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Large volumes of genomic data have been generated for

several plant species over the past decade, including

structural sequence data and functional annotation at

the genome level. Various technologies such as

expressed sequence tags (ESTs), massively parallel

signature sequencing (MPSS) and microarrays have

been used to study gene expression and to provide

functional data for many genes simultaneously. This

review focuses on recent advances in the application of

microarrays in plant genomic research and in gene

expression databases available for plants. Large sets of

Arabidopsis microarray data are publicly available.

Recently developed array platforms are currently being

used to generate genome-wide expression profiles for

several crop species. Coupled to these platforms are

public databases that provide access to these large-scale

expression data, which can be used to aid the functional

discovery of gene function.
Plant genomics

To date, near-complete genome sequences are available for
only two model species, Arabidopsis and rice [1,2]; draft
sequences are available or in progress for poplar [3],
Medicago truncatula [4], Lotus, tomato and maize.
Annotation of the genome, both at the structural level in
which the genes are identified and at the functional level
in which the function of the genes and other genomic
features are curated, is an iterative process essential to
the interpretation of the genome sequence. Indeed, the
Arabidopsis genome has been re-annotated since its
completion [5] and the annotation of the finished rice
genome sequence is an on-going process [6]. Structural
annotation of genes and gene models relies on abundant
experimental evidence such as ESTs and full-length cDNA
sequences (FL-cDNA) to improve gene finder output on
genomic sequence. By contrast, functional annotation
relies primarily on the use of bioinformatics to determine
gene function because experimental evidence that can be
used to assign gene function is available for only a small
portion of the genes within a genome. On a whole genome
level, microarrays provide a high-throughput platform to
measure gene expression and thereby generate functional
data for many genes simultaneously. Over the past
decade, advances in genomic technologies have resulted
in a variety of microarray platforms that can be used for
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global gene expression profiling (Box 1). Microarrays only
measure expression levels for those genes for which a
probe, either a clone or sequence, is available and,
therefore, should be considered a targeted approach to
expression profiling. There are several different
approaches that can be employed to determine gene
function using expression data. The primary method is
correlative using the temporal and spatial expression
patterns that are associated with a specific phenotype or
response. A second method involves association of
unknown genes with ‘known’ genes based on co-expression
and co-regulation.
Functional discovery through microarray expression

profiling

Access to a large collection of reference expression data from
mutants, tissues or treatments can provide a tool for
identifying the function of unknown genes (Figure 1). This
concept of functional discovery via a compendium of
expression profiles was first demonstrated in yeast [7]: the
expression profile of uncharacterized yeast mutants was
compared to the larger expression dataset of reference
profiles and matched to similar expression profiles of other
conditions that displayed similar global expression changes.
An alternative approach is the analysis of co-expression. An
analysis of the co-expression relationships among a large
quantity of expression data from humans, flies, worms and
yeast identified relationships that were conserved across
evolution [8]. Although the yeast genome is well annotated
and is a simpler eukaryote compared with that of higher
plants, with the growing availability of microarray
expression data, similar approaches could also be used to
analyze plants. However, additional validation might be
needed and full interpretation could be more complex
because of the lower quality of annotation and the poorer
understanding of plant genomes compared with those of
yeast. For example, a recent study used publicly available
Arabidopsis arrays to identify genes required for cellulose
synthesis through the analysis of co-regulation with
cellulose synthase genes [9], thereby illustrating the
potential of mining many expression profiles for functional
discovery via co-regulation. A co-response database
(CSB.DB) based on publicly available expression data for
Arabidopsis is available for the identification and mining of
co-regulated genes [10]. Its usefulness was illustrated by the
identification of brassinosteroid-related genes by co-regu-
lation analysis of known signaling components [11].
Additional datasets such as protein–protein interaction
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Box 1. Microarray technology

Definitions
Probe: gene-specific DNA spotted on the array that will hybridize

with the target.

Target: for an RNA sample, typically either total RNA or mRNA is

isolated and labeled using a first strand cDNA synthesis step, either

by direct incorporation of a fluorescent dye or by coupling the dyes

to a modified nucleotide. For GeneChips, RNA is labeled by

incorporating biotin into amplified cRNA, which is detected by

fluorescently labeled streptavidin. For non-expression-based experi-

ments, DNA rather than RNA can be labeled and hybridized to

the array.

Array platforms

On-slide synthesized arrays: probes are synthesized on the array

surface using DNA synthesis chemistry. The activation for oligonu-

cleotide elongation is achieved using a mask (Affymetrix) or

maskless (Nimblegen) method. Alternatively, the reagents are

delivered to each spot using ink-jet technology (Agilent).

