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Organocatalytic Asymmetric Inverse-Electron-Demand Aza-Diels—
Alder Reaction of N-Sulfonyl-1-aza-1,3-butadienes and Aldehydes
Bo Han, Jun-Long Li, Chao Ma, Shan-Jun Zhang, and Ying-Chun Chen*

The development of efficient procedures to access optically
pure piperidines has provoked continuing interest, as such
compounds have been used widely in the construction of
natural products and pharmaceutical compounds."! The
stereoselective aza-Diels—Alder reaction (ADAR) is one of
the most convergent strategies for the synthesis of chiral
piperidine derivatives. As a complementary alterative to the
well-established formal cycloaddition of dienes and imines
catalyzed by metal complexes or organic molecules,** Boger
and co-workers introduced inverse-electron-demand aza-
Diels—Alder reactions of N-sulfonyl-1-aza-1,3-butadienes
and electron-rich alkenes.! These reactions generally exhib-
ited high regiospecificity and diastereoselectivity with the
characteristics of a concerted [4+42] cycloaddition mechanism.
Although the utility of these reactions has been explored
fruitfully over the past two decades, quite limited progress has
been made in catalytic asymmetric variants.”! Recently, Bode
and co-workers developed an asymmetric ADAR of
N-sulfonyl o,p-unsaturated aldimines and f-activated enals
with a chiral N-heterocarbene catalyst,”! and later Carretero
and co-workers reported a Lewis acid catalyzed ADAR of
N-(heteroaryl)sulfonyl a,f-unsaturated ketimines with vinyl
ethers.)

In 2003, Juhl and Jgrgensen reported an inverse-electron-
demand hetero-Diels—Alder reaction of aldehydes and f3,y-
unsaturated o-ketoesters catalyzed by a chiral secondary
amine.® The chiral enamine generated in situ as an electron-
rich alkene is crucial for the success of the reaction.
Encouraged by these elegant achievements, we envisaged
that an unprecedented asymmetric ADAR of N-sulfonyl-1-
aza-1,3-butadienes and aldehydes might be developed by
employing a similar strategy.

We initially investigated the reaction of the N-tosyl imine
of chalcone, 2a, with butyraldehyde (3a) in the presence of
the readily available a,a-diphenylprolinol trimethylsilyl ether
1a (10 mol%) and benzoic acid (10 mol%) in toluene.”!"
The ADAR product 4a was obtained in less than 10 % yield at
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ambient temperature after 72 h (Table 1, entry 1). Subse-
quently, it was found that the adduct § was formed as a rather
stable compound in the reaction.® Similar phenomena were
observed in THF or MeOH (Table 1, entries 2 and 3). The
conversion was improved in acetonitrile: The expected hemi-
aminal 4a was formed with excellent stereoselectivity and
isolated as a fairly stable compound in moderate yield
(Table 1, entry 4; d.r.>99:1, 96 % ee). Moreover, we found
that the addition of water led to a dramatic acceleration of the
reaction (Table 1, entry 5); better results were observed when
a 10:1 mixture of CH;CN and H,O was used (Table1,
entry 6)." Apparently, water is helpful for the hydrolysis of
intermediate 5 to release the catalyst 1a and thus enable
catalytic turnover. The acid additive has a great effect on the
reaction; almost no reaction occurred when the stronger
p-toluenesulfonic acid (p-TSA) was used in place of benzoic
acid (Table 1, entry 7). The enantioselectivity could be

Table 1: Optimization of the organocatalytic ADAR of the N-tosyl-1-aza-
1,3-butadiene 2a and butyraldehyde (3a).”!

N Tos 1(10mol%) oH o~
)|\/\ + ~_CHO acid (10 mol%) /,O\
Ph Ph RT A
Ph Ph
2a 3a 4a
Ph
Ar 1aAr=Ph R=TMS O)(Ph
Ar 1b Ar=Ph, R = TES N OTMS
N OR 1c¢Ar=Ph, R=TBS Tos . RN
1d Ar = 3,5-(CF3),CeH3
R=TMS P Ve 5

Entry 1 Acid Solvent Yield [%]! ee [%]1

Ik Ta BzOH toluene <10 n.d.

