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The development of efficient procedures to access optically
pure piperidines has provoked continuing interest, as such
compounds have been used widely in the construction of
natural products and pharmaceutical compounds.[1] The
stereoselective aza-Diels–Alder reaction (ADAR) is one of
the most convergent strategies for the synthesis of chiral
piperidine derivatives. As a complementary alterative to the
well-established formal cycloaddition of dienes and imines
catalyzed by metal complexes or organic molecules,[2,3] Boger
and co-workers introduced inverse-electron-demand aza-
Diels–Alder reactions of N-sulfonyl-1-aza-1,3-butadienes
and electron-rich alkenes.[4] These reactions generally exhib-
ited high regiospecificity and diastereoselectivity with the
characteristics of a concerted [4+2] cycloaddition mechanism.
Although the utility of these reactions has been explored
fruitfully over the past two decades, quite limited progress has
been made in catalytic asymmetric variants.[5] Recently, Bode
and co-workers developed an asymmetric ADAR of
N-sulfonyl a,b-unsaturated aldimines and b-activated enals
with a chiral N-heterocarbene catalyst,[6] and later Carretero
and co-workers reported a Lewis acid catalyzed ADAR of
N-(heteroaryl)sulfonyl a,b-unsaturated ketimines with vinyl
ethers.[7]

In 2003, Juhl and Jørgensen reported an inverse-electron-
demand hetero-Diels–Alder reaction of aldehydes and b,g-
unsaturated a-ketoesters catalyzed by a chiral secondary
amine.[8a] The chiral enamine generated in situ as an electron-
rich alkene is crucial for the success of the reaction.[8]

Encouraged by these elegant achievements, we envisaged
that an unprecedented asymmetric ADAR of N-sulfonyl-1-
aza-1,3-butadienes and aldehydes might be developed by
employing a similar strategy.

We initially investigated the reaction of the N-tosyl imine
of chalcone, 2a, with butyraldehyde (3a) in the presence of
the readily available a,a-diphenylprolinol trimethylsilyl ether
1a (10 mol%) and benzoic acid (10 mol%) in toluene.[9,10]

The ADAR product 4awas obtained in less than 10% yield at

ambient temperature after 72 h (Table 1, entry 1). Subse-
quently, it was found that the adduct 5 was formed as a rather
stable compound in the reaction.[8a] Similar phenomena were
observed in THF or MeOH (Table 1, entries 2 and 3). The
conversion was improved in acetonitrile: The expected hemi-
aminal 4a was formed with excellent stereoselectivity and
isolated as a fairly stable compound in moderate yield
(Table 1, entry 4; d.r.> 99:1, 96% ee). Moreover, we found
that the addition of water led to a dramatic acceleration of the
reaction (Table 1, entry 5); better results were observed when
a 10:1 mixture of CH3CN and H2O was used (Table 1,
entry 6).[11] Apparently, water is helpful for the hydrolysis of
intermediate 5 to release the catalyst 1a and thus enable
catalytic turnover. The acid additive has a great effect on the
reaction; almost no reaction occurred when the stronger
p-toluenesulfonic acid (p-TSA) was used in place of benzoic
acid (Table 1, entry 7). The enantioselectivity could be

Table 1: Optimization of the organocatalytic ADAR of the N-tosyl-1-aza-
1,3-butadiene 2a and butyraldehyde (3a).[a]

Entry 1 Acid Solvent Yield [%][b] ee [%][c]

1[d] 1a BzOH toluene <10 n.d.[e]

2[d] 1a BzOH THF <10 n.d.
3[d] 1a BzOH MeOH <10 n.d.
4[d] 1a BzOH MeCN 66 96
5[f ] 1a BzOH MeCN/H2O 69 92
6 1a BzOH MeCN/H2O 89 95
7 1a p-TSA MeCN/H2O <10 n.d.
8 1a AcOH MeCN/H2O 88 97
9[d] 1a AcOH MeOH/H2O 88 95

10[d] 1a AcOH THF/H2O 63 96
11 1a AcOH dioxane/H2O 86 92
12 1b AcOH MeCN/H2O 60 94
13 1c AcOH MeCN/H2O 49 95
14 1d AcOH MeCN/H2O <10 n.d.

