Occurrences of Excess 40Ar in Hydrothermal Tourmaline: Interpretations from 40Ar-39Ar Dating Results by Stepwise Heating

QIU Huaning*, PU Zhiping and DAI Tongmo

Key Laboratory of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, P.O. Box 1131, Guangzhou, Guangdong 510640

Abstract: The occurrences of excess 40Ar within a hydrothermal tourmaline is discussed in term of the analysis data of syngenetic muscovite and tourmaline from the Lushui hydrothermal tin-tungsten deposit in western Yunnan, China, using the 40Ar-39Ar stepwise heating technique. About 80% excess 40Ar was released in the last step when the tourmaline was fused, corresponding to a release of only ~3% 39Ar (K), which indicates that most excess 40Ar was held in the mineral lattice rather than in the channels parallel to the Z-axis. This suggests that the excess 40Ar was incorporated during crystallization and not diffused into the tourmaline during the post-crystallization history.

Key words: excess 40Ar, tourmaline, 40Ar-39Ar stepwise heating, hydrothermal tin-tungsten deposit, Yunnan

1 Introduction

It is widely accepted that some excess 40Ar is held in many minerals containing only trace or low amounts of potassium, such as beryl, cordierite, tourmaline, quartz and so on. Where is the majority of the excess argon held? Many researchers emphasized the similarities in the structures of beryl, cordierite and tourmaline, each being based on the six-membered tetrahedron rings (hexagonal rings) which are stacked to yield a series of channels parallel to the Z-axis, and believed that the majority of the excess 40Ar was held in the channels (Damon and Kulp, 1958; Dalrymple and Lanphere, 1969; York and Farquhar, 1972). Two possible explanations exist: either the argon was incorporated at the time of crystallization of these minerals, or the argon has diffused into them during their post-crystallization history (York and Farquhar, 1972). The latter is based on that many minerals could not retain argon during their early high-temperature existence. Only after the temperature had dropped below the “blocking temperature” for a particular mineral, the argon retention commenced effectively.

Lanphere and Dalrymple’s early studies on samples known to contain excess 40Ar revealed a typical age spectrum pattern that become known as a “saddle-shaped” age spectrum (Lanphere and Dalrymple, 1976). They noted that the minimum in the saddle could approach, and presumably attain in certain cases, a geologically meaningful age. Because of the presence of excess 40Ar and scarcity of K, tourmaline has rarely been selected as a K-Ar or 40Ar-39Ar dating mineral. Villa (1990) reported a strongly discordant 40Ar-39Ar spectrum on tourmaline which did not allow a chronological interpretation. While Andriessen et al. (1991) reported the results of a feasibility study on the use of the tourmaline K-Ar system for geochronometry, which showed that all tourmaline from young Alpine leucocratic veins had been crystallized without any inheritance of “old” radiogenic Ar and suggested a high closure temperature for the K-Ar tourmaline system.

The 40Ar-39Ar stepped heating technique makes it possible to release separately the argons held in different locations by heating the irradiated minerals from low to high temperatures step by step. If the true age of a mineral with excess 40Ar is already determined, the occurrences of excess 40Ar can be interpreted according to the release pattern curves of the argon isotopes from the irradiated mineral during the 40Ar-39Ar heating experiment.

The following mineralogical data of the tourmaline group are important for us to discuss the 40Ar-39Ar dating results, which are from the website of “mindat.org” (http://www.mindat.org/min-4003.html):

The general formula for the tourmaline group may be written: $\text{AD}_3\text{G}_6(\text{BO}_3)_3[\text{Si}_2\text{O}_18]\text{Y}_3\text{Z}$, where:

$A = \text{Ca, Na, K, or is vacant (large cations)}$;
Fig. 1. Photographs showing the syngenetic muscovite (MS) and tourmaline (TL) in S-17.
Orthogonal cross-polarized light, ×55.

\[D = \text{Al, } \text{Fe}^{2+}, \text{Fe}^{3+}, \text{Li}^+, \text{Mg}^{2+}, \text{Mn}^{2+} \text{ (intermediate to small cations — in valance balancing combinations when the A site is vacant);}
\]
\[G = \text{Al}^{3+}, \text{Cr}^{3+}, \text{Fe}^{3+}, \text{V}^{3+} \text{ (small cations);}
\]
\[Y = \text{O and/or OH;}
\]
\[Z = \text{F, O and/or OH.}
\]

The structure for the tourmaline group is one in which SiO₄ tetrahedra are linked into six-member rings having a hexagonal pattern and are stacked up with intervening distorted triangular BO₃ groups, linked by D site cations; the SiO₄ tetrahedra are linked vertically by G site cations and Y site anions, while the columns are linked horizontally by both D site cations and Y site anions. The A site cations and the Z site anions occupy the channels down the center of the columns (or the A site may be vacant).