Spotted cDNA arrays: clones from a cDNA library are amplified by

the polymerase chain reaction (PCR) using generic primers for the

vector. PCR products are purified and spotted on glass slides using a

robotic arrayer.

Spotted gene-specific sequence tag arrays: unique segment(s) of the

gene are amplified from genomic DNA or bacterial artificial

chromosome clones using primers specific for each gene. The PCR

products are purified and spotted on glass slides using a

robotic arrayer.

Spotted long oligonucleotide arrays: oligonucleotides ranging from

50–70 bases are synthesized for a unique region of the genes of

interest. Oligonucleotides are spotted on glass slides using a

robotic arrayer.
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data, genetic interactions and metabolic data can provide
additional support for networks of co-regulated genes.
Functional networks have been successfully constructed in
yeast using two-hybrid data and co-expression [12,13].

One consideration for integrating data into networks in
any study is quality assessment of the high-throughput
data. Microarray expression data can be of low technical
quality, particularly for spotted arrays, which are typically
processed manually, which can lead to a low level of
reproducibility or false associations. Staffan Persson et al.
[9] performed a quality analysis to remove outlier arrays
before proceeding to the co-regulation analysis. Currently,
most expression databases do not provide insight in to the
actual quality of the expression data (see below).
Arabidopsis and rice: reference species and reference

microarray expression data

The Arabidopsis community adopted microarrays as a tool
when they were first developed. The initial AG Affymetrix
array represented only w8000 unique genes [14], whereas
the more recent ATH1 array represents w23 750 unique
genes [15]. It has been shown that expression data obtained
with both array versions are largely similar and comparable
[16]. In addition to the Affymetrix platform, long oligonu-
cleotide arrays for Arabidopsis are available as well as
spotted arrays with gene-specific sequence tags [17].
However, based on the predominance of literature reports
and available datasets, the ATH1 array now appears to be
the platform of choice for the Arabidopsis community.
Together with ArrayExpress [18], The Nottingham Arabi-
dopsis Stock Center (NASC) now provides the largest
www.sciencedirect.com
resource for Arabidopsis expression data because The
Arabidopsis Information Resource [19] recently stopped
collecting expression data. Large quantities of expression
data have been generated using the ATH1 array in
individual studies and as part of the expression profiling
service at NASC [20] (Table 1). All hybridizations and data
processing are performed at NASC using user-supplied
RNA. Another large Arabidopsis expression dataset is
provided through the AtgenExpress project, which is also
available through NASC. This dataset includes a gene
expression map of Arabidopsis covering samples of many
stages of development [21]. A detailed gene expression map
of the Arabidopsis root is also available [22].

Currently, only limited amounts of expression data are
available for rice. Several published studies have used
relatively small-scale spotted cDNA microarrays addres-
sing rice pollination and fertilization [23], responses to
elicitors [24], and salt stress [25]. Two studies have been
published that used a proprietary rice Affymetrix array to
study grain filling of rice [26] and drought tolerance [27].
No whole genome expression data providing a compre-
hensive expression map for rice are available to date but
work is in progress at the Virtual Center for Cellular
Expression Profiling of Rice in which laser capture
microdissection is being used for whole genome expression
profiling of rice cell types (Table 1). Several public array
platforms are now available for rice (Table 1). Coupled
with the public availability of genome-scale rice arrays,
expression databases dedicated to housing rice expression
data have also been developed (Table 1).

Microarray expression profiling of crop species

Microarray platforms for crop species have been developed
as well. Because the research communities for some of
these species are smaller, several projects have been
organized as consortia to provide a microarray expression
platform for these species, either from Affymetrix or as
synthesized long oligonucleotide sets (Table 1). Because
most of these microarrays have become available only
recently, little data are publicly available. However,
studies using arrays with crop species has been reported
for barley [28,29], grape [30], maize [31–34], pine [35],
poplar [36], potato [37–39], tomato [40,41], soybean [42–44]
and wheat [45].

Crop species-specific gene expression databases are
publicly accessible. Several reference experiments using
the barley 22K GeneChip [28] are available through
BarleyBase [46]. In addition to the barley expression
data, BarleyBase is expanding to PLEXdb, which is
pursuing collection of expression data for several plant
species. In addition, a tool is available for linking probes
between the different species and platforms within
PLEXdb (Table 1). Expression data for soybean generated
using a spotted cDNA array are available through the
Soybean Genomics and Microarray Database (SGMD)
[47]. Large quantities of expression data for the Solana-
ceae, including potato and tomato, are available through
the Solanaceae Gene Expression Database, and tomato
gene expression data are available through a tomato
expression database (Table 1). Maize gene expression data
are available through the Zeamage database [48]. In the
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Figure 1. Functional discovery through expression profiling. Expression data from various sources and plant species provide expression data using a range of platforms.

