Comparison of genes among cereals
Doreen Ware* and Lincoln Stein

Comparison of partially sequenced cereal genomes suggests a mosaic structure consisting of recombinationally active gene-rich islands that are separated by blocks of high-copy DNA. Annotation of the whole rice genome suggests that most, but not all, cereal genes are present within the rice genome and that the high number of reported genes in this genome is probably due to duplications. Within the cereals, macrocolinearity is conserved but, at the level of individual genes, microcolinearity is frequently disrupted. Preliminary evidence from limited comparative analysis of sequenced orthologous genomic segments suggests that local gene amplification and translocation within a plant genome may be linked in some cases.

Addresses
Cold Spring Harbor Laboratory, Bungtown Road, Cold Spring Harbor, New York 11724, USA
*E-mail: ware@cshl.org

Introduction
Cereals are a large and diverse set of agronomically important crops from the family Gramineae. They are the main source of dietary calories for most human populations whether they are consumed directly, as is rice, or indirectly by way of animal feed. The structures of the cereal genomes and the genes contained within them are key to understanding the evolutionary relationships within this important family. This in turn will aid geneticists and molecular biologists in their quest to understand cereal biology and help plant breeders in their goal of developing better and hardier strains.

This review describes the current state of knowledge regarding cereal genome structure. This knowledge is based largely on the results of the recent sequencing of long genomic segments from cereals [1–4,5–7,8–9,10–11] and the whole-genome analyses of Arabidopsis [12] and rice [13–16]. These projects have provided insight into the high number of genes in cereal genomes relative to those of other eukaryotes, and into the conserved macro- and microcolinearity at the sequence level in grass genomes.

Cereal genome colinearity
During the past 10 years, comparative mapping of cereal genomes using cross-hybridizing genetic markers has provided compelling evidence for a high level of conservation of gene order across regions spanning many megabases (i.e. macro-colinearity). This phenomenon was first summarized for rice, oats, maize, sorghum, sugar cane, foxtail millet, wheat, and finger millet using what is now known as the ‘Circle Diagram’ [17], and was later extended to include ten grass species using fewer than 30 rice linkage groups [18]. These findings were noteworthy in light of known differences in the size of the grass genomes, rice (430 Mb), sorghum (770 Mb), maize (2700 Mb), and wheat (16 000 Mb) [19] and the evolutionary divergence time of 60 million years for these species [17,20].

The initial work on the colinearity of genetic markers was reinforced when it was discovered that quantitative loci for agronomic traits such as dwarfing were also colinear between grass species [21]. More recently, the sequencing of long regions of the cereal genomes has allowed microcolinearity, or colinearity across gene clusters, to be investigated. Several recent studies in the cereals have demonstrated incomplete microcolinearity at the sequence level [4,6–7,10,22]. The largest and most complete study of microcolinearity in the cereals to date is that by Song et al. [7*]. This study identified orthologous regions from maize, sorghum, and two sub-species of rice. Song et al. found that gross macrocolinearity is maintained but that microcolinearity is incomplete among these cereals. Deviations from gene colinearity are attributable to micro-rearrangement or small-scale genomic changes, such as gene insertions, deletions, duplications, or inversions [23]. In the region under study, the orthologous region was found to contain six genes in rice, 15 genes in sorghum (of which three have been amplified, producing a total of 29 genes), and 13 genes in maize (of which one has been amplified, resulting in a total of 34 genes) [7*]. In maize and sorghum, gene amplification caused a local expansion of conserved genes but did not disrupt their order or orientation.

As expected, there is a high degree of gene conservation between the two shotgun-sequenced subspecies of rice, japonica and indica, which diverged more than 1 million
years ago [3]. On careful inspection, however, narrow regions of divergence can be found in these genomes [7**]. These regions correspond to areas of increased divergence among rice, sorghum and maize, suggesting that the alignment of the two rice subspecies might be useful for identifying regions of cereal genomes that are prone to rapid evolution. The differences between sorghum and maize genes originated after the ancestral genomes of the two species diverged from each other 16.5 million years ago [24].