2 Geological Background and Experiments

The muscovite (S-17MS) and tourmaline (S-17TL) within a hand-specimen were selected from a hydrothermal ore vein in the Lushui Tin-tungsten Deposit, western Yunnan, SW China. The muscovite-tourmaline veins (10–30 cm in width) occur along the two sides of a quartz vein (1–2 meters in width), surrounded by the sandy slate rocks of the Hetaoping Formation of the upper Cambrian.

Under the microscope, the phenomena are easy to be observed: small tourmaline (TL) grains locate within a large muscovite (MS) grain or between two MS grains (Fig. 1a and b). These phenomena suggest that the MS and TL crystallized simultaneously from the hydrothermal fluid which formed the tungsten ore veins.

The syngenetic MS and TL grains were separated by hand picking under a binocular microscope and cleaned in an ultrasonic bath. The samples and the monitor standard biotite ZBH-25 (the Chinese K-Ar standard sample from the Fangshan Granodiorite in Beijing with ⁴⁰Ar/³⁹Ar plateau age of 132.7 ± 0.1 Ma and 7.6% of K) (Wang, 1983; Zhu, 1987) were packed with aluminum laminae and received a neutron fluency of around 4.05×10¹⁸ n·m⁻², and were analyzed by the ⁴⁰Ar/³⁹Ar stepped heating technique after four months. Argon isotopic ratios were measured on a Micromass® 1200 instrument in the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. The reactor-derived interferences are corrected with the factors: \(e_{6\text{Ar}_{17\text{Ar}}} = 3.2×10^{-4}\), \(e_{9\text{Ar}_{17\text{Ar}}} = 1.08×10^{-4}\) and \(e_{4\text{OAr}_{17\text{Ar}}}_{\text{K}} = 8.7×10^{-3}\).

The samples were loaded into a new molybdenum crucible and heated to successively higher temperature by an electron bombardment furnace, each step lasting 45 minutes. The experiment temperatures had been corrected by loading a thermocouple into the new molybdenum crucible before the sample tree was loaded onto the system. The blanks of the extraction and purification system with 45 min at room temperature were about: ⁴⁰Ar = 2×10⁻¹³ mol, ³⁹Ar = 1×10⁻¹⁵ mol and ³⁶Ar = 6×10⁻¹⁶ mol. The released gases were cleaned up by a titanium sponge furnace at 800 °C and a titanium sublimation pump, and then were transferred into the mass spectrometer system using charcoal at liquid nitrogen temperature and further purified by two Sorb-AC pumps (non-evaporable getter pumps). The purified gases were analyzed by the Micromass® 1200 mass spectrometer for the argon isotopic ratios.

3 Results and Discussion

The ⁴⁰Ar-³⁹Ar dating data by stepped heating are listed in Table 1.
Table 1 \(^{40}\text{Ar} - ^{39}\text{Ar} \) dating data by stepped heating

