the search process may be replaced by an 
abbreviated algorithm, as follows. Note first that the 
bottom-up weight vector of each committed node j 
equals the corresponding top-down weight vector z,. 
by (20) and (26). By (24) the order of search among 
committed nodes is determined by the size of terms 

/II/I JIz,// cos(I. z,). 1%) 

The order of search therefore depends on cos(1, z,) 
alone, since l]Ill = 1 and IIzj = l/(1 - cl). By (36). 
if the first chosen node resets then all other com- 
mitted nodes will also reset if chosen. Eventually. 
either an uncommitted node will be chosen and 
coded. or, if no uncommitted nodes remain, the sys- 
tem has exceeded its capacity and the input I” is not 
coded. Thus if one reset occurs, algorithmic search 
immediately selects an uncommitted node at ran- 
dom. 

In all cases, resonance is the state in which the 
system retains a constant code representation over a 
time interval that is long relative to the transient time 
scale of F2 activation and search. 

2.10. ART 2 Fast Computation 

The abbreviated ART 2 search process described in 
Section 2.9 is insufficient in general. Search of com- 
mitted nodes may be necessary with slow learning, 
in order to allow a given input access to a given node, 
until weights grow toward their asymptotic size. In 
addition, the ART reset process is used for other 
functions besides search: It can signal the presence 
of a new input for classification, or it can be mod- 
ulated by reinforcing or other evaluative inputs. 
These various cases, as well as a neural implemen- 
tation of the search process, are the primary focus 
of ART 3 (Carpenter & Grossberg, 1990). 

The purpose of the present article, in contrast, is 
to consider cases in which ART 2 dynamics can be 
approximated by efficient algorithms, such as the 
fast-search algorithm of Section 2.9. One of these 
special cases is the fast-learn limit. However, fast 
learning may be too drastic for certain applications, 
as when the input-set is degraded by high noise lev- 
els. ART 2 slow learning is better able to cope with 
noise, but has not previously been amenable to rapid 
computation. In the present article, we develop an 
efficient algorithm that approximates ART 2 dynam- 
ics not only for fast learning but also for a much 
larger set of cases that we here call intermediate iearn- 
ing. Intermediate learning permits partial recoding 
of the LTM vectors on each input presentation, thus 

retaining the increased noise-tolerance oi slow ic;irn-- 
ing. In addition. however. an ?iR?i Z intcrnlediat; 
learning system operates in a rimge \zhurc aifo- 
rithmic approximations enable I-;@ c’oml,utatiotl. 
Dynamics of ART 2 with both ia$t lrarning and in- 
termediate learning arc approxim,~ted by thr al,ccr- 
rithmic system ART 7-A described in Section i 

3. ART 2-A 

3.1. Fast Learning With Linear STM Feedback 

ART 2-A approximates the STM and LTM dy- 
namics of an ART 2 system with choice at FZ. The 
ART 2-A equations are partially motivated by the 
following theorem about fast-learn ART 2 with the 
signal function threshold 0 set equal to 0 in FIl and 
F,. Note that the key ART 2 hypothesis (6) is violated 
here. and the F, signal function therefore is linear. 

Theorem 1 states that when the J, feedback func- 
tion has zero threshold. the LTM vectors of the active 
category approach a vector proportional to I. In fast 
learning, the system retains no trace of previous in- 
puts coded in this category. 

THEOREM 1. Consider fast-leurn AKI‘ 2 with the l+ 
signal threshold (I set equal to 0. 77~1. after CI~Z F2 
node J has coded an input I, both bottom-up and top- 
dowrl LTM vectors are proportio& fo I. fu fact 

Theorem 1 is proved in the Appendix. 
Remark. Figure 8(e) of Carpenter and Grossberg 
(1987b) shows an ART 2 simulation with 0 = 0, in 
which nonzero components of LTM vectors after 
learning retain traces of previous inputs rather than 
fully tracking the relative values of the current input. 
in contradiction to Theorem 1. That simulation il- 
lustrates an intermediate learning situation in which 
LTM traces are approaching, but have not yet 
reached, equilibrium when a committed node is cho- 
sen. Some of these traces approach zero when the 
current input component is zero. With 0 = 0, the 
ART 2 system allows traces tha& are approaching 
zero, but have not reached it, to grow again during 
subsequent input presentations. 

