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Complex gene families in 
pine genomes 
Claire S. Kinlaw and David B. Neale 

The genome structures of extant species suggest that conifer and 
angiosperm genomes have evolved by different mechanisms. For 
example, in the evolution of the pine genome, the amplification and 
dispersal of genes to form complex families appears to have been 
especially prominent. An analysis of the structure and organization of 
pine gene families is critical for understanding the organization and 
evolution of pine genomes, and may help explain adaptation. 

C 
onifer genomes are remarkable 
for their large size. For example, 
haploid pine nucleii contain 

between 21 and 31 pg DNA 1. 
Reassociation kinetic analysis has 
demonstrated the presence of repeated 
sequences whose copy numbers vary 
over a broad range 2. Among the 
repeated sequences of pine are very 
high copy number sequences found in 
the genomes of other plants 3. These 
include ribosomal genes 4 and noncod- 
ing intergenic DNA regions such as 
microsatellites ~ and retrotransposons 6. 

In addition to highly repeated DNA 
sequences, conifer genomes also con- 
rain multiple copies of sequences that 
hybridize to cDNA probes in Southern 
(DNA) hybridizations. When results 
for anonymous pine cDNA sequences 7 
are compared with those for 
angiosperm cDNA sequences 8~, there 

is evidence that amplification of gene 
sequences has been more active during 
pine genome evolution, creating 
numerous complex families (Table 1). 
Similar results are seen for a wide 
range of conifer genomes ~2. 

In general, the degree of observable 
gene family complexity correlates with 
plant genome size (Table 1). The small- 
est and simplest genomes, which have 
the least repetitive DNA, include 
Arabidopsis ~3, rice 14 and tomato 14. 
These are all angiosperms in which 
most proteins are encoded by simple 
gene familiesS'9'13; larger angiosperm 
genomes show a higher percentage of 
complex gene families. However, even 
when compared with relatively com- 
plex genomes such as that of maize ~1, 
pine genomes appear to have fewer 
simple gene families and more multi- 
copy families (Table 1). 

There are two possible explanations 
for the Southern hybridization pat- 
terns observed for anonymous pine 
cDNAs. Gene families may have 
evolved that are composed of many 
members whose sequences have 
diverged. Alternatively, individual 
genes may have evolved to be large, 
and these contain either many intrens 
or introns of a large size. The structure 
of the few conifer genes that have been 
characterized suggests that it is not 
size alone that is responsible for these 
complex Southerns. For example, an 
alcohol dehydrogenase gene character- 
ized from loblolly pine (Pinus taeda) 
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has nine introns, each <500 bp in size, 
and all are in conserved locations rela- 
tive to their maize counterparts 1~. The 
independent segregation of multiple 
loci from many complex gene families 
in pine mapping populations v further 
supports the idea of multilocus gene 
families as opposed to individual large 
loci. 

Further evidence that gene family 
complexity is more prominent in pines 
than angiosperms comes from an 
analysis of specific pine gene families 
whose putative biochemical functions 
have been identified (Table 2). 
Identification is through cDNA 
sequencing and sequence comparisons 
to public databases (http://www.cbc. 
med.umn.edu). Although some gene 
families are similarly complex for 
both angiosperms and conifers, many 
examples exist of genes with few copies 
in angiosperms 1~-22, but many copies in 
pines (Table 2). 

Mechanisms of gene amplification 
Gene amplification events appear to 

have been frequent throughout pine 
evolution, and some events appear to 

have occurred in recent geological 
time. Southern hybridizations of 
loblolly pine cDNAs to a variety of pine 
genomic DNA sequences, including 
the closely related species slash pine 
(P. eltiottii) 12, revealed five out of 30 
sequence families that are more com- 
plex in the pine species other than 
loblolly pine (Table 3). The amplifi- 
cation and dispersal of gene family 
members might be expected to result 
in a significant loss of gene order 
between species if such mechanisms 
were ongoing and random as species 
evolved• 

Evidence of stable gene order over 
time comes from recent mapping stud- 
ies comparing loblolly pine and 
Monterey pine (P. radiata) 23. Thus, the 
mechanisms proposed to explain the 
generation of complex gene families in 
pine must reconcile the dispersed 
nature of these gene families with the 
apparent paradox that the order of 
genes along pine chromosomes may be 
well conserved. 

The comparative mapping studies of 
Devey et a l Y  emphasized the very simi- 
lar Southern banding patterns of pine 

genes, and this emphasis improved 
confidence that genomic locations of 
orthologs (the same locus in two 
species), and not paralogs (genes dupli- 
cated in the same species), were being 
compared from each pine species. 
However, because genes with con- 
served Southern patterns have highly 
conserved DNA sequences, it is 
unclear whether this conservation of 
gene order holds true for all genes. 
Southern patterns with anonymous 
cDNAs have revealed that many pine 
gene sequences are not so highly con- 
served 12, and it is possible that genes 
whose sequences have diverged more 
may also show more divergent gene 
order. 

