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ABSTRACT
Plenty of algorithms for link prediction have been proposed
and were applied to various real networks. Among these
works, the weights of links are rarely taken into account. In
this paper, we use local similarity indices to estimate the
likelihood of the existence of links in weighted networks, in-
cluding Common Neighbor, Adamic-Adar Index, Resource
Allocation Index, and their weighted versions. In both the
unweighted and weighted cases, the resource allocation index
performs the best. To our surprise, the weighted indices per-
form worse, which reminds us of the well-known Weak Tie
Theory. Further experimental study shows that the weak
ties play a significant role in the link prediction problem,
and to emphasize the contribution of weak ties can remark-
ably enhance the predicting accuracy.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data mining; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval-Information Filtering

General Terms
Algorithms, Experimentation.
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1. INTRODUCTION
Many complex systems can be well described by networks

where nodes present individuals or agents, and links denote
the relations or interactions between nodes. Recently, the
link prediction of complex networks has attracted more and
more attention from computer scientists [6] and physicists [3,
17]. Link prediction aims at estimating the likelihood of the
existence of a link between two nodes, based on the observed
links and the attributes of the nodes. For example, classical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CNIKM’09, November 6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-807-0/09/11 ...$10.00.

information retrieval can be viewed as predicting missing
links between words and documents [18], and the process of
recommending items to a user can be considered as a link
prediction problem in the user-item bipartite network [22].

The problem of link prediction can be categorized into two
classes: One is the prediction of existed yet unknown links
for sampling networks, such as food webs, protein-protein in-
teraction networks and metabolic networks; the other is the
prediction of links that may exist in the future of evolving
networks, like on-line social networks. In addition, the link
prediction algorithms can also be used to generate some ar-
tificial links to help the further network analysis, such as the
classification problem in partially labeled networks [11, 5].
Some algorithms based on Markov chains [19, 23, 2] and ma-
chine learning [16, 20] have been proposed recently, and an-
other group of algorithms are based on the definition of node
similarity. In this paper, we concentrate on the latter. Node
similarity can be defined by using the essential attributes of
nodes, namely two nodes are considered to be more similar
if they have many common features. However, the essential
features of nodes are usually not available, and thus the
mainstream of similarity-based link prediction algorithms
consider only the observed network structure. Liben-Nowell
and Kleinberg [9] systematically compared some structure-
based node similarity indices for link prediction problem in
co-authorship networks, and Zhou et al. [21, 10] studied
nine well-known local similarity indices on six real networks
extracted from disparate field, as well as proposed two new
local indices.

Up to now, most studies of link prediction do not take
weights of links into consideration. Murata et al. [12] pro-
posed three weighted similarity indices, as variants of Com-
mon Neighbors, Adamic-Adar and Preferential Attachment
indices respectively. They applied these indices to the net-
works of Question-Answer Bulletin Boards System, and the
results show that with the consideration of weights the pre-
diction accuracy can be enhanced. To our surprise, when
we apply the weighted indices to co-authorship networks and
the US air transportation network, we find that the weighted
indices perform even worse than the unweighted ones. Actu-
ally, Liben-Nowell and Kleinberg [9] reported the similar ob-
servation for weighted Katz index. These unexpected results
remind us of the well-known Weak Tie Theory [7]. Further
experimental study shows that the weak ties play a signifi-
cant role in the link prediction problem, and to emphasize
the contribution of weak ties can remarkably enhance the
predicting accuracy.



Table 1: Algorithmic accuracy, measured by precision. Each number is obtained by averaging over 100
implementations with independently random divisions of testing set and probe set. The numbers inside
the brackets denote the standard derivations. For example, 0.592(48) means the precision is 0.592, and the
standard derivation is 0.048. The abbreviation, WCN*, WAA* and WRA*, represents the highest precisions
obtained by Eqs. (7-9), respectively. The corresponding optimal values of α are shown in Table 2.