Where microcolinearity is broken and a gene that is present in one cereal is ‘missing’ from its orthologous position in another, it is often possible to find a matching gene homologue in a non-orthologous location [7**,25**]. The putative mechanism for this phenomenon is an ancient gene duplication in the common ancestor followed by the loss of one gene copy in the first modern species and the loss of the other copy in the second species. A second example of gene duplication and movement is provided by a study of tandem repeats of glutathione S-transferase genes in wheat. The best-conserved copy of the wheat gene was not found in the previously identified orthologous position in rice. Instead, it was found in a non-orthologous position on rice chromosome 10 where the gene was also amplified [25**]. This genomic segment on rice chromosome 10 also contained a large insertion of the chloroplast genome [26*], suggesting that this portion of the rice genome is fluid. From the study of orthologous regions in cereals [7**], Song et al., concluded that gene amplification and gene translocation are functionally associated with each other, and that the differential divergence of non-conserved ‘hot spots’ along chromosomes is manifested during speciation. A mosaic of conserved segments that are interspersed with non-conserved segments becomes apparent when orthologous regions of different species are compared [7**].

Work on gene conservation is of practical importance. The identification of orthologous regions (i.e. regions believed to be derived from the same segment of an ancestral genome) has been used to select candidate genes that are associated with certain functions or to select molecular markers to increase the map density at specific genetic loci, thereby facilitating map-based cloning.

Transcriptome estimates in cereals

Despite the exceptions described above, overall macrocolinearity is well established. Until recently, it was not known whether this phenomenon also implies a high degree of microcolinearity (i.e. colinearity at the level of genes and gene clusters). To answer this question, it is necessary to extend the analysis to the nucleotide sequence level, and for this we turn to analysis of the gene content (or transcriptome) of cereals.

A central aim of genome analysis is to identify and classify all of the genes of a particular species and to understand the redundant and unique functions of each gene. In the absence of a whole-genome sequence, gene discovery must rely on other tools, the most important of which are expressed sequence tag (EST) libraries. ESTs derived from a diverse set of cDNA libraries can provide information on the transcript abundance, tissue location, and developmental expression of genes. They are limited, however, by the initial biological sample (tissue type, developmental stage and environmental conditions of growth) and the sampling of the cDNA library. In addition to expression information, cDNA sequences provide a much-needed resource for annotating the in silico gene predictions generated from whole-genome analysis. As of October 2002, the total number of cereal ESTs available from the National Center for Biotechnology Information (NCBI) was more than 1 million: 111 315 for rice, 338 004 for barley, 266 203 for wheat, 190 301 for maize and 107 609 for sorghum [27].

ESTs are random sequences. A typical EST contains only a portion of the coding region of the original gene transcript and typically overlaps with other ESTs derived from the same gene. It is common practice to cluster ESTs to provide the longest contiguous sequence for each transcript and to provide a core set of unique genes for each species. Examples of these clusters are The Institute for Genomic Research (TIGR) gene indexes [28] and the NCBI UniGene sets. The utility of these clustered EST sequences has been further extended to include tentative groups of orthologues from different species and to establish putative orthologues and paralogues for the partial gene sequences [29]. In a whole-genome analysis of rice japonica, cereal clusters were generated and compared to the rice gene predictions. Nearly all of the cereal clusters were found to have a significant similarity to one or more rice gene predictions [13**]. Goff et al. [13**] suggest that most cereal genes are conserved across species and that phenotypic variation is due to a small number of genes or functional differences within similar genes.