The question as to whether the 
amplification of pine gene sequences 
results in functional genes or pseudo- 
genes (or both) is also unresolved. 
Mechanisms that might generate com- 
plex gene families with functional 
members include duplications of 
whole genomes (polyploidy), dupli- 
cations of whole chromosomes (aneu- 
ploidy), duplications of large chromo- 
some segments or duplications of 

Pine gene family identified Pine Southern Angiosperm species Angiosperm family complexity Refsl 
by partial eDNA sequence pattern 

Chaperonin 60 beta a >10 bands b Arabidopsis Low copy number 16 
Thiolase a ~ >10 bands b ~ Cucumber Single copy 17 
Etonga~i0~i factor l a  ~ >t0 bands b ' Tomato Single copy 18 
Acid phosphatase ~ ~- >10 bandsb Tomato Single copy t9 

• ' i a Actm-depolymerlz ng factor ~ >t0 bands b Rape Low copy number 20 
a b Heat shock polypeptide HSP90 >10 bands Madagascar periwinkle Single copy 21 

[Catharanthus roseus) 
Alcohol dehydrogenase ~ >10 bands ~ Maize Two loci 22 

~Data from http://www.cbc.med.umn.edu, hData from Ref. 7. ~Data from Ref. 30. 
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Putative function 
or cDNA clone 
number 

Family complexity 
observed in loblolly 
pine with loblolly 
pine cDNA 

Family complexity 
observed in other 
pines with loblolly 
pine cDNA 

Clone 0147" 2-3 bands b 
Protein kinase a 1 band b 
Membrane 4-10 bands b 
protein a 
Peroxidase a 4-10 bands b 

Glutamine 2-3 bands b 
synthetase" 

4-10 bands ~slash pine) ~ 
4-10 bands (slash pine) c 
>10 bands [Scots pine 
(Pinus sylvestris)] ~ 
>10 bands Esugar pine 
~Pinus Iambertiana)] ~ 
4-10 bands [western 
white pine 
~Pinus monticola)] ~ 

aData from http:Hwww.cbc,med.umn,edu, bData from Ref. 7. ~Data re-evaluated from Ref. 12. 

small chromosome regions containing 
complete genes. The dispersal of genes 
generated by such duplications would 
require random crossover events, and 
the degree of dispersal of family mem- 
bers would depend upon the time at 
which such duplications occurred. 

The duplication of whole genomes 
has played an important role in the 
evolution of angiosperm genomes, and 
thus in the generation of gene families 
in such species 3. For example, maize is 
an ancient tetraploid, and wheat is 
hexaploid. Polyploidy also appears to 
have played an important role in the 
evolution of at least one group of 
'primitive' vascular plants, the ferns, 
which have high chromosome num- 
bers 24. In contrast, pine gene families 
are unlikely to have arisen by dupli- 
cation of either whole genomes or indi- 
vidual chromosomes. There is no cyto- 
genetic evidence that pine genomes are 
polyploid 25, and all extant pine species, 
of which there are more than 100, are 
diploid, with a diploid chromosome 
number of 24. Mapping data 7 have 
revealed no evidence for large dupli- 
cated linkage groups suggestive of 
polyploidy or aneuploidy. 

The duplication of functional genes 
has played an important role in the 
generation of gene families in all 
higher organisms 26. Duplicated genes 
evolve new regulatory sequences, and 
these provide new patterns of gene 
expression in different tissues at dif- 
ferent developmental stages or in 
response to different environmental 
signals. Related but distinct protein 
functions are also thought to evolve 
from the shuffling of coding regions 

from duplicated genes 27. Thus, func- 
tional gene duplications have the 
potential strongly to influence the 
direction of evolution and adaptation. 

The pine alcohol dehydrogenase 
gene family is an example of a complex 
pine gene family that has more func- 
tional gene family members than its 
angiosperm counterparts. In jack pine 
(P. banks iana) ,  at least seven linked 
functional alcohol dehydrogenase loci 
have been identified by polymerase 
chain reaction amplification of mRNA 
from the haploid nutritive seed tissue, 
the megagametophyte 28. The cluster- 
ing of seven loci into two linked groups 
may reflect the occurrence of dupli- 
cations at varying times during pine 
evolution that have not yet had time to 
disperse throughout the genome by 
random crossover events. Southern 
hybridizations with alcohol dehydro- 
genase cDNA probes reveal many more 
than seven bands (Table 2), and the 
possibility remains that some of the 
Southern bands result from pseudo- 
genes. 

In contrast to the duplication of 
genomes, chromosomes, chromosome 
segments or complete genes, retrotran- 
scription of RNA molecules via reverse 
transcriptase provides a mechanism 
for generating nonfunctional gene faro- 
ily members that can be integrated 
into sites that are not linked to the 
original gene. There is evidence for the 
existence of such retropseudogenes in 
Norway spruce (Picea abies) 29. Do some 
of the many Southern bands seen for 
pine alcohol dehydrogenase reflect dis- 
persed nonfunctional copies? Will 
highly complex pine gene families turn 

out to have both functional and 
pseudogene members? Because of the 
high copy number of retrotransposons 
in the genomes of extant pine species, 
it is tempting to invoke the mechanism 
of reverse transcription in the gen- 
eration of complex pine gene families. 

Evolutionary significance of complex 
gene families 

The prevalence of complex gene 
families in the genomes of extant pine 
species suggests that the evolution of 
conifer and angiosperm genomes has 
proceeded along different paths, and 
this raises intriguing questions. Do 
long-lived and slowly growing species 
such as pine simply tolerate the pres- 
ence of gene sequence families along 
with highly repetitive noncoding inter- 
genic DNA, or do such sequences have 
adaptive value? Before answering this 
question, it will be necessary to deter- 
mine whether pine gene amplifications 
create functional or nonfunctional 
copies. Also, are there multiple mecha- 
nisms, some of which generate func- 
tional gene copies and others that pro- 
duce nonfunctional copies? How 
frequently have gene amplifications 
occurred? If, as genetic maps suggest, 
dispersed gene families are a central lea- 
ture of pine genome structure and evolu- 
tion, how has dispersal ensued, and how 
have gene order and chromosome stabil- 
ity been maintained as new copies arise 
and disperse across the genome? The 
answers to such questions may provide 
interesting insights into the evolution of 
pine genomes and may also have impli- 
cations for plant adaptation. 
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