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Abstract

A unified constitutive model for both clay and sand under three-dimensional stress conditions is derived from the modified Cam-clay
model, by taking the following two points into consideration. First, a transformed stress tensor based on the SMP (spatially mobilized
plane) criterion is applied to the Cam-clay model. The proposed model consistently describes shear yielding and shear failure and com-
bines critical state theory with the SMP criterion for clay. Secondly, a new hardening parameter, which is independent of the stress path,
is derived in order to develop a unified constitutive model for both clay and sand. It not only describes the dilatancy for lightly to heavily
dilatant sand, but also reduces to the plastic volumetric strain for clay. The validity of the hardening parameter is confirmed by the test
results of triaxial compression and extension tests on sand under various stress paths. Only five conventional soil parameters are needed
in the proposed model.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Clay; Dilatancy; Elastoplastic model; Sand; Stress path; Three-dimensional stress
1. Introduction

The modified Cam-clay model, called the Cam-clay
model for short in this paper, which is suitable for clay
(in this paper, the term clay is to be interpreted as normally
consolidated clay), was proposed by Roscoe and Burland
[18]. The Cam-clay model and many other models have
been generalized by assuming a section of the yield surface
to be circular in the p-plane. The mean stress pð¼ rii=3Þ
and deviator stress qð¼

ffiffiffiffiffiffiffiffi
3=2

p ffiffiffiffiffiffiffiffiffi
sijsij
p Þ are used as the stress

parameters in the models, where sijð¼ rij � pdijÞ is a devia-
toric stress tensor and dij is Kronecker’s delta. That is to
say, the criterion of the Extended Mises type (g = q/
p = const.) is adopted for the shear yielding and the shear
failure of clay in the Cam-clay model. Shear yielding is
caused by an increase in stress ratio g = q/p, while com-
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pressive yielding is caused by an increase in the mean stress
p. However, as experimental evidence shows, the Extended
Mises criterion grossly overestimates the strength in triaxial
extension, and also results in incorrect intermediate stress
ratios in plane strain [22]. In contrast to the Extended
Mises failure, the SMP failure criterion [8], which is consid-
ered to be a three-dimensional extension of the Mohr–Cou-
lomb criterion, is a failure criterion that explains the high
quality test results for soils. A transformed stress tensor
has been proposed by Matsuoka et al. [9] which makes
the SMP criterion become circular in the transformed p-
plane. A revised transformed stress tensor ~rij for the
SMP criterion is developed in this paper based on the
transformed stress method [9] and the work of Yao and
Sun [24,25] in order to take the plastic strain increment
direction into account additionally. The new transformed
stress tensor ~rij is applied to the Cam-clay model. The pro-
posed model consistently describes the shear yielding and
shear failure of soils under three-dimensional stresses, both
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Fig. 1. SMP criterion in p-plane (solid curve) and transformed p-plane
(broken circle).
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of which obey the SMP criterion, and combines critical
state theory with the SMP criterion for clay.

Traditionally, the plastic volumetric strain ep
v is taken as

the hardening parameter in the Cam-clay model, which is
not appropriate for dilatant sand. To date, a lot of harden-
ing parameters which can describe the dilatancy of soils
have been assumed (e.g., [5,15,2,11,1,6]), and several dilat-
ant plasticity models have been proposed (e.g., [4,16,
17,27,3,26]). In this paper, a new hardening parameter, that
is independent of stress path, is derived by considering
unified yield and plastic potential functions which are the
same those for Cam-clay. As will be described later, the
physical meaning of this hardening parameter is clear.
The proposed hardening parameter not only describes the
dilatancy from lightly to heavily dilatant sand, but also
reduces to the plastic volumetric strain ep

v for clay. The
validity of the hardening parameter H is confirmed by tri-
axial compression and extension test results on sand under
various stress paths.

The ability of the proposed model to predict the drained
behavior of normally consolidated clay and saturated sand
is examined along various stress paths under triaxial com-
pression and extension conditions. The results predicted by
the proposed model agree well with the test results. Only
five soil parameters are needed in the proposed model.
The values of these parameters can be determined by a
loading and unloading isotropic compression test and a
conventional triaxial compression test. In this paper, the
term stress is to be interpreted as effective stress. The imple-
mentation of the model into the finite element method fol-
lows the methods described in Sheng et al. [20] and Sloan
et al. [21].