CN WCN WCN* AA WAA WAA* RA WRA WRA*
USAir 0.592(48) 0.443(48) 0.617(45) 0.606(49) 0.517(50) 0.639(48) 0.626(39) 0.558(48) 0.633(41)

NetScience 0.822(51) 0.202(37) 0.822(51) 0.957(33) 0.681(43) 0.959(22) 0.962(18) 0.978(14) 0.978(14)
CGScience 0.625(59) 0.299(45) 0.782(57) 0.780(49) 0.292(51) 0.917(37) 0.963(15) 0.938(17) 0.969(16)

2. DATA AND METHOD
Considering an undirected simple network G(V, E), where

V is the set of nodes and E is the set of links. The multiple
links and self-connections are not allowed. For each pair of
nodes, x, y ∈ V , we assign a score, sxy, according to a given
similarity measure. Higher score means higher similarity
between these two nodes, and vice versa. Since G is undi-
rected, the score is supposed to be symmetry, say sxy = syx.
All the nonexistent links are sorted in the decreasing or-
der according to their scores, and the links in the top are
most likely to exist. To test the algorithmic accuracy, the
observed links, E, is randomly divided into two parts: the
training set, ET , is treated as known information, while the
probe set, EP , is used for testing and no information therein
is allowed to be used for prediction. Clearly, E = ET ∪ EP

and ET ∩ EP = ∅. In this paper, the training set always
contains 90% of links, and the remaining 10% of links con-
stitute the probe set. To quantify the prediction accuracy,
we use a standard metric called precision, which is defined
as the ratio of relevant items selected to the number of items
selected. We focus on the top L predicted links (in this pa-
per, we set L = 100), if there are Lr relevant links (i.e., the
links in the probe set), the precision equals Lr/L. Clearly,
higher precision means higher prediction accuracy.

The empirical data used in this paper include (i) USAir.—
the US air transportation network, which contains 332 air-
ports and 2126 airlines (see Pajak Datasets). The weight of
a link is the frequency of flights between two airports. (ii)
NetScience.—the co-authorship network of 1589 scientists
who are themselves working on network science [14]. Here,
the weight between two scientists is not simply the number
of papers they co-authorized. According to [13], if a paper
has n coauthors, then the weight of each pair of authors
contributed by this paper is 1/(n − 1). For two scientists,
the final weight of their link is obtained by summing up the
weights contributed by all their co-authorized papers. (iii)
CGScience.—the co-authorship network in computational
geometry till February 2002 (see Pajek Datasets). This net-
work contains 7343 authors and 11898 links. Two authors
are linked if they wrote at least a common paper/book. The
weight of a link is assigned by directly counting the number
of common papers/books.

3. UNWEIGHTED SIMILARITIES BASED
ON LOCAL INFORMATION

Among many similarity indices, Liben-Nowell and Klein-
berg [9] showed that the Common Neighbors (CN) and Adamic-
Adar (AA) index [1] perform the best, which has been fur-
ther demonstrated by systematically comparing CN, AA in-
dex with seven other well-known local similarity indices [21].

In addition, Zhou et al. [21] proposed a new index named
Resource Allocation (RA) index, which can beat both CN
and AA index. Therefore, in this paper, we concentrate on
CN, AA index and RA index, whose definitions are as fol-
lowing.

(i) CN. In common sense, two nodes, x and y, are more
likely to form a link in the future if they have many common
neighbors. Let Γ(x) denote the set of neighbors of node x.
The simplest measure of the neighborhood overlap is the
directed count:

sxy = |Γ(x) ∩ Γ(y)|, (1)

where |Q| is the cardinality of the set Q.
(ii) AA index. It refines the simple counting of common

neighbors by giving the lower-connected neighbors more weights,
as:

sxy =
∑

z∈Γ(x)∩Γ(y)