2l 1a BzOH THF <10 nd.

3l la BzOH MeOH <10 n.d.

4 la BzOH MeCN 66 9

5if 1la BzOH MeCN/H,0 69 92

6 la BzOH MeCN/H,0 89 95

7 Ta p-TSA MeCN/H,0 <10 n.d.

8 1la AcOH MeCN/H,0 88 97

oldl la AcOH MeOH/H,0 88 95
104 la AcOH THF/H,0 63 96
1 Ta AcOH dioxane/H,O 86 92
12 1b AcOH MeCN/H,0 60 94
13 1c AcOH MeCN/H,O 49 95
14 1d AcOH MeCN/H,O <10 n.d.

[a] Reaction conditions (unless otherwise noted): 2a (0.1 mmol), 3a
(0.2 mmol), 1 (0.01 mmol), acid (0.01 mmol), organic solvent/H,O
(1.1 mL, 10:1), room temperature, 24 h. [b] Yield of the isolated product.
[c] The ee value was determined by HPLC on a chiral phase; d.r.>99:1.
[d] Reaction time: 72 h. [e] Not determined. [f] The reaction was carried
out in CH;CN/H,O (5:1). Bz=benzoyl, TBS=tert-butyldimethylsilyl,
TES =triethylsilyl, TMS =trimethylsilyl.
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improved slightly by adding acetic acid (Table 1, entry 8).
Inferior results were obtained with other organic solvent/H,O
mixtures (Table 1, entries 9-11). The bulkier silyl ethers 1b
and 1c¢ gave similar enantioselectivity but with lower catalytic
activity (Table 1, entries 12 and 13); the secondary amine 1d
with strong electron-withdrawing substituents on the aryl
rings failed to catalyze the model reaction (Table 1, entry 14).

Having established optimal reaction conditions, we
explored the scope of this ADAR. Thus, N-sulfonyl-1-aza-
1,3-butadienes 2 were treated with aldehydes 3 in the
presence of 1la (10mol%) and AcOH (10mol%) in a
mixture of CH;CN and H,O (10:1) at room temperature.
Hemiaminals 4 with excellent diastereomeric ratios (d.r.>
99:1) were isolated directly and were stable enough for
analysis by various methods. For the reactions with butyr-
aldehyde, a wide range of substituents could be present at the
B position of the N-tosyl o,p-unsaturated ketimine 2. A
variety of aryl or heteroaryl groups at this position of the
C=Cbond had a limited effect on the enantioselectivity of the
reaction, and excellent ee values were observed (Table 2,
entries 1-8). Good results were also attained with an

Table 2: Asymmetric ADAR of N-tosyl-1-aza-1,3-butadienes 2 and alde-
hydes 3.

OH
NI/TOS /gfc;;o(%oln/oo)m) Tos ;,\O;‘RZ
M~ v RR_cHO — e
R R CHLCN/H,0 A 1
2 3 RT, 24 h R, R
Entry R R' R? 4 Yield®” eeld
[%] [%]
1 Ph Ph Et 4a 88 97
2 Ph p-CICeH, Et 4b 85 98
3 Ph m-ClCeH, Et 4c 92 99
4 Ph m-MeOCgH,  Et 4d 31 95
5 Ph p-MeCgH, Et 4e 78 96
6 Ph 1-Np Et af 40 99
7€ Ph 2-furyl Et 4g 83 98
8 Ph 2-thienyl Et 4h 87 98
9 Ph Me Et 4i 83 93
107 Ph COOEt Et 4j 95 99
1 p-MeCH, Ph Et 4k 85 99
12 p-CICgH, Ph Et 41 82 98l
13 0-CICH,  Ph Et 4m 74 99
14 m-BrCH,  Ph Et 4n 86 99
15 1-Np Ph Et 40 83 94
16 PhCH=CH Ph Et 4p 91 99
17 Me Ph Et - - -
18 H Ph Et - - -
19 Ph Ph Me 4q 92 98
204 ph Ph BnO(CH,), 4r 72 99
21 Ph Ph iPr - - -
22 Ph Ph H - - -
231 ph Ph Et 4a 82 96