2. A transformed stress tensor based on the SMP criterion

A transformed stress tensor, by which the SMP criterion
is made circular in the transformed p-plane, has been pro-
posed by Matsuoka et al. [9]. A revised transformed stress
tensor ~rij is developed in this paper based on the trans-
formed stress method [9] and the work of Yao and Sun
[24,25] in order to take the plastic strain increment direc-
tion into account additionally. The outline of the new
transformed stress tensor ~rij is introduced as follows:

The SMP criterion can be written as

I1I2=I3 ¼ const ð1Þ
where I1, I2 and I3 are the first, second and third stress
invariants, respectively. The solid curve in Fig. 1 is the
shape of the SMP criterion in the p-plane. The transformed
stress is deduced from what makes the SMP curve in the p-
plane become a circle, the dot line of Fig. 1, with the center
being the origin in the transformed p-plane (~p-plane).

When p = const, we assume that ~r is equal to r0, where ~r
is the stress radius in the p-plane of the transformed stress
space and r0 is the stress radius in the p-plane of the ordin-
ary stress space when h = 0. From Eq. (1), r0 can be
expressed by Matsuoka et al. [9]
~r ¼ r0 ¼
ffiffiffi
2

3

r
q� ¼

ffiffiffi
2

3

r
2I1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI1I2 � I3Þ=ðI1I2 � 9I3Þ

p
� 1

ð2Þ

The generalized deviatoric stress in the transformed stress
space ~qð¼

ffiffiffiffiffiffiffiffi
3=2

p
~rÞ can be written as

~q ¼ q� ¼ 2I1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI1I2 � I3Þ=ðI1I2 � 9I3Þ

p
� 1

ð3Þ

To realize the transformation from rij to ~rij, the follow-
ing equations should be made:

~p ¼ p

~q ¼ q�

~h ¼ f1ðhÞ

8><
>: ð4Þ

where ~p is the mean transformed stress; ~h and h are Lode’s
stress angles in the transformed stress space and the ordin-
ary stress space respectively, which are one-to-one corre-
spondence with intermediate principal stress parameters ~b
and b (=(r2 � r3)/(r1 � r3)) in the transformed stress space
and the ordinary stress space respectively; f1(h) is a func-
tion of h which also can be expressed by b. So, Eq. (4)
can be rewritten as

~p ¼ p

~q ¼ q�

~b ¼ f2ðbÞ

8><
>: ð5Þ

where

~b ¼ ~r2�~r3

~r1�~r3

~p ¼ 1
3
ð~r1 þ ~r2 þ ~r3Þ ¼ 1

3
~rii

~q ¼ 1ffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~r1 � ~r2Þ2 þ ð~r2 � ~r3Þ2 þ ð~r3 � ~r1Þ2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
ð~rij � ~pdijÞð~rij � ~pdijÞ

q

8>>>>>><
>>>>>>:

ð6Þ

f1(h) or f2(b) is a function to transform the flow direction
of the plastic strain increment in the ordinary stress space
into the flow direction in the transformed stress space. By
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f1(h) or f2(b), the deviation of the plastic strain increment
direction from the stress direction in the ordinary p-plane
can be taken into consideration, although the directions
of stress and plastic strain increments in transformed p-
plane are coincident.

A reasonable plastic potential surface for frictional
materials should be between the curved-triangle shape
(I1I2/I3 = const) and the circular shape (q/p = const) in
the p-plane. So, the flow direction of the plastic strain
increment is also between the normal to the triangular
shape of SMP criterion and that to the circular shape, as
shown Fig. 1. The following f2(b) [24] has the above
characteristics

f2ðbÞ ¼
ffiffiffiffiffi
r1
p þ ffiffiffiffiffi

r3
p

ffiffiffiffiffi
r2
p þ ffiffiffiffiffi

r3
p b ¼

ffiffiffiffiffi
r2
p � ffiffiffiffiffi

r3
p

ffiffiffiffiffi
r1
p � ffiffiffiffiffi

r3
p ð7Þ

So, the transformed stress tensors under the general stress
state can be obtained as