Expression databases provide access to the data. Through data analysis and integration with available genome sequences and annotation data, putative gene functions can

be revealed. GeneChip is a registered trademark of Affymetrix.
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near future, it can be assumed that large amounts of
expression data will be generated; for data integration and
cross-species comparisons, special care should be given to
the identification of homologous genes and probes
representing these genes.
On-line analysis tools for microarray expression data

To navigate the large quantity of data now present in
expression databases, tools are being developed to identify
experiments of interest as well as expression profiles for
genes of interest. On-line expression analysis tools provide
some capability for expression data analysis. Expression
Profiler is a platform for web-based data analysis [49] in
which analysis tools for gene expression data preproces-
sing, filtering, clustering and visualization methods are
integrated with the ArrayExpress repository of expression
data. Analysis tools for the Arabidopsis expression data
are available at NASC with a more comprehensive set of
analysis tools available through Genevestigator [50],
which is a web-based platform for the selection and
visualization of Arabidopsis expression data. Mapman
was developed as a tool to display genomics data onto
diagrams of biological processes and metabolic pathways
[51]. Although the tool can be downloaded and installed
locally to analyze Arabidopsis expression data, some
www.sciencedirect.com
sample data are available for online analysis and display.
Barleybase [46] has implemented several on-line visual-
ization and analysis tools for statistical analysis of the
data present in the database. In addition to on-line
analysis tools, several open-source software packages
have been developed for microarray data analysis and
interpretation, such as the Bioconductor project, TM4
software and the web-based and BASE system (reviewed
in [52]).
Microarray expression data integration and exchange

Even though early expression profiling studies relied
mainly on publishing lists of up- or down-regulated genes,
it is now well recognized that all experimental information
and data associated with expression studies should be
made available upon publication. Thus, any published
expression study should provide enough information for
other researchers to reproduce the experiment and to
validate the findings. However, the complex nature of
microarray expression data, such as experimental con-
ditions, target and probe generation and relative expres-
sion ratios, prevent simple data exchange mechanisms.
The MGED (Microarray Gene Expression Data) society
has taken the lead in the development of standards
accompanying microarray expression data [53]. Most
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Table 1. Resources for publicly available plant microarray expression platforms and databases

Species Platform Contact

Platformsa

Arabidopsis Spotted Oligo http://www.ag.arizona.edu/microarray

Arabidopsis Affymetrix http://www.affymetrix.com/products/arrays/specific/arab.affx

Arabidopsis Agilent http://www.chem.agilent.com/scripts/pds.asp?lPageZ33767

Barley Affymetrix http://www.affymetrix.com/products/arrays/specific/barley.affx

Brassica Affymetrix http://www.affymetrix.com/community/research/consortia.affx

Citrus Affymetrix http://www.affymetrix.com/community/research/consortia.affx

Grape Affymetrix http://www.affymetrix.com/products/arrays/specific/vitis.affx

Maize Spotted Oligo http://www.maizearray.org

Maize Affymetrix http://www.affymetrix.com/products/arrays/specific/maize.affx

Medicago Affymetrix http://www.affymetrix.com/community/research/consortia.affx

Populus Affymetrix http://www.affymetrix.com/community/research/consortia.affx

Potato Spotted cDNA http://www.tigr.org/tdb/potato/microarray_comp.shtml

Rice Spotted Oligo http://www.ricearray.org

Rice Affymetrix http://www.affymetrix.com/products/arrays/specific/rice.affx

Rice Agilent http://www.chem.agilent.com/Scripts/PDS.asp?lPageZ12133

Soybean Spotted cDNA http://soybeangenomics.cropsci.uiuc.edu

Soybean Affymetrix http://www.affymetrix.com/products/arrays/specific/soybean.affx

Sugarcane Affymetrix http://www.affymetrix.com/products/arrays/specific/sugarcane.affx

Tomato Spotted cDNA http://bti.cornell.edu/CGEP/CGEP.html

Tomato Affymetrix http://www.affymetrix.com/community/research/consortia.affx

Wheat Affymetrix http://www.affymetrix.com/products/arrays/specific/wheat.affx

Expression databases

Arabidopsis NASC Arrays http://affymetrix.Arabidopsis.info/narrays/experimentbrowse.pl