<table>
<thead>
<tr>
<th>Step</th>
<th>Temp (°C)</th>
<th>(^{36}\text{Ar}) (± 2σ)</th>
<th>(^{37}\text{ArC}) (± 2σ)</th>
<th>(^{38}\text{ArCl}) (± 2σ)</th>
<th>(^{39}\text{ArK}) (± 2σ)</th>
<th>(^{40}\text{Ar} / ^{36}\text{Ar}) (± 2σ)</th>
<th>(^{39}\text{Ar}) Age (Ma) (±2σ)</th>
<th>(^{40}\text{Ar} / ^{39}\text{Ar}) (OC) (±2σ)</th>
<th>(^{39}\text{Ar}) (±2σ)</th>
<th>(^{40}\text{Ar} / ^{39}\text{Ar}) (±2σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>121.11</td>
<td>1175.05</td>
<td>182.72</td>
<td>357.09</td>
<td>26593</td>
<td>0.35</td>
<td>3.29</td>
<td>0.05</td>
<td>3.29</td>
</tr>
<tr>
<td>2</td>
<td>600</td>
<td>5.66</td>
<td>70.07</td>
<td>5.49</td>
<td>6.70</td>
<td>27</td>
<td>2.24</td>
<td>2.26</td>
<td>0.19</td>
<td>1.83</td>
</tr>
<tr>
<td>3</td>
<td>700</td>
<td>6.06</td>
<td>68.39</td>
<td>5.53</td>
<td>6.02</td>
<td>58</td>
<td>6.02</td>
<td>6.98</td>
<td>0.35</td>
<td>6.63</td>
</tr>
<tr>
<td>4</td>
<td>800</td>
<td>6.27</td>
<td>69.23</td>
<td>6.76</td>
<td>6.65</td>
<td>119</td>
<td>6.45</td>
<td>59.1</td>
<td>0.19</td>
<td>1.83</td>
</tr>
<tr>
<td>5</td>
<td>900</td>
<td>6.57</td>
<td>72.22</td>
<td>6.91</td>
<td>7.00</td>
<td>549</td>
<td>0.74</td>
<td>2.0</td>
<td>0.35</td>
<td>6.63</td>
</tr>
<tr>
<td>6</td>
<td>1000</td>
<td>5.36</td>
<td>62.69</td>
<td>6.08</td>
<td>13.23</td>
<td>820</td>
<td>0.37</td>
<td>1.0</td>
<td>0.35</td>
<td>6.63</td>
</tr>
<tr>
<td>7</td>
<td>1100</td>
<td>5.98</td>
<td>69.62</td>
<td>5.38</td>
<td>36.14</td>
<td>468</td>
<td>0.37</td>
<td>1.0</td>
<td>0.35</td>
<td>6.63</td>
</tr>
<tr>
<td>8</td>
<td>1200</td>
<td>4.96</td>
<td>50.10</td>
<td>4.73</td>
<td>9.68</td>
<td>80</td>
<td>0.48</td>
<td>1.3</td>
<td>0.35</td>
<td>6.63</td>
</tr>
<tr>
<td>9</td>
<td>fused</td>
<td>85.01</td>
<td>116.59</td>
<td>228.43</td>
<td>1570.35</td>
<td>61983</td>
<td>2.73</td>
<td>62.2</td>
<td>0.07</td>
<td>59.5</td>
</tr>
<tr>
<td>10</td>
<td>S-17MS</td>
<td>18.92</td>
<td>11.70</td>
<td>17.93</td>
<td>10.93</td>
<td>8549</td>
<td>271.03</td>
<td>0.37</td>
<td>613.7</td>
<td>1.07</td>
</tr>
<tr>
<td>11</td>
<td>S-17TL</td>
<td>11.35</td>
<td>223.99</td>
<td>20.05</td>
<td>268.23</td>
<td>7772</td>
<td>16.55</td>
<td>20.64</td>
<td>44.1</td>
<td>0.84</td>
</tr>
<tr>
<td>12</td>
<td>850</td>
<td>0.75</td>
<td>10.05</td>
<td>0.76</td>
<td>0.92</td>
<td>5</td>
<td>0.85</td>
<td>2.3</td>
<td>0.35</td>
<td>6.63</td>
</tr>
<tr>
<td>13</td>
<td>900</td>
<td>0.65</td>
<td>336.20</td>
<td>18.56</td>
<td>257.67</td>
<td>7687</td>
<td>19.58</td>
<td>29.48</td>
<td>52.1</td>
<td>1.30</td>
</tr>
<tr>
<td>14</td>
<td>fused</td>
<td>32.45</td>
<td>1893.74</td>
<td>49.97</td>
<td>873.58</td>
<td>60372</td>
<td>58.45</td>
<td>70.54</td>
<td>151.1</td>
<td>2.17</td>
</tr>
<tr>
<td>15</td>
<td>950</td>
<td>0.54</td>
<td>10.57</td>
<td>0.68</td>
<td>10.78</td>
<td>40</td>
<td>1.15</td>
<td>3.1</td>
<td>0.35</td>
<td>6.63</td>
</tr>
<tr>
<td>16</td>
<td>1000</td>
<td>0.83</td>
<td>477.27</td>
<td>27.51</td>
<td>456.58</td>
<td>17973</td>
<td>33.73</td>
<td>86.09</td>
<td>88.9</td>
<td>1.05</td>
</tr>
<tr>
<td>17</td>
<td>1100</td>
<td>0.38</td>
<td>8.53</td>
<td>0.60</td>
<td>0.91</td>
<td>18</td>
<td>0.59</td>
<td>1.6</td>
<td>0.35</td>
<td>6.63</td>
</tr>
<tr>
<td>18</td>
<td>fused</td>
<td>55.02</td>
<td>205.97</td>
<td>37.13</td>
<td>99.30</td>
<td>302337</td>
<td>2887.04</td>
<td>100.00</td>
<td>3014.3</td>
<td>2.07</td>
</tr>
</tbody>
</table>