~rij ¼ pdij þ
q�

qs
ðrs

ij � psdijÞ ð8Þ

and

ps ¼ rs
ii=3

qs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þðrs

ij � psdijÞðrs
ij � psdijÞ

q

rs
ij ¼ ðI s

1rik þ I s
3dikÞðrkj þ I s

3dkjÞ�1

I s
1 ¼

ffiffiffiffiffi
r1
p þ ffiffiffiffiffi

r2
p þ ffiffiffiffiffi

r3
p

I s
2 ¼

ffiffiffiffiffiffiffiffiffi
r1r2
p þ ffiffiffiffiffiffiffiffiffi

r2r3
p þ ffiffiffiffiffiffiffiffiffi

r3r1
p

I s
3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1r2r3
p

9>>>>>>>>>>=
>>>>>>>>>>;

ð9Þ

When the stress tensor rij is given, the transformed stress
tensor ~rij can be calculated from Eq. (8). From the above
derivation, it can be shown that the shape of the SMP cri-
terion becomes a cone with the axis being the space diago-
nal ~r1 ¼ ~r2 ¼ ~r3 in the transformed principal stress space.
Its cross-section is a circle with the center being the origin
O in the ~p-plane (see Fig. 1). Noting the similarity in the
shapes of the Extended Mises criterion in the principal
stress space and the SMP criterion in the transformed prin-
cipal stress space, we can revise existing elastoplastic mod-
els such as the Cam-clay model by using the transformed
stress tensor ~rij based on the SMP criterion.

3. Basic method for constructing a unified hardening
parameter independent of stress path

Hardening of materials is due to the occurrence of plastic
strain. Therefore, a parameter representing the degree of
hardening must depend on the plastic strain. Hardening
parameters are internal variables that are used to indicate
the rate of plastic deformation, and should be a function
of plastic volumetric strain and plastic shear strain. For a
single yield surface model, the hardening parameter should
have the following properties: (1) its increments should be
the same from one point on a yield surface to different
points on another yield surface, and (2) its increment should
also be same from one point to another point along different
stress paths. Here, the hardening parameter is different with
the hardening modulus which obviously changes from point
to point. However, the plastic strain is usually dependent on
the stress path. For example, the plastic volumetric strain
and plastic shear strain for sand are all dependent on stress
path (the test results in the following section can confirm
this characteristic). So, the plastic strain increments instead
of the total plastic strains should be used to construct a uni-
fied hardening parameter for various kinds of soils. That is
to say, the hardening parameter should be a function of the
plastic volumetric strain increment dep

v and the plastic shear
strain increment dep

d. It is assumed that the plastic volumet-
ric strain increment and plastic shear strain increment can
be related through the stress-dilatancy equation
dep

v=dep
d ¼ f1ðgÞ. For example, the stress-dilatancy equation

in the original Cam-clay model is dep
v=dep

d ¼ M � g (stress
ratio g = q/p; M is the value of g at the critical state), so that
f1(g) = M � g. Therefore, we can choose either the plastic
volumetric strain increment dep

v or the plastic shear strain
increment dep

d as a basic parameter to construct the harden-
ing parameter. However, plastic shear strain does not occur
during isotropic compression, which means that it is impos-
sible to describe hardening under isotropic compression by
use of the plastic shear strain increment. Therefore, we have
to choose the plastic volumetric strain increment dep

v to con-
struct the hardening parameter. Realizing that the incre-
ment of the hardening parameter should be independent
of the stress path, we assume there exists a stress function
R(g) such that the integral

R dep
v

RðgÞ is independent of stress
path. Thus, this integral can be used as a general hardening
parameter

H ¼
Z

dep
v

RðgÞ ð10Þ

In the Cam-clay model, R(g) = 1. A suitable R(g) for both
clay and sand will be introduced in the next section.