3.2. Fast Learn@ With No&war ST&¶ Feedback 

Consider now a fast-learn ART 2 system with 0 > 
0, and hence the nonlinear signal function f (5) at 
F,, and F,. As in Section 2.8. 
d is close to 1. so that p = 
node J is active, as in (32). 
approximation. 

assume that parameter 
dz, when a committed 
In this case, to a first 

O/( I it ). (41) 
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where q is the normalized STM vector in the top F, 

layer (Figure 1). When 4, 5 o,f(q,) = 0 in (19). The 
ART 2 internal F, feedback parameters a and b are 
assumed to be large enough so that, if the ith F, node 
receives no top-down amplification via f(q,), then 
STM at that node is quenched. even if I, is relatively 
large. As in (41), this property allows the system to 
satisfy the ART design constraint that. once a trace 

Z/i falls below a certain positive value, it will decay 

permanently to zero. 
In (lo), we defined an index set R which has the 

property that i E 0 iff I, > (1. The preceding discus- 

sion leads us now to define analogous index sets II,. 

During resonance on a given input presentation in 
which the committed node J is active, let 

i E (2, iff z’;;“” > - 
i - Ll’ 

(Q) 

where z;‘” denotes the top-down LTM vector at the 

starf of the input presentation. Intuitively, iI., is the 

index set of “critical features” that define category 
J. Set 0, corresponds approximately to the ART 1 
template index set V”’ (Carpenter & Grossberg. 

1987a). 
Since all features can a priori be coded by an 

uncommitted node. each set 

12, = (i : i = 1.2.. 1 M} (33 

on the first input presentation in which node J is 

active. 
In fast-learn ART 2. the set RJ can shrink when 

J is active. but (I,, can never grow. This monotonicity 
property is necessary for overall code stability. On 
the other hand, 2,) learning is still possible for i E 
iI,, when J is active. This observation leads to the 

following conjecture. 

CONJETTURE 1. Consider fast-learn ART 2. ulith 
0 > 0. when un Fz node J is coding a fixed F, input 
I. Let Q denote the F(, - F, input index set 

II = {i : I, > 0). 

which in ART 2 is equiL>alent to 

12 = {i : I, > (I}. (45) 

Let 0, denote the category index set, as follows. If J 
is an uncommitted node. let 

0, = {i : i = 1, 2 . . M}. 

!f J is u committed node. let 

11, = {i : zy’ > O} (37) 

where z’;:“‘) denotes the F, + F, LTM vector at the 
start of the inputpresentation. In ART2, (47) is equiv- 
ulent to 

Define the vector * by 

Then. during learning, both the bottom-up and the 
top-down LTM vectors upproach N limit vector pro- 
portional to q. At the end qf the input presentution, 

WIJ 
z, = zy’ = __ 

1 - (1. 
(SO) 

Moreover 

{]‘;“‘“’ = [y” n 0, (51) 

By characterizing fast-learn ART 2 system dy- 

namics, Conjecture 1 directly motivates the fast- 
learn limit of the ART 2-A algorithm. On a given 

input presentation, the algorithm partitions the F, 
index set into two classes. and defines different dy- 
namic properties for each class. If i $ iI,. z,, remains 

equal to 0 during learning; that is. it retains its mem- 
ory of the past, independent of the present F, input 

I,. In contrast, if i E il.,. z,, nearly forgets the past 

by becoming proportional to I,. The only reflection 
of past learning for i E iI, is in the proportionality 
constant. 

3.3. Intermediate Learning: Fast Commitment 
With Slow Recoding 

The fast-learn limit is important for system analysis 

and is useful in many applications. However, a finite 

learning rate is often desirable in ART 2 to increase 
stability and noise tolerance, and to make the cate- 
gory structure less dependent on input presenta- 

tion order. Here. we consider intermediate learning 
rates. which provide these advantages, and show how 

they can be approximated by an ART 2-A algorithm 

that includes fast learning as a limiting case. 