[a] Reaction conditions (unless otherwise noted): 2a (0.1 mmol), 3a
(0.2 mmol), 1 (0.01 mmol), acid (0.01 mmol), organic solvent/H2O
(1.1 mL, 10:1), room temperature, 24 h. [b] Yield of the isolated product.
[c] The ee value was determined by HPLC on a chiral phase; d.r.>99:1.
[d] Reaction time: 72 h. [e] Not determined. [f ] The reaction was carried
out in CH3CN/H2O (5:1). Bz=benzoyl, TBS= tert-butyldimethylsilyl,
TES= triethylsilyl, TMS= trimethylsilyl.
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improved slightly by adding acetic acid (Table 1, entry 8).
Inferior results were obtained with other organic solvent/H2O
mixtures (Table 1, entries 9–11). The bulkier silyl ethers 1b
and 1c gave similar enantioselectivity but with lower catalytic
activity (Table 1, entries 12 and 13); the secondary amine 1d
with strong electron-withdrawing substituents on the aryl
rings failed to catalyze the model reaction (Table 1, entry 14).

Having established optimal reaction conditions, we
explored the scope of this ADAR. Thus, N-sulfonyl-1-aza-
1,3-butadienes 2 were treated with aldehydes 3 in the
presence of 1a (10 mol%) and AcOH (10 mol%) in a
mixture of CH3CN and H2O (10:1) at room temperature.
Hemiaminals 4 with excellent diastereomeric ratios (d.r.>
99:1) were isolated directly and were stable enough for
analysis by various methods. For the reactions with butyr-
aldehyde, a wide range of substituents could be present at the
b position of the N-tosyl a,b-unsaturated ketimine 2. A
variety of aryl or heteroaryl groups at this position of the
C=C bond had a limited effect on the enantioselectivity of the
reaction, and excellent ee values were observed (Table 2,
entries 1–8). Good results were also attained with an

a,b-unsaturated ketimine with a b-alkyl group (Table 2,
entry 9). A b-activated ketimine, with an ester substituent in
the b position, exhibited higher reactivity, and excellent
enantioselectivity was also observed (Table 2, entry 10).

The substituent on the C=N bond was also varied.
Outstanding enantioselectivities were observed for substrates
with electron-donating or electron-withdrawing aryl groups at
this position (Table 2, entries 11–15). The ketimine derived
from dibenzylideneacetone was a good substrate, and thus
another functionality could be introduced into the product
(Table 2, entry 16). However, an alkyl-substituted ketimine
showed no reactivity toward butyraldehyde (Table 2,
entry 17), and an a,b-unsaturated aldimine underwent
decomposition (Table 2, entry 18).

Other linear aliphatic aldehydes could be applied
smoothly as substrates in the ADAR reaction (Table 2,
entries 19 and 20); however, the attempted reaction of
branched isovaleraldehyde with 1-aza-1,3-butadiene 2a
failed, probably because of steric reasons (Table 2,
entry 21). The use of aqueous acetaldehyde was also unsuc-
cessful under the current catalytic conditions (Table 2,
entry 22).[13] When this catalytic ADAR was conducted on a

Table 2: Asymmetric ADAR of N-tosyl-1-aza-1,3-butadienes 2 and alde-
hydes 3.[a]

Entry R R1 R2 4 Yield[b]

[%]
ee[c]

[%]

1 Ph Ph Et 4a 88 97
2 Ph p-ClC6H4 Et 4b 85 98
3 Ph m-ClC6H4 Et 4c 92 99
4 Ph m-MeOC6H4 Et 4d 81 95
5 Ph p-MeC6H4 Et 4e 78 96
6[d] Ph 1-Np Et 4 f 40 99
7[e] Ph 2-furyl Et 4g 83 98
8[e] Ph 2-thienyl Et 4h 87 98
9 Ph Me Et 4 i 83 93

10[f ] Ph COOEt Et 4 j 95 99
11 p-MeC6H4 Ph Et 4k 85 99
12 p-ClC6H4 Ph Et 4 l 82 98[g]