Arabidopsis Genevestigator http://www.genevestigator.ethz.ch/

Barley Barleybase http://www.barleybase.org

Generic Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/projects/geo

Generic ArrayExpress http://www.ebi.ac.uk/arrayexpress

Generic PLEXdb http://www.barleybase.org/plexdb/html/index.php

Maize Zeamage http://www.maizearray.org

Rice Rice Expression Database http://red.dna.affrc.go.jp/RED

Rice NSF Rice Oligonucleotide Array Project and Database http://www.ricearray.org

Rice Virtual Center for Cellular Expression Profiling in Rice http://130.132.8.83/rc

Solanaceae Solanaceae Gene Expression Database http://www.tigr.org/tdb/potato

Soybean Soybean Genomics and Microarray Database http://psi081.ba.ars.usda.gov/SGMD/default.htm

Tomato Tomato Expression Database http://ted.bti.cornell.edu
aIn addition to these publicly available arrays, synthesized oligonucleotide sets for several plant species are commercially available (http://www.operon.com/arrays/omad.php).
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importantly, the Minimal Information About Microarray
Experiments (MIAME) guidelines describe requirements
for an accurate description of the biological samples used
in the study as well as description of the microarray
platform and the experimental procedures used to
generate the expression data. Currently, most of the
MIAME guidelines have been adopted by the various
plant expression databases.

The majority of institutions engaged in large-scale
expression studies employ expression databases either for
internal data storage and/or use or for exporting the data
to the public. Unfortunately, although most expression
databases are MIAME-compliant, most institutions have
adopted their own database schema, which complicates
data exchange. As a consequence, the MGED group has
developed standards for microarray data and microarray
data exchange called MAGE-ML [54].

The requirement to disseminate microarray data
publicly, preferably outside the authors’ website, resulted
in the establishment of public repositories for expression
data (Table 1). Currently, there are two main repositories:
the Gene Expression Omnibus (GEO) at the National
Center of Biotechnology Information (NCBI) [55] and
ArrayExpress at the European Bioinformatics Institute
(EBI) [18]. Both repositories are organized in a similar
way: first, a microarray platform is defined with spot
layout and annotation for the probes on the platform;
www.sciencedirect.com
second, expression data from experiments performed with
these platforms are linked to these platform definitions.
These expression data repositories contain several
expression platforms for plants but are not plant-specific
and contain expression data for a wide range of organisms.
At GEO, 280 datasets are available for the Viridiplantae
(green plants), with the bulk of the datasets derived from
Arabidopsis (240). At neither GEO nor NCBI are the
expression platforms linked by identifiers to enable cross-
species expression analysis, although both repositories
provide basic search capabilities and GEO allows for the
retrieval of gene profiles for several experiments. Thus,
these databases provide a repository and archive for
expression data rather than a primary resource for
expression data analysis.
Technical issues with microarrays

To make use of all available expression data for gene
function discovery, data from different studies need to be
integrated, requiring that the data be reliable and
reproducible not only between platforms but also between
laboratories. Most microarray platforms provide a reason-
ably robust and reproducible platform for gene expression
measurements. However, not all platforms share identical
probes either in sequence or type because oligonucleotides
(of differing length) or PCR products can be spotted. As a
consequence, low reproducibility among platforms as a
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result of probe-specific effects can be observed [56].
Platforms that provide a high level of technical reprodu-
cibility result in higher quality data, an increased
capability of detecting differentially expressed genes and
more reproducible results among different microarray
platforms [57]. An important consideration for cross-
platform comparisons is the method used to ‘link’ the
probes between the platforms because this will influence
the correlation between the platforms. Sequence-based
linking of gene identifiers rather than text-based match-
ing identifiers increases cross-platform comparisons [58].
Another level of variability can be derived from between
laboratory comparisons. Expression data generated with
the same RNA on the same platform resulted in large
differences between laboratories, but the best-performing
laboratories coupled with the most robust platforms
resulted in expression data with good correlation [59].
The application of standard protocols and methods among
laboratories using the same platform will increase the
reproducibility of expression data among laboratories [60].
Cross-platform reproducibility is best achieved when the
sample labeling, hybridization and data processing is
technically well performed. This was illustrated by the
comparison of various microarray platforms for Arabi-
dopsis that showed good correspondence among platforms
of gene-specific PCR products, as well as long and short
oligonucleotides [17]. If available, high-quality data
generated using robust platforms with alternative probes
and technology can be integrated. One complication will
be the selection of datasets that meet quality standards.
Thus, it can be preferable to use either datasets generated
with the same platform or by the same laboratory for
functional discovery of gene function. But in general,
conclusions derived from expression data using alterna-
tive platforms should be reproducible with an alternative
microarray expression platform. Overlying all these
considerations is the need for replicate data, technical
and biological, coupled with appropriate statistical
analyses, something that until recently has typically
been lacking in plant gene expression studies.