The ART 2-A intermediate learning algorithm 
embodies the properties of fast commitment and slow 

recoding. These properties are based on an analysis 
of ART 2 dynamics. In particular, the ART 2 LTM 

vectors tend to approach asymptote much more 
quickly when the active node J is uncommitted than 
when J is committed; and once J is committed, liz,ll 
stays close to l/(1 - d). For convenience let z,; 

denote the scaled LTM vector 

z: = (1 - d)z,. (52) 

The approximations (i)-(iii) below characterize the 
value of zf at the end of an input presentation during 
which the Fz node J is in resonance: 

(i) If J is an uncommitted node, zT is set equal 
to 1. 

(ii) If J is a committed node, z:’ is set equal to 
a convex combination of its previous value 
and the vector %!Pdefined by (3) and (49). 



(iii) z? is renormalized so that its magnitude al- 
ways equals 1. 

The fast-learn limit corresponds to setting z,f equal 
to 9W in (ii). Slower ART 2 learning corresponds 
to keeping zJ* closer to its previous value in (ii). Pre- 
vious simplified versions of ART 2, such as that of 
Ryan (1988). have included computations similar to 
setting z: equal to a convex combination of I and 
the previous z;” vector. ART 2-A uses %%’ in (ii), 
rather than I. The vector q, defined by equation 
(49), endows ART 2-A with the critical stability 
properties of ART 2. 

The existence of distinct ART 2 operating modes. 
fast commitment and slow recoding, can be explained 
as follows. By (21) and (52). 

dz: 
- = (1 - d)(u - zf). 
dt 

(53) 

fast learning. Finally, (53) and (54) suggest th;n $i 
(normalized) convex combination of the %Vr ~rncl 
z,; vector values at the start of an input presentation 
gives a reasonable first approximation to z; ;:t ~hc 
end of the presentation. The AR’I’ 3-A algorithm 
summarized in the next section includes both the fast 
and the intermediate learning WK.,. 

3.4. Summary of the ART 2-A Algorithm 

Eqs (5X)-(70) summarize the ART 2-A system fat 
both intermediate and fast learning rates. The heart 
of the ART 2-A algorithm is an update rule that 
adjusts LTM weights in a single step for each pre- 
sentation interval during which the input vector is 
held constant. 

By (53), zJ* approaches u at a fixed rate. As described 
in Section 2.5, when J is an uncommitted node. u 
remains identically equal to I throughout the input 
presentation. Thus vector z,* approaches I exponen- 
tiatly, and z;l* = I at the end of the input presenta- 
tion if the presentation interval is long relative to 
l/(1 - d). On the other hand, if J is a committed 
node, as in Section 2.8, u is close to z:. In other 
words. 

u = 9L(&XW + (I - x)2:). (54) 

where q is defined by (49) and 0 < c e 1. Since c 
is small, 

II = &%JIJ + (I - F)ZT. (SS) 

Input 
Given a nonuniform M-dimensional input vector 1” 
to F,,, the input I to F, satisfies 

I = WJ$Rl” (58) 

where 

3x Es -5 
l/xl! ’ 

(59) 

and 

(3,f,LI, _ .Y. if -1, ,. (f 
0 otherwise, 

Threshold 0 in (60) satisfies the inequalities 

(60) 

Thus. (53) and (55) imply Eqns (58)-(61) imply that I is nonzero. 

dz:: 
dt = ~(1 - d)(9M’ - zJ*). (56) Fz activation 

The input to the jth F2 node is given by 

Hence, zJ* begins to approach %Y at a rate that is 
slower, by a factor E, than the rate of convergence 
of an uncommitted node. In ART 2, the size of c is 
determined by the parameters a and b (Figure 1). 
The normal ART 2 parameter constraints that a and 
b be large conspire to make E small. 

In summary, if the ART 2 input presentation time 
is large relative to l/( 1 - d), the LTM vectors of 
an uncommitted node J converge to I on the first 
activation of that node. Subsequently, the LTM vec- 
tors remain approximately equal to a vector z,, where 

(1 - d) Ml = llz:ll = 1. (57) 

Because zJ* is normalized when J first becomes com- 
mitted, and, by (53), it approaches II, which is both 
normalized and approximately equal to zJ*, zT re- 
mains approximately normalized during learning. 
Thus, the rapid-search algorithm (Section 2.9) re- 
mains valid for intermediate learning as well as for 

i 

(Y X, I, 
r, = 1 . z; 

if j is an uncotimitted node 
if j is a committed node. 