(a) S-17MS, Weight = 0.0578g, J = 0.001495

(b) S-17TL, Weight = 0.5459 g, J = 0.001495

3.1 S-17MS

The cleavages of the muscovite S-17MS are straight under microscope, which shows that it was not affected by the dynamic metamorphism during the Himalayan Period. The age spectrum of the muscovite S-17MS is flat with a plateau age of 68.8 ± 1.1 Ma (2σ, over 93% of the total \(^{39}\text{Ar} \) release, Fig. 2). Its isochron age is 68.8 ± 0.5 Ma. So the muscovite formed in ca. 69 Ma ago.

The \(^{40}\text{Ar}/^{36}\text{Ar} \) ratios of the first three steps, 219.6 to 278.9, are well below the atmosphere ratio (295.5) with high \(^{37}\text{Ar}/^{36}\text{Ar} \) ratios (Table 1). The interfering reaction of \(^{40}\text{Ca}(n, n')^{36}\text{Ar} \) during irradiation is only a minor factor and not responsible for the unexpected low \(^{40}\text{Ar}/^{36}\text{Ar} \) ratios. We have no good idea to interpret for this fact at present.

3.2 S-17TL

The age spectrum of the tourmaline S-17TL appears biconcave (two-saddle-shaped), that is, it starts with high apparent age of 1124 Ma (only 1.5% of \(^{39}\text{Ar} \) were released in the first two steps of 500 °C–600 °C), and falls down successively to 44 Ma at step 5 (800 °C), and then rises to a high age of 151 Ma at step 8 (950 °C). Afterwards it falls and rises again, and at the last step (fused) it reaches the highest age of 3014 Ma (Fig. 2a). The total age is 355 ± 14 Ma. The high ages and the total age are much higher than the age of the syngenetic muscovite. Therefore, the tourmaline contains a great deal of excess \(^{40}\text{Ar} \) inside.

Calcium and potassium are present in tourmaline. In term of the mineral data, most of the Ca and K are located above the hexagonal rings, that is to say, within the channels parallel to the Z-axis. During irradiation, \(^{37}\text{Ar} \)
was induced from \(^{40}\text{Ca}(n, \alpha)\), \(^{39}\text{Ar}\) from \(^{37}\text{Cl}(n, \gamma)\), and \(^{39}\text{Ar}\) from \(^{39}\text{K}(n, p)\) due to neutron-induced reactions. The release peaks of \(^{37}\text{Ar}\) (Ca) and \(^{39}\text{Ar}\) (K) would correspond to the gas releases in the sites of the channels parallel to the Z-axis. So it can give us important information to infer the occurrences of the excess \(^{40}\text{Ar}\) to study the process of argon isotope releases by \(^{40}\text{Ar}^{39}\text{Ar}\) step-heating techniques.

The plateau age of 68.8 Ma of the muscovite S-17MS corresponds to a \((^{40}\text{Ar}^{39}\text{Ar})_{\text{Ms}}\) ratio of 26.00. We use this ratio to calculate the radiogenic \(^{40}\text{Ar}\) (\(^{40}\text{Ar}_{\text{R}}\)) and the excess \(^{40}\text{Ar}\) (\(^{40}\text{Ar}_{\text{E}}\)) within the tourmaline sample for each heating step.