Estimates of the number of cereal genes that are based on partial genomic sequencing and EST clusters range from 44 700 for rice [30] to 55 000 for maize [31]. Two independent analyses that were based on the shotgun genomic sequencing of the rice genome estimate the number of predicted rice genes to be 32 000–50 000 [13**] and 46 022–55 615 [14**]. More recent estimates, obtained by extrapolating the annotation of the finished rice chromosomes 1 and 4, predict a slightly higher gene number of 57 000–62 500 [15**,16**]. Together, these estimates suggest that rice has a transcriptome that contains nearly twice the number of genes in Arabidopsis [12] and humans [32], and more than three times the number in Caenorhabditis elegans [33] and Drosophila [34].
Gene amplification in cereals

Why might the number of genes be higher in cereals than other eukaryotes? Whole-genome analyses from Arabidopsis and rice suggest that cereals have a high number of genes because of a combination of factors that includes gene amplification and inaccurate gene predictions.

Analysis of the Arabidopsis genome revealed that a large portion of the genome was subjected to a polyploidization 50–200 million years ago [12,35–37]. In Arabidopsis, 65% of genes belong to a gene family and 35% belong to gene families that have more than five members [12]. Local duplication is also common in Arabidopsis, involving 17% of genes. The analysis of the rice japonica shotgun sequence reveals only slightly higher rates of duplication than those found in Arabidopsis, with globally duplicated genes estimated at 77% [13**] and locally duplicated genes at 15–30% depending on the chromosome [13**]. These findings are supported by reports from the International Rice Genome Sequencing Project (IRGSP) on rice chromosomes 1 and 4 [15**,16**].

Other research supports a model in which genome duplications beget new genes to create an extensive gene pool. In some cases, the duplicates will degenerate into pseudogenes; in others, the parent and daughter copies evolve distinct functions [35]. Polyploidization and segmental chromosomal duplication are believed to be common events in higher plant evolution [37]. The maize genome is believed to have undergone the most recent duplication 11.4 million years ago [24]. Local clusters of genes have been identified in the cereals and most likely reflect local gene duplication. Clusters of disease resistance genes are among the most common types of gene cluster reported in the literature [8*,38–40,41*,42–44]. The most highly represented gene family on rice chromosome 4 is a receptor serine/threonine kinase with 132 members. These genes are found in clusters and also as individuals, and represent nearly 2% of the 6756 genes found on chromosome 4 [15**]. The expansion of this gene family demonstrates how local gene expansion can increase the number of genes within a species.

Whole-genome duplication, through polyploidization, segmental duplication, and local gene amplification, increases the number of paralogous gene sequences found in plants. Together, these forms of duplication explain why the numbers of genes in grass genomes exceed those in the other eukaryotic genomes sequenced so far, including the human genome [45]. The use of all three duplication mechanisms in the evolution of grass genomes suggests that grasses, like other plants, may have evolved more rapidly than could be predicted by comparing only coding-sequence substitution rates [46]. This rapid evolution may be one of the reasons for the degree of speciation within certain large families of Gramineae [48]. It will be interesting to determine in evolutionary terms how the cereal genomes have maintained a level of macro-colinearity in light of the dynamic plant genome.

Gene-rich islands in cereal genomes

Gene distribution has been studied in animal systems, and it appears that all animal genomes and chromosomes are, to some degree, divided into gene-rich and gene-poor compartments [47,48]. In plants, this pattern is even more marked. Cytological and genetic studies have demonstrated that wheat genes are clustered into islands rather than being distributed evenly through the genome [49–52]. Cereal genomic sequences have confirmed these findings and support the existence of a mosaic structure in which low-copy, gene-rich regions, known as ‘gene islands’, are interspersed among high-copy retrotransposon-rich sequences [10**,53]. Gene islands have been found in barley, sorghum, maize, rice, and wheat. Within an island, genes occur with a density of 24–217 genes per Mbp [4,5**,9*,10**,15**,16**,25**,39,40,41*,42,54,55], which is similar to the density of genes in the relatively small Arabidopsis genome [12]. By contrast, genes are scant in retrotransposon-rich regions (10 genes per Mbp [56]). In fact, retrotransposon-rich regions frequently undergo heavy DNA and histone methylation to form cytologically distinct heterochromatin [57,58].