Tiling arrays to identify all transcripts

Another approach to study genome-wide expression is the
detection of all transcriptional activity on the chromo-
somes using tiling arrays. Rather than using gene-specific
probes to detect the expression of genes, the complete
genome, including the intergenic regions is represented by
probes on the array. In addition to detecting transcripts,
other applications for tiling arrays include comparative
genome hybridizations to detect deletions and polymorph-
isms, methylation profiling and the analysis of chromatin
immuno-precipitation samples [61] because these types of
experiments cannot be performed as well with the
common expression arrays. The first plant species for
which tiling expression data are available are rice and
Arabidopsis. The Arabidopsis genome sequence was
represented on high-density Affymetrix arrays. RNA
samples were hybridized to these arrays to identify
genes and gene structures experimentally [62]. For
Arabidopsis, this resulted in the adjustment of gene
models as well as the identification of novel transcripts.
www.sciencedirect.com
A commercial version of the Arabidopsis tiling array will
become available sometime next year. Because the genome
size of rice is much larger than the genome of Arabidopsis,
more arrays or higher density arrays are required for
tiling the complete rice genome. The transcriptome of rice
chromosome 10 has been analyzed using a short oligonu-
cleotide tiling array [63] and chromosome 4 has been
analyzed using a PCR-fragment-based tiling array [64].
Both studies provide evidence for expression of genes and
insights into regulation of transcription along the chromo-
some. Owing to the lower density of these rice tiling arrays
compared with those of Arabidopsis, the ability to refine
gene structure using these arrays is limited.

An advantage of tiling arrays over expression arrays is
that they are less biased for the expressed sequences
because no assumption is made about the gene structure
and which part of the genome sequence is coding. Another
non-biased high-throughput method to determine
expression levels for many genes simultaneously is
provided by massively parallel signature sequencing
(MPSS), which produces short sequence signatures and
whose frequency is correlated to the expression level. To be
maximally successful, both approaches require the avail-
ability of the genome sequence. These approaches seem to
be well suited to generate a reference for gene expression
in various tissues. MPSS was successfully applied to
Arabidopsis to analyze the transcriptome in 14 libraries
[65] and is currently being used to examine the rice
transcriptome via 60 different libraries (Table 1).

Future perspectives

The plant community has embraced gene expression
profiling technology, which is evident by the number of
species for which one or more array platforms are
available to date. As illustrated above, large expression
databases have the potential to accelerate functional
discoveries. Although these expression databases provide
access to expression data and the experimental conditions
used to generate the expression data, to complement
genome annotation efforts effectively and to increase gene
functional discovery, additional efforts are desirable. A
first step would be the generation of reference expression
datasets of cell, tissue or developmental-specific gene
expression for each plant species. These gene expression
compendia, such as AtgenExpress and the rice expression
project, would provide a starting point to catalogue gene
expression throughout the life cycle for each species. A
second step would be the addition of gene expression data
of mutants and treatments that will aid in the identifi-
cation of expression and regulatory networks. A third step
would be the integration of multiple data types because
with the increased availability of expression platforms for
multiple plant species, it is likely that the function of
several unknown genes will be derived from coupling
expression data with other functional and/or phenotypic
data. Thus, to exploit these data fully and to embrace a
complete systems approach, alternative data types such as
knockout phenotypic data, metabolomics and proteomics
data will need to be integrated with expression data
and/or made readily available. A fourth step would be
increased availability of pre-analyzed statistical and
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clustering analyses because, owing to computational
limitations, on-line analysis tools have limited capabilities
to perform data integrations on a genome-scale. Improving
large-scale databases could accelerate these efforts.
Currently, plant gene expression data are scattered and
stored in multiple databases, often separated between
species, which inhibits cross-species comparisons. Special
attention should be given to the identification of true
orthologs among these plant species. These advances will
be made available in the coming years not only for
Arabidopsis and rice but also for other species. Coupled
with these advances will be the improved structural
annotation of the genomes and an increase in the number
of genes with a known function. With the non-expression
applications of arrays, even more functional information
about the genome should be available, accelerating the
discovery of the function of all the genes within a
plant genome.
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