Atmospheric argon:

\[
^{40}\text{Ar}_{\text{air}} = 295.5 \times 36\text{Arm}
\]

Radiogenic \(^{40}\text{Ar}\) from \(^{40}\text{K}\) decay within the tourmaline:

\[
^{40}\text{Ar}_{\text{K}} = 295.5 \times 36\text{Arm}
\]

Table 1 Percentages of argon isotope releases of S-17TL

<table>
<thead>
<tr>
<th>Step</th>
<th>Temp (°C)</th>
<th>(^{39}\text{Ar})</th>
<th>(^{39}\text{Ar}_{\text{K}})</th>
<th>(^{39}\text{Ar}_{\text{Ca}})</th>
<th>(^{39}\text{Ar}_{\text{R}})</th>
<th>(^{40}\text{Ar}_{\text{E}})</th>
<th>(^{40}\text{Ar}_{\text{R}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>0.03</td>
<td>0.24</td>
<td>0.34</td>
<td>0.69</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>600</td>
<td>0.37</td>
<td>1.25</td>
<td>0.10</td>
<td>1.10</td>
<td>4.37</td>
<td>5.09</td>
</tr>
<tr>
<td>3</td>
<td>700</td>
<td>0.56</td>
<td>1.25</td>
<td>0.39</td>
<td>0.79</td>
<td>1.94</td>
<td>1.66</td>
</tr>
<tr>
<td>4</td>
<td>750</td>
<td>0.75</td>
<td>1.25</td>
<td>0.74</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>5</td>
<td>800</td>
<td>0.91</td>
<td>1.25</td>
<td>0.91</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>6</td>
<td>850</td>
<td>1.09</td>
<td>1.25</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>7</td>
<td>900</td>
<td>1.23</td>
<td>1.25</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>8</td>
<td>950</td>
<td>1.38</td>
<td>1.25</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>9</td>
<td>1000</td>
<td>1.53</td>
<td>1.25</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>10</td>
<td>1100</td>
<td>1.67</td>
<td>1.25</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>11</td>
<td>1350</td>
<td>1.75</td>
<td>1.25</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
</tr>
</tbody>
</table>

\(^{40}\text{Ar}\) = \(^{40}\text{Ar}_{\text{Ms}} - 295.5 \times 36\text{Arm} \) (1) Vales measured. \(^{40}\text{Ar}\) includes radiogenic and excess \(^{40}\text{Ar}\). (2) Excess \(^{40}\text{Ar}\) = \(^{40}\text{Ar}_{\text{Ms}} - 295.5 \times 36\text{Arm} \) (3) A negative figure of excess \(^{40}\text{Ar}\) corresponds with an apparent age lower than 68.8 Ma gained from the syngenetic muscovite S-17MS, and the cause is not clear yet.
The age spectrum of the tourmaline displays extremely steep concentration profiles with initial apparent ages as high as 1124 Ma decreasing to 44 Ma within the first few percent of 39Ar release. The steep profile was probably interpreted to be: (a) excess 40Ar uptake profile that had been frozen into the margins of the mineral crystals following a relatively short interval at high temperature, during which time 40Ar released from minerals lower in the crust resided in the pore space (McDougall and Harrison, 1999); (b) recoil distribution of 39Ar which caused the ratios of 40Ar*/39Ar in the margins of mineral crystals higher and so the apparent ages older; (c) excess 40Ar trapped in the fluid inclusions.

Excess 40Ar was trapped within the fluid inclusions of the hydrothermal deposits (Kelley et al., 1986; Qiu and Dai, 1989; Turner and Bannon, 1992; Qiu et al., 1994; Qiu, 1996; Qiu et al., 1997; Qiu et al., 1998; Qiu et al., 2002a, 2002b; Qiu et al., 2003; Qiu and Wijbrans, 2006). At the second step of 600°C, small excess 40Ar and 38ArCl peaks correspond to a lot of 36Ar release (36.7% of the total, Table 2), which shows that most of the fluid inclusions within S-17TL decrепitated at the experiment temperature 600°C in vacuum.