(62) 

The constant (Y in (62) satisfies 

Intially, all FZ nodes are uncommitted. The set of 
committed F2 nodes and the scaled LTM vectors z:~ 
are defined iteratively below. 

Choice fuuction 
The initial choice at F2 is one node with index J 
satisfying 

T, = max(T,). (W 
I 

If more than one node is maximal, choose one at 
random. After an input presentation on which node 
J is chosen, J becomes committed. 



ART 2-A 

Resonance or reset 
The node J initially chosen by (64) remains constant 
if J is uncommitted or if / is committed and 

T, 2 /F. 

where /I” is constrained so that 

0 5 /‘. 5 I. 

If J is committed and 

(65) 

(66) 

T, c /‘I . (67) 

then J is reset to the index of an arbitrary uncom- 
mitted node. Because the Euclidean norms of I and 
z;’ are all equal to 1 for committed nodes, r, in (62) 
equals the cosine of the angle between I and z:. 

Learning 
At the end of an input presentation. z:: is set equal 
to z:“““I defined by 

r, 111’11 / Zi 

= ’ 
i 

if J is an uncommitted node 
‘%(/BPP + ( 1 - /j)~;~“““) if J is a committed node 

(68) 

where, if J is a committed node, z~~“‘~” denotes the 
value of z.7 at the start of the input presentation, 

I if z~l’~ldl > 0 
0 otherwise. (6’)) 

and 

0 2: /I 5 1. (70) 

3.5. Contrast With the Leader Algorithm 

The ART 2-A weight update rule (6X) for a com- 

mitted node is similar in form to eqn (54). However, 
(54) describes the STM vector u immediately after a 
node J has become active. before any significant 
learning has taken place. and parameter I: in (54) is 
small. ART 2-A approximates a process that inte- 

grates the form factor (54) over the entire input pre- 
sentation interval. Hence, b ranges from 0 to 1 in 
(70). Setting 1(1 equal to 1 gives ART 2-A in the fast- 
learn limit. Setting 1 equal to 0 turns ART 2-A into 
a type of leader algorithm (Hartigan. 1975, Ch. 3), 
with the weight vector z: remaining constant once J 
is committed. Small positive values of p yield system 
properties similar to those of an ART 2 slow learning 
system. Fast commitment obtains, however. for all 
values of /j’. Note that /j could vary from one input 
presentation to the next, with smaller values of /J’ 
corresponding to shorter presentation intervals and 
larger values of /j corresponding to longer presen- 
tation intervals. 

Parameter (Y in (62) corresponds to the initial val- 
ues of LTM components in an ART 2 F, --+ F2 weight 
vector. As described in Section 2.6. a needs to be 

small enough, as in (63). so that if z:: = I for some 
1. then J will be chosen when I is presented. Setting 

CY close to 1 /fi biases the network toward selection 
of an uncommitted node over category nodes that 
only partially match I. In the simulations described 
below, (Y is set equal to l/V%. Thus even when 
/‘,“ zz 0 and reset never occurs. ART 2-A can estab- 
lish several categories. Instead of randomly selecting 

any uncommitted node after reset. the value (Y for 

all r, in (62) could be replaced by any function of j, 
such as a ramp or random function. that achieves the 
desired balance between selection of committed and 
uncommitted nodes and a determinate selection of 
a definite uncommitted node after a reset event. 

4. SIMULATIONS 

4.1. Comparative Simulations of ART 2-A and 
ART 2 Fast-Learn Systems 

The simulation summarized in Figure 2 illustrates 

how ART 2-A groups 50 analog input patterns. The 
ART 2-A simulation gives a result essentially iden- 
tical to the simulation result of a fast-learn ART 2 

system with comparable parameters. The input set 

I0 I z; J 
1-1 

26 
27 16 
29 

36 
37 21 
38 

11 
40 
41 23 

42 

FIGURE 2. ART 2-A fast-learn simulation. I0 is the input to &,. 
I is the input to F,. z; is the scaled LTM vector of the winning 
F, category node J at the end of each input presentation 
interval. The numbers in the left column index the input vec- 
tors and give their order of presentation. The vertical axes 
of the inputs I0 all have the same scale, which is arbitrary 
due to the initial normalization in F,. The vertical axes for I 
and z: run from 0 to 1. 



consisted of the 50 patterns used in the original AR7 
2 simulations (Carpenter & Grossberg, 1987b). The 
inputs, indexed in the left column of Figure 2, were 
repeatedly presented in the order 1,2, . . , SO until 
the category structure stabilized. 