4. A unified hardening parameter for both clay and sand

A basic method for constructing a unified hardening
parameter independent of stress path has been introduced
in the preceding section. We will now derive a new harden-
ing parameter for both clay and sand in this section. The
modified Cam-clay model is considered to be one of the
best basic elastoplastic models for clay, which is better than
the original one [19]. In the modified Cam-clay model, the
yield and plastic potential functions are assumed to be of
the same form as follows:

f ¼ g ¼ ln
p
p0

þ ln 1þ q2

M2p2

� �
�
Z

dep
v

cp
¼ 0 ð11Þ

where p0 is the initial mean stress, dep
vð¼ dep

iiÞ is the plastic
volumetric strain increment and cp is written as

cp ¼
k� j
1þ e0

ð12Þ
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with k being the compression index, j being the swelling in-
dex, and e0 the initial void ratio at p = p0. It is reasonable
that Eq. (11) is also chosen as the plastic potential function
for dilatant sand, because this equation predicts that the
plastic volumetric strain increment is positive before the
characteristic state (g = M) [7] and negative after the char-
acteristic state (see Fig. 2). To adopt an associated flow rule
in new model, a yield function similar to Eq. (11) is also as-
sumed for sand. However, the plastic volumetric strain
cannot be used as the hardening parameter for sand be-
cause it is dependent on the stress path and does not in-
crease monotonically with loading. In this paper, a new
hardening parameter H is derived to describe the hardening
behavior of clay and sand. The yield and plastic potential
functions for sand are written as

f ¼ g ¼ ln
p
p0

þ ln 1þ q2

M2p2

� �
� H ¼ 0 ð13Þ

Nova and Wood [14,15] have chosen a combination of
the plastic volumetric strain and plastic deviator strain as
a hardening parameter. In the present model, the harden-
ing parameter is considered to be a combination of the
stress tensor rij and plastic strain increment tensor dep

ij,
i.e., a plastic work type of hardening parameter. Thus,
the following hardening parameter is assumed by using
the plastic strain invariants

H ¼
Z

dH ¼
Z

c1ðrijÞdep
v þ c2ðrijÞdep

d

� �
ð14Þ

where c1(rij) and c2(rij) are the functions of the stress

tensor, respectively, and dep
d ¼

ffiffiffiffiffiffiffiffi
2=3

p�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdep

ij � dep
vdij=3Þðdep

ij � dep
vdij=3Þ

q
Þ is the plastic deviator

strain increment. In the modified Cam-clay model, the fol-
lowing stress-dilatancy equation is adopted:

dep
v

dep
d

¼ M2 � g2

2g
ð15Þ

Substituting Eq. (15) into (14) gives

H ¼
Z

c1ðrijÞdep
vþc2ðrijÞ

2g

M2�g2
dep

v

� 	
¼
Z

cðrijÞdep
v ð16Þ

where c(rij) is a function of the stress tensor. Note that
c(rij) in Eq. (16) is also equal to 1/R(g) in Eq. (10). Fig. 3
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Fig. 2. Direction of plastic strain increment vectors.
shows the constant mean stress path (path AB) and the iso-
tropic compression stress path (path AC) along which the
hardening parameter changes from H0 to H. The process
for finding the hardening parameter H is (1) to derive a
general equation of H along path AB and (2) to determine
an explicit equation of H along path AC.

4.1. Along the constant mean stress path AB

After substituting Eq. (16) into Eq. (13), the total differ-
ential form of the yield function is expressed as

df ¼ of
op

dp þ of
oq

dqþ of
oH

dH

¼ of
op

dp þ of
oq

dq� cðrijÞK
of
op
¼ 0 ð17Þ

So the proportionality constant K can be written as

K ¼ 1

cðrijÞ

of
op dp þ of

oq dq
of
op

ð18Þ

Based on Eq. (13), the following two differential equa-
tions can be obtained:

of
op
¼ 1

p
M2 � g2

M2 þ g2
ð19Þ

of
oq
¼ 1

p
2g

M2 þ g2
ð20Þ

By substituting Eqs. (19) and (20) into Eq. (18), the plas-
tic deviator strain increment along a constant mean stress
path is as follows:

dep
d ¼ K

of
oq
¼ 1

cðrijÞ
1

p
4g2

M4 � g4
dq ð21Þ

Fig. 4 shows the results of triaxial compression tests on
clay and sand (data from [12]). It can be seen from Fig. 4a
that the shapes of the curves g � ed for clay and sand are
alike. The stress ratios (q/p) at failure for clay and sand
are M and Mf respectively. In fact, Mf is not constant dur-
ing shearing. If the variation of Mf is considered during
shearing, more complex behavior (e.g., the softening) of
soils can be described [23]. In this paper, Mf is assumed
to be constant for the sake of simplicity. The parameters
M and Mf are similar to those of Nova and Wood [15].
q

C (px,0)0

η= Mη=M f
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0

Fig. 3. Stress paths for deriving hardening parameter H.
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Therefore, compared with the equation of the plastic devi-
ator strain increment for clay in the Cam-clay model when
the mean stress is constant (Eq. (22)), the equation of the
plastic deviator strain increment for sand is assumed to
be Eq. (23) when the mean stress is constant

dep
d ¼ cp

1

p
4g2

M4 � g4
dq ðfor clayÞ ð22Þ

dep
d ¼ q

1

p
4g2

M4
f � g4

dq ðfor sandÞ ð23Þ

where q is a constant. Eqs. (22) and (23) can also be written
in the linear forms

M4 � g4

4g2
¼ cp

dg
dep

d

ðfor clayÞ ð24Þ

M4
f � g4

4g2
¼ q

dg
dep

d

ðfor sandÞ ð25Þ

The validity of Eqs. (24) and (25) is confirmed by the tri-
axial compression results in Fig. 4b. So, the assumed form
of Eq. (23) is appropriate. It is worth noting that Mf = M
for clay and the elastic deviator strain is very small under a
constant mean stress in Fig. 4b. By combining Eqs. (21)
and (23), c(rij) in Eq. (21) is expressed as

cðrijÞ ¼
1

q
M4

f � g4

M4 � g4
ð26Þ
Substituting Eq. (26) into Eq. (16) gives

H ¼
Z

dH ¼
Z

1

q
M4

f � g4

M4 � g4
dep

v ð27Þ
4.2. Along the isotropic compression stress path AC

When g = 0 (path AC), Eq. (27) becomes

H ¼
Z

dH ¼
Z

1

q
M4

f

M4
dep

v ð28Þ

Moreover, under the isotropic compression condition
(g = q/p = 0) and ep

v ¼ cp lnðp=p0Þ. In addition, Eq. (13)
becomes H = ln(p/p0) when g = 0. So, the following equa-
tion can be obtained from the above two equations:

H ¼
Z

dH ¼
Z

dep
v

cp
ð29Þ

Letting Eq. (28) equal Eq. (29) gives

q ¼ cp
M4

f

M4
ð30Þ

Finally, we can obtain the following equation of the new
hardening parameter for sand by substituting Eq. (30) into
Eq. (27):

H ¼
Z

dH ¼
Z

1

cp

M4

M4
f

M4
f � g4

M4 � g4
dep

v ð31Þ

Comparing Eq. (10) with Eq. (31) gives

RðgÞ ¼ cp
M4

f

M4

M4 � g4

M4
f � g4

ð32Þ

If M = Mf, Eq. (31) becomes H ¼
R

dH ¼
R

dep
v=cp, which

is the same as the hardening parameter for clay in the
Cam-clay model. H in Eq. (31) is a unified one for both
clay and sand.
5. A unified elastoplastic model for both clay and sand

In the proposed model, the equations of the yield locus
and plastic potential remain the same as in Cam-clay, but
the transformed stress tensor ~rij (based on the SMP crite-
rion) and the new hardening parameter are adopted to
model the mechanical behavior of clay and sand under
three-dimensional stresses.