[a] Reaction conditions (unless otherwise noted): 2 (0.1 mmol), 3
(0.2 mmol), Ta (10 mol %), AcOH (10 mol%), CH;CN/H,O (1.1 mL,
10:1), room temperature, 24 h. [b] Yield of the isolated product. [c] The
ee value was determined by HPLC on a chiral phase; d.r.>99:1.
[d] Reaction time: 72 h. [e] Reaction time: 48 h. [f] Reaction time: 12 h.
[g] The absolute configuration of 41 was determined by X-ray crystal-
structure analysis (Figure 1).'? The absolute configuration of the other
products was assigned by analogy. [h] The reaction was carried out on a
1.0 mmol scale with a reaction time of 48 h. Bn=benzyl, Np = naphthyl.

Figure 1. X-ray crystal structure of the enantiomerically pure hemiami-
nal 41.

o,B-unsaturated ketimine with a f-alkyl group (Table 2,
entry 9). A B-activated ketimine, with an ester substituent in
the f position, exhibited higher reactivity, and excellent
enantioselectivity was also observed (Table 2, entry 10).

The substituent on the C=N bond was also varied.
Outstanding enantioselectivities were observed for substrates
with electron-donating or electron-withdrawing aryl groups at
this position (Table 2, entries 11-15). The ketimine derived
from dibenzylideneacetone was a good substrate, and thus
another functionality could be introduced into the product
(Table 2, entry 16). However, an alkyl-substituted ketimine
showed no reactivity toward butyraldehyde (Table 2,
entry 17), and an o,p-unsaturated aldimine underwent
decomposition (Table 2, entry 18).

Other linear aliphatic aldehydes could be applied
smoothly as substrates in the ADAR reaction (Table 2,
entries 19 and 20); however, the attempted reaction of
branched isovaleraldehyde with 1-aza-1,3-butadiene 2a
failed, probably because of steric reasons (Table 2,
entry 21). The use of aqueous acetaldehyde was also unsuc-
cessful under the current catalytic conditions (Table 2,
entry 22).%1 When this catalytic ADAR was conducted on a

0
TOSD:\\ TOS NS
P "Vpp, N

Ph Ph
7 55% yield, 99% ee 6 67% yield, 98% ee

AN oH 37

Tos. A~ a =
SO QIS S
R

AN
L& ph X"pp Ph Ph
Tos< N 4a 96% ee
2L
N
Ph Ph Q  Ph
8 72% yield, 99% ee Ph

CHO
9 91% yield, 95% ee

10 62% yield

Scheme 1. Synthetic transformations of the chiral hemiaminal 4a:
a) PCC, 40°C, 6 h; b) Et,SiH, BF,-Et,0, —78°C, 4 h; ) Et,SiH,
BF;-Et,0, room temperature, 12 h; d) FeCl;-6 H,0, CH,Cl,, 0°C, 8 h;
e) MnO,, CHCl;, room temperature, 12 h. PCC = pyridinium chloro-
chromate.
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larger scale, similar good results were observed (Table 2,
entry 23).

The chiral hemiaminal 4a could be converted smoothly
into a number of valuable compounds (Scheme 1). Upon
oxidation with PCC (pyridinium chlorochromate), lactam 6
was produced without any racemization. The hydroxy group
of 4a was removed chemoselectively to give tetrahydropyr-
idine 7 by reduction with Et;SiH/BF;-Et,0O at —78°C, whereas
the enamide functionality was also reduced to afford piper-
idine 8 with excellent diastereoselectivity when the 4a was
treated with these reagents at ambient temperature. Hemi-
aminal 4a could also be hydrolyzed to the enantiomerically
enriched anti 1,5-dicarbonyl compound 9. Since no direct
asymmetric intermolecular Michael addition of aliphatic
aldehydes to chalcones has been developed,! this method
might serve as an alternative approach to this type of chiral
building block. Finally, hemiaminal 4a was oxidized effi-
ciently to the trisubstituted pyridine 10.