Table 1 shows the parameters used for one of 
the fast-learn simulations (Carpenter & Grossberg. 
1987b, Figure 11). Since fast-learn LTM components 
approach but never reach a limit on each input pre- 
sentation, each ART 2 simulation requires selection 
of a convergence criterion. As described below, dif- 
ferent criteria can produce slight variations in catc- 
gory structure. 

The ART 2-A parameters for Figure 2 (see Table 
2) correspond to the ART 2 parameters. For exam- 
ple, eqn (37) is used to set p” = .92058 when p = 

.9X and D = cnl(l - LI) = .9. Since ART 2-A gives 
formula (68) for the LTM limit, no convergence cri- 
terion is necessary. 

The ART 2 and ART 2-A simulations give iden- 
tical partitions of the 50 patterns into 23 recognition 
categories (Figure 2). Each component of the final 
LTM vectors differs at most by 0.5%. The difference 
between the two results decreases as the convergence 
criterion on the ART 2 simulation is tightened. 

For both ART 2 and ART 2-A, the category struc- 
ture stabilizes to its asymptotic state during the sec- 
ond presentation of the entire input set. However, 
the suprathreshold LTM components continue to 
track the relative magnitudes of the components in 
the most recent input. The inputs and final templates 
of the ART 2-A simulation are shown in Figure 3. 
Inputs are shown grouped according to the F2 node 

category J chosen during the second and subsequent 
presentations of each input. Category 23 shows how 
z; tracks the suprathreshold analog input values in 
feature set Q while ignoring input values outside that 
set. The corresponding figure for the ART 2 simu- 
lation is indistinguishable from Figure 2. 

The earlier ART 2 simulation (Carpenter & 
Grossberg, 1987b. Figure 11) had one fewer category 
than Figure 2, even though the model parameters 

TABLE 1 
ART 2 simulation parameters 

(Carpenter & Grossberg, 198?b, Figure 11) 

Parameter Value 

M 25 
z,(O) 1 

-= 2 
(1 - d)VM 

0 
__ = .2 
xh 

P .98 

z 
IO 
10 

z 
.l 
.9 

TABLE 2 
ART 2-A simulation parameters for 

Figures 2-4 

Parameter 
___-.-___ 

M 

(k 

ti 

Figure 2 

.92058 
1 

$ 

\Ih/r 2 

Figure 3 Figure 4 

0 0 
1 .Ol 

-._ _-. 

were the same as in Table 1. This difference appears 
to be due to different convergence criteria. 

The ART 2-A fast-learn simulation in Figure 2 
used only four seconds of Sun 4i 110 CPU time to 
run through the SO patterns rhree times. The car- 
responding ART 2 simulation took 25 to 150 times 
as long, depending on the fast-learn convergence cri- 
terion imposed. This speed-up occu~rred even using 
a fast integration method for ART 2, in which LTM 
values were allowed to relax to equilibrium atter- 
natively with STM variables. Carpenter and Gross- 
berg (1987b) employed a slower integration method, 
in which LTM values changed only slightly for each 
STM relaxation. Compared to this latter method, the 
ART 2-A speed-up is even greater. Finalty. Integra- 
tion of the full ART 2 dynamical system would take 
longer still. 

4.2. Comparative Simulations c~f A&T 2-A 
Fast-Learn and Intemwdiate-Learn Systems 

Simulation results of ART 2-A with fast learning 
(Figure 3) and intermediate learning (Figure 4) use 
the same 50 input patterns as in Figure 2, but the 
inputs are now presented randomly, rather than cy- 
clically. This random presentation regime simulates 
a statistically stationary environment in which each 
member of a fixed set of patterns is-encountered with 
equal probability at any given time. In addition, y” 
was set to zero in these simulations. making the num- 
ber of categories more dependent on-parameter cy 
than when p* is larger. Other parameters are given 
in Table 2. 