In marked contrast to the great disparity in the sizes of cereal and Arabidopsis genomes, the size, number, and distribution of introns and exons are similar within the sequenced genes of different cereals and of Arabidopsis [12,13**,15**,16**,30]. This finding supports the notion that the genome expansion of cereals is based upon the recent invasion and expansion of retrotransposon elements [53,59].

Cereal genes and ‘hot spots’ for recombination

It has been suggested that genetic regions in the cereals are associated with hot spots of recombination. Supporting evidence for this hypothesis can be found in barley, wheat, rice, and maize. In wheat and barley, comparison of the physical maps with the genetic-linkage maps has shown that recombination is confined to gene-rich regions [8*]. Analysis of rice chromosome 4 showed that repeats were most often located in the heterochromatic regions, and that these regions have a low recombination frequency with a ratio of physical distance to gene distance of 1.5 cM per Mb. In contrast, the euchromatic (i.e. gene-rich) region has a physical distance to gene distance of 4.79 cM per Mb [16**]. A recent study of the maize sh2–sh2 interval, physically positioned 101 meiotic breakpoints to three locations within the maize genome. Two of these locations were found to be in gene-rich regions and one was found in a region that contained no gene content. Interestingly, the non-genic region of the maize genome is a low-copy sequence [9**].
Together, these studies support the existence of a mosaic structure within cereal genomes, which contain low- and high-copy sequences. The low-copy sequences tend to be gene rich and are recombinationally active, whereas the high-copy DNA is gene-poor and recombinationally inactive.

Classification of cereal gene predictions
Whole-genome analysis of rice [13**,14**] has provided the most robust source of cereal gene predictions to date. These gene predictions are based on prediction algorithms. Predicting genes is still an imperfect science [60], and no single gene-prediction algorithm is completely accurate. The annotation of the shotgun sequence of rice japonica that is discussed in this section used several gene-prediction algorithms [13**], and scored the different gene models on their homology and length of match. The resulting predictions were classified as high (H), medium (M) and low (L) confidence on the basis of their homology with known genes from rice or other species, and their homology with Prosite motifs [61] and Pfam domains [61,62]. Many of the gene models are incomplete because of the nature of shotgun sequence. The predictions were also classified on the basis of minimum lengths of 300 or 500 bases. The largest set of predictions is 61 668 and includes all HML genes longer than 300 bp. This gene set is referred to as HML300 [13**]. Goff et al. [13**] compared their gene predictions to the 25 554 predicted genes from Arabidopsis [12], and found that 85% of the Arabidopsis genes are significantly homologous to the HML300 predicted genes. Four thousand Arabidopsis genes did not have any homology to the HML300 genes, however, suggesting that these genes could be dicot specific or simply inaccurate predictions.

One-third of the Arabidopsis genes that are also found in rice have no detectable homologues in Drosophila, C. elegans, Saccharomyces, or the sequenced bacterial genomes. Homologues of more than 13 000 HML300 genes are not found in other non-plants but are found in Arabidopsis. Many of these genes are likely to encode plant-specific proteins [13**]. No significant homology for 3886 H100 and 31 387 HML300 genes has been found in the Arabidopsis genome. However, most of these were low-evidence predictions (ML300). The H100 genes represent 6% of the total predicted genes from rice and are likely to represent cereal- or rice-specific genes.

In the same study [13**], Goff et al. assigned functional classification to the HML300 gene predictions using Interpro [63,64] and GeneOntology (GO) [65] terms. The largest functional category was metabolism, which involved 25% of the predicted genes. Goff et al. [13**] also looked at differences in the type and number of gene families in the predicted sequences of rice and other euakaryotes by examining homology between predicted rice genes and known genes from other species. In Arabidopsis, many gene families are either absent or, conversely, over-represented in comparison to those families in the yeast, C. elegans or Drosophila genomes [12], the same is true for the rice HML300 genes. Two classes of genes that fall into the ‘over-represented in plants’ class include the genes that encode the RING zinc-finger proteins (840 HML300 predicted genes) and the F-box domain proteins (150 HML300 predicted genes). These proteins function in intracellular protein-degradation pathways and their regulation. The over-representation of these gene products is consistent with speculation that protein turnover and the regulation of protein degradation play an important role in the maintenance of homeostasis in plants.