In conclusion, we have presented a highly stereoselective
inverse-electron-demand aza-Diels—Alder reaction of N-sul-
fonyl-1-aza-1,3-butadienes and aldehydes that proceeds
under aminocatalysis with a chiral secondary amine. Excel-
lent enantioselectivities (up to 99 % ee) were observed for a
broad spectrum of substrates under mild conditions. More-
over, a variety of chiral piperidine derivatives and other
useful compounds could be prepared readily from the hemi-
aminal adducts. We are currently investigating the catalytic
mechanism of the reaction and the development of new
asymmetric reactions catalyzed by chiral amines.
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For recent applications of acetaldehyde in enamine catalysis,
see: a) Y. Hayashi, T. Itoh, S. Aratake, H. Ishikawa, Y. Hayashi,
T. Itoh, M. Ohkubo, H. Ishikawa, Angew. Chem. 2008, 120,2112;
Angew. Chem. Int. Ed. 2008, 47, 2082; b)J. W. Yang, C.
Chandler, M. Stadler, D. Kampen, B. List, Nature 2008, 452,
453; c) see references [9i] and [9]]; d) for a Highlight, see: B.
Alcaide, P. Almendros, Angew. Chem. 2008, 120, 4710; Angew.
Chem. Int. Ed. 2008, 47, 4632.

For additions to vinyl ketones, see: a) P. Melchiorre, K. A.
Jorgensen, J. Org. Chem. 2003, 68, 4151; b) T. J. Peelen, Y. Chi,
S. H. Gellman, J. Am. Chem. Soc. 2005, 127, 11598; ¢) Y. Chi,
S. H. Gellman, Org. Lett. 2005, 7, 4253; d) Y. Chi, S. T. Scroggins,
J. M. I. Fréchet, J. Am. Chem. Soc. 2008, 130, 6322; for additions
to quinones, see: e)J. Alemdn, S. Cabrera, E. Maerten, J.

[15

—

Overgaard, K. A. Jgrgensen, Angew. Chem. 2007, 119, 5616;
Angew. Chem. Int. Ed. 2007, 46, 5520; for intramolecular
Michael addition to enones, see: f) M. T. Hechavarria Fonseca,
B. List, Angew. Chem. 2004, 116, 4048; Angew. Chem. Int. Ed.
2004, 43,3958; g) J. W. Yang, M. T. Hechavarria Fonseca, B. List,
J. Am. Chem. Soc. 2005, 127,15036; h) Y. Hayashi, H. Gotoh, T.
Tamura, H. Yamaguchi, R. Masui, M. Shoji, J. Am. Chem. Soc.
2005, 727, 16028; i) N. T. Vo, R. D. M. Pace, F. O’Hara, M. J.
Gaunt, J. Am. Chem. Soc. 2008, 130, 404.

As suggested by Juhl and Jgrgensen for a related system,™ the
catalyst may induce the ketimine to approach the aldehyde in an
endo-selective manner to afford the observed chiral hemiaminal
4. However, at present a formal Michael addition followed by a
ring-closure process cannot be ruled out (see reference [8c]).
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Asymmetric Catalysis ~Tos 1 (10 mol%) =3 Ph
N _ AcOH (10 mol%) 108~~~ <R O)\/Ph
M\ 1+ R CHO—MMmMmMm™™™ : N OTMS
B. Han, J.-L. Li, C. Ma, S.-J. Zhang, R R g;iag‘r;lf%?] e
R * — LT : 1
¥oC- Chen m-nn d.r. >99:1, 93-99% ee
Organocatalytic Asymmetric Inverse- Water is crucial for high transformation strates (see scheme; TMS =trimethyl-
Electron-Demand Aza-Diels-Alder efficiency in the title reaction catalyzed by  silyl, Tos =p-toluenesulfonyl). A diverse
Reaction of N-Sulfonyl-1-aza-1,3- the a,a-diphenylprolinol derivative 1. range of chiral piperidine derivatives and
butadienes and Aldehydes Excellent stereoselectivities were other valuable compounds can be pre-
observed for a broad spectrum of sub- pared from the hemiaminal products.
Angew. Chem. Int. Ed. 2008, 47, 1—5 © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org 5
AR

These are not the final page numbers!


http://www.angewandte.org