1

logk(z)
, (2)

where k(z) is the degree of node z, namely k(z) = |Γ(z)|.
(iii) RA index. Considering a pair of nodes, x and y,

which are not directly connected. The node x can send some
resource to y, with their common neighbors playing the role
of transmitters. In the simplest case, we assume that each
transmitter has a unit of resource, and will equally distribute
to all its neighbors. As a results the amount of resource y
received is defined as the similarity between x and y, which
is:

sxy =
∑

z∈Γ(x)∩Γ(y)

1

k(z)
. (3)

Empirical analysis shows that [21] comparing with CN
and AA, RA can enhance the prediction accuracy measured
by the area under a receiver operating characteristic curve
(AUC) [8], especially for the networks with large average
degrees (in such cases, the difference between RA and AA
is large). AUC takes into account the whole ranking, while
precision only concentrates on the top L predicted links. As
shown in Table 1, subject to precision, RA still performs
remarkably better than CN and AA. Here comes a simple
but significant result, the RA index outperforms CN and
the AA index, and thus can find its applications in better
characterize the proximity of nodes in networks.

4. WEIGHTED SIMILARITIES
The similarity indices mentioned in the last section only

consider the binary relations among nodes, however, in the
real world, links are naturally weighted, which may repre-
sent the transportation load between two airports in a air-
line network or the number of co-authorized papers in a



Figure 1: Precision as a function of α for USAir,
NetScience and CGScience: CN (triangles), AA
(circles) and RA (squares). The inset in the plot for
CGScience shows the precision of CN for α ∈ [−5, 1].
Each data point is obtained by averaging over 100
realizations, each of which corresponds to an inde-
pendent division of training set and probe set.

co-authorship network. We expect the similarity index tak-
ing into account link weights can give better predictions.
Murata and Moriyasu [12] proposed a simple way to extend
a similarity index for binary network to a weighted index.
Following this method, the weighted CN, weighted AA in-
dex and weighted RA index (denoted by WCN, WAA and
WRA, respectively) are:

sxy =
∑

z∈Γ(x)∩Γ(y)

w(x, z) + w(z, y), (4)

sxy =
∑

z∈Γ(x)∩Γ(y)

w(x, z) + w(z, y)

log(1 + s(z))
, (5)

sxy =
∑

z∈Γ(x)∩Γ(y)

w(x, z) + w(z, y)

s(z)
. (6)

Here, w(x, y) = w(y, x) denotes the weight of link between
nodes x and y, and s(x) =

∑
z∈Γ(x) w(x, z) is the strength

of node x. Note that, since s(z) may be smaller than 1 we
use log(1 + s(z)) in Eq. (5) to avoid negative score.

To our surprise, when we apply the weighted indices to the
three experimental networks, as shown in Table 1, we find
that except WRA in NetScience, the weighted indices per-
form obviously worse than their corresponding unweighted
versions. Especially for CN, with consideration of the weights
the precisions are sharply decreased. These unexpected re-
sults remind us of the well-known Weak Ties Theory [7],
which states that the people usually obtain useful informa-
tion or opportunities through the acquaintances but not the
close friends, namely the weak ties in their friendship net-
work play a significance role. Recently, Onnela et al. [15]
demonstrated that the weak ties mainly maintain the con-
nectivity in mobile communication networks, and Csermely
found that the weak ties may maintain the stability of bio-
logical systems [4]. In contrast, the role of weak ties in link
prediction problem has not been investigated yet.

5. ROLE OF WEAK TIES
In this section, we provide a start point to investigate the

role of weak ties in link prediction by introducing a free
parameter, α, to control the relative contributions of weak
ties to the similarity measure. The parameter-dependent
indices for WCN, WAA and WRA are:

sxy =
∑

z∈Γ(x)∩Γ(y)

w(x, z)α + w(z, y)α, (7)

sxy =
∑

z∈Γ(x)∩Γ(y)

w(x, z)α + w(z, y)α

log(1 + s(z))
, (8)

sxy =
∑

z∈Γ(x)∩Γ(y)

w(x, z)α + w(z, y)α

s(z)
, (9)

where s(x) =
∑

z∈Γ(x) w(x, z)α. When α = 0, s(x) is the de-
gree of node x, and the indices degenerate to the unweighted
cases. When α = 1, the indices is equivalent to the simply
weighted indices, as shown in Eqs. (4-6). The numerical
results are given in Figure 1, Table 1 and Table 2. For all
cases, the optimal values of α are all smaller than 1. That is
to say, the weak links play more important role in the link