13 o-ClC6H4 Ph Et 4m 74 99
14 m-BrC6H4 Ph Et 4n 86 99
15[e] 1-Np Ph Et 4o 83 94
16[d] PhCH=CH Ph Et 4p 91 99
17 Me Ph Et – – –
18 H Ph Et – – –
19 Ph Ph Me 4q 92 98
20[d] Ph Ph BnO(CH2)2 4r 72 99
21 Ph Ph iPr – – –
22 Ph Ph H – – –
23[h] Ph Ph Et 4a 82 96

[a] Reaction conditions (unless otherwise noted): 2 (0.1 mmol), 3
(0.2 mmol), 1a (10 mol%), AcOH (10 mol%), CH3CN/H2O (1.1 mL,
10:1), room temperature, 24 h. [b] Yield of the isolated product. [c] The
ee value was determined by HPLC on a chiral phase; d.r.>99:1.
[d] Reaction time: 72 h. [e] Reaction time: 48 h. [f ] Reaction time: 12 h.
[g] The absolute configuration of 4 l was determined by X-ray crystal-
structure analysis (Figure 1).[12] The absolute configuration of the other
products was assigned by analogy. [h] The reaction was carried out on a
1.0 mmol scale with a reaction time of 48 h. Bn=benzyl, Np=naphthyl.

Scheme 1. Synthetic transformations of the chiral hemiaminal 4a :
a) PCC, 40 8C, 6 h; b) Et3SiH, BF3·Et2O, �78 8C, 4 h; c) Et3SiH,
BF3·Et2O, room temperature, 12 h; d) FeCl3·6H2O, CH2Cl2, 0 8C, 8 h;
e) MnO2, CHCl3, room temperature, 12 h. PCC=pyridinium chloro-
chromate.

Figure 1. X-ray crystal structure of the enantiomerically pure hemiami-
nal 4 l.

Communications

2 www.angewandte.org � 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2008, 47, 1 – 5
� �

These are not the final page numbers!

http://www.angewandte.org


larger scale, similar good results were observed (Table 2,
entry 23).

The chiral hemiaminal 4a could be converted smoothly
into a number of valuable compounds (Scheme 1). Upon
oxidation with PCC (pyridinium chlorochromate), lactam 6
was produced without any racemization. The hydroxy group
of 4a was removed chemoselectively to give tetrahydropyr-
idine 7 by reduction with Et3SiH/BF3·Et2O at�78 8C, whereas
the enamide functionality was also reduced to afford piper-
idine 8 with excellent diastereoselectivity when the 4a was
treated with these reagents at ambient temperature. Hemi-
aminal 4a could also be hydrolyzed to the enantiomerically
enriched anti 1,5-dicarbonyl compound 9. Since no direct
asymmetric intermolecular Michael addition of aliphatic
aldehydes to chalcones has been developed,[14] this method
might serve as an alternative approach to this type of chiral
building block. Finally, hemiaminal 4a was oxidized effi-
ciently to the trisubstituted pyridine 10.

In conclusion, we have presented a highly stereoselective
inverse-electron-demand aza-Diels–Alder reaction of N-sul-
fonyl-1-aza-1,3-butadienes and aldehydes that proceeds
under aminocatalysis with a chiral secondary amine. Excel-
lent enantioselectivities (up to 99% ee) were observed for a
broad spectrum of substrates under mild conditions. More-
over, a variety of chiral piperidine derivatives and other
useful compounds could be prepared readily from the hemi-
aminal adducts. We are currently investigating the catalytic
mechanism of the reaction[14] and the development of new
asymmetric reactions catalyzed by chiral amines.
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Organocatalytic Asymmetric Inverse-
Electron-Demand Aza-Diels–Alder
Reaction of N-Sulfonyl-1-aza-1,3-
butadienes and Aldehydes

Water is crucial for high transformation
efficiency in the title reaction catalyzed by
the a,a-diphenylprolinol derivative 1.
Excellent stereoselectivities were
observed for a broad spectrum of sub-

strates (see scheme; TMS= trimethyl-
silyl, Tos= p-toluenesulfonyl). A diverse
range of chiral piperidine derivatives and
other valuable compounds can be pre-
pared from the hemiaminal products.
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