The total strain increment is given by the summation of
the elastic component and the plastic component as usual:

deij ¼ dee
ij þ dep

ij ð33Þ

Here, the elastic component is given by the following
equation

dee
ij ¼

1þ m
E

drij �
m
E

drmmdij ð34Þ

where m is Poisson’s ratio, and the elastic modulus E is ex-
pressed as
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E ¼ 3ð1� 2mÞð1þ e0Þ
j

p ð35Þ

The plastic component is given by assuming the flow rule
not in rij space but in ~rij space.

dep
ij ¼ K

og
o~rij

ð36Þ

where the plastic potential function g (or the yield function
f), the hardening parameter H, the proportionality con-
stant K and the differential equation og=o~rij are given,
respectively, as follows:

f ¼ g ¼ ln
~p
~p0

þ ln 1þ ~q2

M2~p2

� �
� H ¼ 0 ð37Þ

H ¼
Z

dH ¼
Z

1

cp

M4

M4
f

M4
f � ~g4

M4 � ~g4
dep

v ð38Þ

K ¼ cp
M4

f

M4

M4 � ~g4

M4
f � ~g4

d~p þ 2~p~q

M2~p2 � ~q2
d~q

� �
ð39Þ

og
o~rij
¼ 1

M2~p2 þ ~q2

M2~p2 � ~q2

3~p
dij þ 3ð~rij � ~pdijÞ

� 	
ð40Þ

In the above equations, the deviator stress ~q and the trans-
formed stress ratio ~g in ~rij space, Mð~g at critical state) and
M fð~g at peak) are written respectively as follows:

~g ¼ ~q=~p ð41Þ

~q ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3

2
~sij~sij

r
ð42Þ

M ¼ 6 sin /c

3� sin /c

ð43Þ

M f ¼
6 sin /

3� sin /
ð44Þ

where ~p0ð¼ p0Þ is the initial mean stress, and (/c,/) are the
internal friction angles at the characteristic state and shear
failure, respectively. The main features of the proposed
model for both clay and sand are presented as follows.

5.1. For sand

The stress-dilatancy equation of the proposed model is
expressed as follows:

dep
v

dep
d

¼ M2~p2 � ~q2

2~p~q
ð45Þ

Eq. (45) can be drawn as Fig. 5a in the ~q=~p � �dep
v=dep

d

plane and as Fig. 5b in the q=p � �dep
v=dep

d plane under
triaxial compression and extension conditions. It is seen
from these two figures that the unique relationship between
~q=~p and �dep

v=dep
d can explain the difference in the q=p �

�dep
v=dep

d relations between triaxial compression and
extension.

Under triaxial compression and extension stress condi-
tions, the yield function in Eq. (37) is plotted in Fig. 6,
where CL and FL show the characteristic state line and
the shear failure line, respectively. ~ra and ~rr are the trans-
formed stresses corresponding to ra and rr respectively, in
which ra and rr are the axial and radial stresses in triaxial
stress conditions. It is seen from Fig. 6 that although the
yield curves in triaxial compression and extension are sym-
metrical with respect to the ~p-axis in the ~p � ð~ra � ~rrÞ plane
(see Fig. 6a), the yield curves are not symmetrical with
respect to p-axis, and the value of q in triaxial extension
is smaller than that in triaxial compression in the
p � (ra � rr) plane at the same p (see Fig. 6b). This trend
is similar to the test results from various kinds of soils
(e.g., [10]).

How the proposed model describes the dilatancy of soil
is explained as follows. From Eq. (38), we obtain

dep
v ¼ cp

M4
f

M4

M4 � ~g4

M4
f � ~g4

dH ð46Þ

Since dH is always larger than or equal to 0, the follow-
ing conclusions can be obtained from Eq. (46):

(1) ~g ¼ 0 (isotropic compression condition): dep
v ¼ cpdH .

(2) 0 6 ~g < M (negative dilatancy condition): dep
v > 0.

(3) ~g ¼ M (characteristic state condition): dep
v ¼ 0.

(4) M < ~g 6 M f (positive dilatancy condition): dep
v < 0.

As indicated above, the dilatancy of clay and sand are
reasonably described by the new hardening parameter H.
The validity of H and the other quantities used usually as
hardening parameters will be checked in the various stress
paths as follows.