Figures 3 and 4 show the asymptotic category 
structure and scaled LTM weight vectors established 
after an initial transient phase of 2.000 to 3,000 input 
presentations. Figure 3 illustrates that category 
nodes may occasionally be abandoned after a tran- 
sient encoding phase (see nodes J = 1, 6, and 7). 
Figure 3 also includes a single input pattern (39) that 
appears in two categories (J = I:! and 15). In the 
simulation, input 39 was usually placed in category 
12. However. when the most recent input to category 



ART 2-A SO.? 

15 
16 
17 
18 2 
47 
48 
49 
50 

I0 I z; J 
23-10 

FIGURE 3. ART 2-A fast-learn simulation. Input presentation 
order is random and p* = 0. Otherwise the system is the 
same as in Figure 2. The three categories (J = 1, 6, and 7) 
showing no inputs were coded only during early presenta- 
tions. Pattern 39 appears in both categories 12 and 15. 

12 was pattern 21. category 15 could win in response 

to input 39, though whether or not it did depended 
on which pattern category 15 had coded most re- 

cently as well. In addition to depending on input 
presentation order. the instability of pattern 39 is 
promoted by the system being in the fast-learn limit 

with a small value of y”‘, here /I” = 0. A correspond- 
ing ART 2 system gives similar results. 

These anomalies did not occur in the intermedi- 

ate-learn case, in which there is not such drastic 

recoding on each input presentation. Similarly. 
intermediate learning copes better with noisy inputs 

than does fast learning. Figure 4 illustrates an ART 
2-A simulation run with the inputs and parameters 

of Figure 3, except that the learning rate parameter 
is small (p = .Ol). The analog values of the su- 
prathreshold LTM components do not vary with the 
most recent input nearly as much as the components 
in Figure 3. A slower learning rate helps ART 2-A 
to stabilize the category structure by making coding 
less dependent on order of input presentation. 

5. CONCLUSION 

ART 2 fast-learn and intermediate-learn systems 
combine analog and binary coding functions. The 
analog portion encodes the recent past while the bi- 
nary portion retains the distant past. On the one 

4 
5 
6 
7 

10 

I0 I z; J 
15 
16 
17 
18 
47 

2 

48 
49 
50 

FIGURE 4. ART 2-A intermediate-learn simulation. The learn- 
ing rate parameter p is set equal to .Ol. Otherwise the system 
is the same as in Figure 3, including a zero value of vigilance 
that leads to coarse, but stable, categories. 

hand. LTM traces that fall below threshold remain 

below threshold at all future times. Thus once a fea- 
ture is deemed “irrelevant” in a given category, it 

will remain irrelevant throughout the future learning 

experiences of that category in that such a feature 
will never again be encoded into the LTM of that 

category. even if the feature is present in the input 

pattern. For example, the color features of a chair 

may come to be suppressed during learning of the 
category “chair” if these color features have not been 

consistently present during learning of this category. 
On the other hand, the suprathreshold LTM traces 

track a time-average of recent input patterns, even 

while they are being renormalized due to suppression 

of other components. Intuitively. a feature that is 

consistently present tracks the most recent ampli- 
tudes of that feature. eventually forgetting subtle dif- 

ferences of its past exemplars. much as in word 
frequency effects, encoding specificity effects, and 

episodic memory (Mandler, lYX0: Underwood & 
Freund. lY70), which are qualitatively explained in 
terms of a time-averaged ART learning equation 

analogous to (68) in Grossberg and Stone (1986). 
The ART 2-A algorithm incorporates these cod- 

ing features while achieving an increase in compu- 
tational efficiency of two to three orders of mag- 
nitude over the full ART 2 system. 
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When the scaled IJI‘M veclor z: ( I :I IL. reaches cquliihrtu~il 
it equals u. Then. denoting z ~: XI’. 

i f (IL 
- _c [,Z 

/‘I t CJZII 
(72) 

where 

Since also //I]/ = //zll =- I. it follows from (76) that 1 = 2. which 
completes the proof. 