Table 2: Optimal values of the parameter α subject
to the highest precisions. For CGScience, with the
decreasing of α the precision increases monotonously
and eventually reaches a stable value, 0.782, at the
point α = −4.15.

WCN* WAA* WRA*
USAir -0.41 -0.40 -0.24

NetScience 0.00 0.36 0.80
CGScience -4.15 -0.60 0.13

prediction than indicated by their weights. A big surprise is
that sometimes the optimal values of α are negative, that is
to say, the weak links actually play more important role than
the strong links. Although it is well-known that the weak
ties mainly maintain the network connectivity, this result is
still striking for us.

6. CONCLUSIONS AND DISCUSSION
In this paper, we applied three local similarity indices,

Common Neighbor, Adamic-Adar index and Resource Allo-
cation index, to the link prediction problem of three empiri-
cal networks, USAir, NetScience and CGScience. We found
that our previously proposed index, RA [21], performs the
best. Furthermore, with the consideration of weights, we
tested three weighted variants of CN, AA and RA, denoted
by WCN, WAA and WRA. To our surprise, the precision of
weighted indices perform even worse than their correspond-
ing unweighted versions. These unexpected results remind
us the weak ties theory [7] which claims that the links with
small weights yet play an important role in social network.
Extensive experimental study shows that the weak ties play
a significant role in the link prediction problem, and to em-
phasize the contribution of weak ties can remarkably en-
hance the predicting accuracy. Sometimes, in the optimal
cases, the weak ties contribute more than the strong ties.
In another word, the weak links in such network are not as
weak as their weights suggested.

Although the prediction accuracies of both the unweighted
indices (Eqs. (1-3)) and the simply weighted indices (Eqs.
(4-6)) can be further improved by introducing the parame-
ter α (Eqs. (7-9)), this paper does not aim at highlighting
these parameter-dependent indices. Instead, we attempt to
uncover the role of weak ties in the link prediction problem.
We hope this paper can provide a start point for the possible
weak ties theory in information retrieval.

7. REFERENCES
[1] L. A. Adamic and E. Adar. Friends and neighbors on

the web. Social Networks, 25(3):211–230, 2003.

[2] M. Bilgic, G. M. Namata, and L. Getoor. Combining
collective classification and link prediction. In
Workshop on Mining Graphs and Complex Structures
at ICDM-2007, pages 381–386, 2007.

[3] A. Clauset, C. Moore, and M. E. J. Newman.
Hierarchical structure and the prediction of missing
links in networks. Nature, 453:98–101, 2008.

[4] P. Csermely. Strong links are important - but weak
links stabilize them. Trends in Biochem. Sci.,
29(7):331–334, 2004.

[5] B. Gallagher, H. Tong, T. Eliassi-Rad, and
C. Faloutsos. Using ghost edges for classification in

sparsely labeled networks. In SIGKDD’2008, pages
256–264, 2008.

[6] L. Getoor and C. P. Diehl. Link mining: A survey.
SIGKDD Explorations, 7(2):3–12, 2005.

[7] M. S. Granovetter. The strength of weak ties. Am. J.
Sociology, 78(6):1360–1380, 1973.

[8] J. A. Hanley and B. J. McNeil. The meaning and use
of the area under a receiver operating characteristic
curve. Radiology, 143(1):29–36, 1982.

[9] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. J. Am. Soc. Inform. Sci.
Technol., 58(7):1019–1031, 2007.
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