Whole-genome analysis of rice suggests that the Arabidopsis genes appear to be a subset of the genes found in rice. Arabidopsis genes, along with genes from other euakaryotes, are useful in assigning functions to cereal genes. The analysis of available coding sequences from other cereals suggests that most cereal genes are present within the rice genome. The catalogue of predicted genes and their position within the rice genome will greatly enhance our ability to identify genes that are involved in agronomic traits because of macro-colinearity between rice and other cereals.

Conclusions
A finished rice genome will provide a complete index of potential rice genes but will not tell us which of these genes are important in providing desired traits in cereal crops. Genome sequences are just a beginning: they provide a necessary resource for powerful methods for proteome analysis that require sequence knowledge. In the future, techniques such as gene, protein and metabolic profiling will provide insights into the function and expression patterns of genes and into how these genes ultimately contribute to a crop’s ability to react to an environment and reproduce.

Acknowledgements
We acknowledge Susan McCouch, Leonid Teytelman and Bonnie Harvey for critical reading of the manuscript, and the US Department of Agriculture (USDA) Agricultural Research Service (ARS) and USDA Cooperative State Research Education and Extension Service (CSREES) for financial support.

References and recommended reading
Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

Comparison of genes among cereals Ware and Stein

5. Fu H, Park W, Yan X, Zheng Z, Shen B, Dooner HK: The highly recombinogenic bz locus lies in an unusually gene-rich region of the maize genome. Proc Natl Acad Sci USA 2001, 98:8903-8908. The authors investigated the high rate of recombination that had been previously identified at the bz locus of maize. This is one of the first gene-dense regions to be identified in maize. It contains a 52-kb region of the genome that includes ten genes, eight of which are transcribed, with an average distance of 1 kb of intronic space between the genes. The gene-rich island is bordered on both ends by retrotransposon blocks.

6. Dubcovsky J, Ramakrishna W, SanMiguel PJ, Busso CS, Yan L, Shilloff BA, Benetzen JL: Comparative sequence analysis of collinear barley and rice bacterial artificial chromosomes. Plant Physiol 2001, 125:1342-1353. This is one of the first detailed examinations of the level of microcollinearity between barley and rice. The authors selected bacterial artificial chromosomes for genomic sequencing from a previously identified collinear region from barley chromosome 5 and rice chromosome 3. They found four conservation regions containing four predicted genes with similar exon number, size, and location. However, the orientation and number of the genes differed between rice and barley in some cases. The authors did not observe extensive similarity beyond the exon structures, untranslated regions, and promoter sequences. The differences in distances between genes in barley and rice were explained by the insertion of different transposable retroelements into each species.

7. Song R, Llaca V, Messing J: Mosaic organization of orthologous sequences in grass genomes. Genome Res 2002, 12:1549-1555. This is the most comprehensive comparison of sequence among the cereals to date. The authors expanded on their previous work in maize [11] to look at collinear regions in sorghum and two cultivars of rice. Their results support a mosaic organization of the orthologous regions in which conserved sequences are interspersed with non-conserved sequences. Gene amplification, gene movement, and retrotransposition account for the majority of the non-conserved sequences. The analysis also suggests that gene amplification is frequently linked with gene movement.

8. Sandhu D, Gill KS: Gene-containing regions of wheat and the other grass genomes. Plant Physiol 2002, 128:803-811. Deletion lines were used to localize gene-containing regions of the wheat genome. The authors suggested that gene-containing regions are found in about 10% of the wheat genome. The locations of the gene-containing regions on genetic and physical maps show that recombination is confined to these regions. The density and number of genes in each region vary along with the recombination frequency. Comparison with orthologous regions in rice suggests that the gene density in wheat is about half that in rice, and that the difference between the rice and wheat genomes is due to the amplification of gene-poor regions in wheat.