Only 8% of excess 40Ar was released in step 8 (950°C) while the releases of 39Ar and 37Ar were at their highest peaks, and after two heating steps (1000°C and 1100°C), 80% of excess 40Ar was released in the last step (1350°C) when the sample was fused. On the basis of mineralogy, K and Ca were located in the channels parallel to the Z-axis, so the highest peaks of 39Ar and 37Ar represent the gases from the channels. Therefore, most of the excess 40Ar should not be contained in the channels but in the mineral lattices (the anion sites or anion vacancies) (Zeitler and Fitz Gerald, 1986). Analogously, most of the excess 40Ar in quartz, beryl, scheelite and albite is released in high heating temperature steps (Qiu et al., 1995; Qiu, 1996; Yu and Mao, 2004; Shen et al., 2005; Wang et al., 2005).

This 8% excess 40Ar yields the high apparent age of the step of 950°C.

As stated above, most excess 40Ar in the tourmaline was held in the lattice and released in high heating temperature steps, so the excess 40Ar did not diffuse into the tourmaline during post-crystallization history but was incorporated during crystallization.

The weighted mean age for steps 4 to 7 (750 – 900°C) of S-17TL, 67.3 ± 2.2 Ma, is concordant with the plateau age of 68.8 ± 1.1 Ma of S-17MS within the errors. Neither field geological facts nor petrologic observations under microscope show that some minerals formed after the muscovite-tourmaline vein, therefore, the lowest apparent age of 44.1 Ma in step 5 could not be interpreted as a geologically significant age. The lower ages of steps 5 and 6 and the higher age of step 7 might be yielded by the effect of 39Ar recoil during irradiation in the nuclear reactor. The 39Ar recoil caused part of the 39Ar from site A to site B and made the 40Ar*/39Ar ratios and the apparent ages rise in site A (900°C) and decrease in site B (850°C and 900°C). This weighted mean age represents a section of gas releases after the fluid inclusions decrepitated and before the gases within channels released and appears to be a reasonable significant age.

Now we summarize here about the occurrences of excess 40Ar within the tourmaline in a few words. The locations of excess 40Ar could be inferred by analyzing the release patterns of the argon isotopes and their correlations from the 40Ar/39Ar dating results by the step-heating technique. The three excess 40Ar peaks at 600, 950 and 1350°C represent respectively the gases released from the fluid inclusions, the channels (Z site anions) and the mineral lattice (Y site anions).

The excess 40Ar in the ore-forming fluid might come from the radiogenic 40Ar of the surrounding rocks and the degasifications of the deep rocks. While the minerals were crystallizing from the fluid in a closed system, the excess 40Ar entered the tourmaline in three main ways: most occupied the locations of the Y site anions, a little part took up the channels and another little part was kept in the fluid inclusions.

Table 1 Correlation coefficients between argon isotopes of S-17TL

<table>
<thead>
<tr>
<th>39Ar</th>
<th>40Ar</th>
<th>37Ar</th>
<th>38Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3325</td>
<td>-0.0075</td>
<td>0.4333</td>
<td>-0.1711</td>
</tr>
<tr>
<td>-0.0705</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As stated above, most excess 40Ar in the tourmaline was held in the lattice and released in high heating temperature steps, so the excess 40Ar did not diffuse into the tourmaline during post-crystallization history but was incorporated during crystallization.

The weighted mean age for steps 4 to 7 (750 – 900°C) of S-17TL, 67.3 ± 2.2 Ma, is concordant with the plateau age of 68.8 ± 1.1 Ma of S-17MS within the errors. Neither field geological facts nor petrologic observations under microscope show that some minerals formed after the muscovite-tourmaline vein, therefore, the lowest apparent age of 44.1 Ma in step 5 could not be interpreted as a geologically significant age. The lower ages of steps 5 and 6 and the higher age of step 7 might be yielded by the effect of 39Ar recoil during irradiation in the nuclear reactor. The 39Ar recoil caused part of the 39Ar from site A to site B and made the 40Ar*/39Ar ratios and the apparent ages rise in site A (900°C) and decrease in site B (850°C and 900°C). This weighted mean age represents a section of gas releases after the fluid inclusions decrepitated and before the gases within channels released and appears to be a reasonable significant age.