9. Yao H, Zhou Q, Li J, Smith H, Yandeau MJ, Nikolau BJ, Schnable PS: Molecular characterization of meliotic recombination across the 140-kb multicentric a1–sh2 interval of maize. Proc Natl Acad Sci USA 2002, 99:6157-6162. The authors looked at recombinant-rich regions of the maize genome and mapped the recombination hot spots. Three of the hotspots are genetic, and one is not. The non-genic spot was present at low copy number in the rice genome that includes ten genes, eight of which are transcribed, with an average distance of 1 kb of intronic space between the genes. The gene-rich island is bordered on both ends by retrotransposon blocks.

10. SanMiguel PJ, Ramakrishna W, Benetzen JL, Busso CS, Dubcovsky J: Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5A(m). Funct Integr Genomics 2002, 2:70-80. The work described in this paper follows up on work done in rice and barley [11] to include a sequenced bacterial artificial chromosome from wheat in a region that is conserved between rice and barley [11], one gene was found to be present in the same orientation in wheat and rice but inverted in barley. The results showed that the wheat genome is a complex mixture of different sequence elements but has a general pattern of content that is similar to those of rice and barley.

11. Song R, Llaca V, Linton E, Messing J: Sequence, regulation, and evolution of the maize 22-kD alpha zein gene family. Genome Res 2001, 11:1817-1825. The authors sequenced all 23 members of the 22-kD alpha-zein gene family of maize and mapped the regions that are conserved between rice and barley [11], one gene was found to be present in the same orientation in wheat and rice but inverted in barley. The results showed that the wheat genome is a complex mixture of different sequence elements but has a general pattern of content that is similar to those of rice and barley.

13. Goff SA, Rieke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Decker P, Varma H et al.: A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002, 296:92-100. The shotgun sequences of two rice cultivars were published concurrently. This paper reports on Syngenta’s analysis of the Nipponbare sequence, which covers 93% of the genome. Gene predictions from the assembly are compared to cereal ESTs and the Arabidopsis predictions. The paper reports on synteny with other cereals and with Arabidopsis, and on the genes classes found in rice. The authors find that 98% of known maize, wheat, and barley proteins are also found in rice.

15. Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Nimura Y, Cheng Z, Nagamura Y et al.: The genome sequence and structure of rice chromosome 1. Nature 2000, 420:312-316. The completed sequencing of chromosomes 1 and 4 by the IRGSP was reported concurrently. In this paper, the authors describe the structure of longest rice chromosomes, chromosome 1. They describe biological insights provided by the completely sequenced chromosome, including the presence of gene families and the location of the gene families on the whole chromosome. The authors also discuss the significance of finishing the sequence.

16. Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, Liu Y, Hu X et al.: Sequence and analysis of rice chromosome 4. Nature 2002, 420:316-320. The completed sequencing of chromosomes 1 and 4 by the IRGSP was reported concurrently. In this paper, the authors describe the finished sequence of chromosome 4. They compare this sequence to that of chromosome 4 of the rice subspecies Indica, and find that there is an overall conserved synteny that diverges with single nucleotide polymorphisms, insertions, and deletions.

The authors describe the isolation of two glutathione S-transferase genes from wheat chromosome 6. The two genes have different expression levels and patterns in the different genomes of hexaploid wheat. An analysis of the available rice genome found the regions that were most homologous to the wheat glutathione S-transferase genes were found on rice chromosome 10 rather than chromosome 2. Rice chromosome 2 had previously been identified as the syntenic region for wheat chromosome 6.

The authors discuss the high density of duplicated genes found in a 239-kb region of rice chromosome 10L, and the insertion of a large piece of the chloroplast genome into this region. This segment of the rice genome is the same as that described by Xu et al. [25**] who reported that it contains the closest homologues of the glutathione S-transferase genes found on wheat chromosome 6.

The authors sequenced the largest contiguous block of the wheat genome to date. They found gene clusters, isolated genes and several new retrotransposon elements within this genomic sequence. One of the new retrotransposon elements was found to be closely associated with gene sequences.