Now we summarize here about the occurrences of excess 40Ar within the tourmaline in a few words. The locations of excess 40Ar could be inferred by analyzing the release patterns of the argon isotopes and their correlations from the 40Ar/39Ar dating results by the step-heating technique. The three excess 40Ar peaks at 600, 950 and 1350°C represent respectively the gases released from the fluid inclusions, the channels (Z site anions) and the mineral lattice (Y site anions).

The excess 40Ar in the ore-forming fluid might come from the radiogenic 40Ar of the surrounding rocks and the degasifications of the deep rocks. While the minerals were crystallizing from the fluid in a closed system, the excess 40Ar entered the tourmaline in three main ways: most occupied the locations of the Y site anions, a little part took up the channels and another little part was kept in the fluid inclusions.

3.3 Extraneous 40Ar within (U)HP metamorphic phengite

Extraneous 40Ar is ubiquitous in the (U)HP metamorphic rocks of Dabieshan (Li et al., 1994), the western Alps (Hannula and Mcwilliams, 1995), the Seward Peninsula of Alaska (Scaillet et al., 1992; Arnaud and Kelley, 1995; Ruffet et al., 1995; Scaillet, 1996; Ruffet et al., 1997), the Holsnoy Island of western Norway (Boundy et al., 1997), the Pakistan Himalaya (Tonarini et al., 1993) and the Tavsanli Zone of NW Turkey (Sherlock and Arnaud, 1999; Sherlock and Kelley, 2002).
Two possible sources of extraneous 40Ar exist: (1) inherited 40Ar from protolith (Giorgis et al., 2000); (2) excess 40Ar in the fluid during retrograde metamorphism incorporating into the phengite crystal lattice by diffusion. The inhomogeneous distribution of extraneous 40Ar within the phengite causes the abnormal high 40Ar/39Ar apparent ages and the data point scatter on the isochron diagrams (Qiu and Wijbrans, 2006).

Therefore, the genesis and occurrences of extraneous 40Ar within (U)HP metamorphic phengite might be quite different from those of excess 40Ar within hydrothermal tourmaline in this study.

4 Conclusions

The characteristics of age spectrum and argon isotope releases for the tourmaline S-17TL reveal some major points that we should list here:

(1) The majority of excess 40Ar (~80%) was released when the mineral was fused, which indicates that the excess 40Ar was held in the lattice of the tourmaline.

(2) Only 8% of excess 40Ar was released at the step of the main release peaks of 37Ar (Ca) and 39Ar (K). This fact shows that only a small part of excess was located in the channels parallel to the Z-axis.

(3) The excess 40Ar was trapped within the tourmaline lattice during crystallization.

Acknowledgements

We would express our thanks to Prof. Zhang Yuquan and Mr. Chen Hesheng for their kind guides during the fieldwork. We are very grateful to Dr. R. Burgess for his comments and suggestions that significantly improved this work. Financial supports came from the National Natural Science Foundation of China (40472048) and the Chinese Academy of Sciences (KZCX2-SW117 and GIGCX-03-01).

Manuscript received June 9, 2006
accepted Dec. 29, 2006
edited by Xie Guanglian

References

Qiu Hua-Ning, Sun Da-Zhong, Zhu Bing-Quan and Chang Xiang-Yang, 1998. 40Ar-39Ar dating for a quartz sample from the Tangdan copper deposit, Dongchuan, Yunnan, by crushing in vacuum and by incremental heating on its powder. *Geochemistry, 27*(4): 335–343 (in Chinese with English abstract).

Qiu Hua-Ning, Zhu Bing-Quan and Sun Da-Zhong, 2002b. Age significance interpreted from 40Ar-39Ar dating of quartz samples from the Dongchuan Copper Deposits, Yunnan, SW China, by crushing and heating. *Geochemistry, Cosmochim. Acta, 66*(18): 2835–2838.

Scaillet, S., Feraud, G., Balevra, M., and Amouric, M., 1992. Mg/Fe and (Mg,Fe)Si-Al$_2$ compositional control on argon behavior in high-pressure white micas - a 40Ar/39Ar continuous laser-probe study from the Dora-Maira Nappe of the internal western Alps, Italy. *Geochemistry, Cosmochim. Acta, 56*(7): 2851–2872.