Fig. 7 shows the stress paths in triaxial tests on Toyoura
sand (data from [11]) in terms of the relation between mean
stress p and deviator stress q. The values of the principal
stress ratios are the same (r1/r3 = 4) at points F and F 0

in Fig. 7. We will check the stress path dependency of four
quantities, the plastic volumetric strain ep

v, the plastic devi-
ator strain ep

d, the plastic work Wp and the proposed hard-
ening parameter H, in four kinds of triaxial compression
tests (paths: ADEF, ABCF, AGF and ABEF) and three
kinds of triaxial extension tests (paths: AD 0F 0, ACF 0 and
AF 0).

Figs. 8–11 show the variations of those quantities along
the seven kinds of stress paths under triaxial compression
and extension conditions. It is obvious from Figs. 8 and
9 that the plastic volumetric strain ep

v and the plastic devi-
ator strain ep

d are unsuitable for the hardening parameter
for sand because these quantities depend on the stress paths
at the same stress state. From Fig. 10 the plastic work Wp is
almost independent of the stress paths only in triaxial com-
pression or triaxial extension, but its value at the stress
state F is different from that at F 0 although the stress invar-
iants (~p and ~q) of the stress states F and F 0 are the same.
The other problem induced by the plastic work hardening
parameter is that sand will always harden even though it
is at a peak or failure state. Hence, the plastic work is also
not good for the hardening parameter in general stress
states. However, Fig. 11 shows that the values of the
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proposed hardening parameter H are uniquely determined
at the same stress state, regardless of the stress path in tri-
axial compression and extension and the previous stress
history. So, the proposed hardening parameter H is a state
quantity, and we employ it as a new hardening parameter
for sand.

5.2. For clay

As mentioned before, if M = Mf, the new hardening
parameter H becomes the plastic volumetric strain, which
is the same as the hardening parameter for normally con-
solidated clay in the Cam-clay model. Therefore, in this
case the difference between the proposed model and the
Cam-clay model is only the stress tensor used. Let us dis-
cuss the critical state conditions in three-dimensional stres-
ses in detail. The critical state conditions of the proposed
model in three-dimensional stresses can be expressed as
follows:
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~gcs ¼ ~qcs=~pcs ¼ M

dep
v=dep

d ¼ 0

ep
v ¼ cp½lnð~pcs=~p0Þ þ ln 2�

ep
d !1

9>>>=
>>>;

ð47Þ

where the suffix cs means the critical state. When Eq. (47) is
satisfied, soil will be continuously distorted. Eq. (47) is the
same as the critical state conditions of the Cam-clay model
in triaxial compression, so we might say Eq. (47) is the
extension form for the critical state conditions of the
Cam-clay model under three-dimensional stresses.

6. Predictions versus experimental results

A series of triaxial compression and triaxial extension
tests on normally consolidated Fujinomori clay and
saturated Toyoura sand have been completed by Nakai
and Matsuoka [12] and Nakai [11]. Fig. 12 shows the initial
yield surfaces from Eq. (37) and the test stress paths con-
ducted in triaxial compression and extension for clay and
sand. The test data are used to examine the capability of
the proposed model in predicting drained behavior of clay
and sand. The values of soil parameters used in the model
are M = Mf = 1.45, k/(1 + e0) = 0.0508, j/(1 + e0) =
0.0112 and m = 0.3 for Fujinomori clay, and M = 0.95,
Mf = 1.66, k/(1 + e0) = 0.00403, j/(1 + e0) = 0.00251 and
m = 0.3 for Toyoura sand, respectively. The above soil
parameters are determined from isotropic compression
tests and conventional triaxial compression tests.

6.1. Path p = const

Fig. 13 compares the predicted and observed results for
the drained behavior of Fujinomori clay and Toyoura sand
under triaxial compression and extension conditions when
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p = 196 kPa. It can be seen from this figure that the predic-
tions (solid lines) of the proposed model agree well with the
observed test results (marked s) for clay and sand at con-
stant mean stress under triaxial compression and extension
conditions.

6.2. Path r3 = const

Fig. 14 compares the predicted and observed test results
for the drained behavior of Fujinomori clay and Toyoura
sand under triaxial compression and extension conditions
when r3 = 196 kPa. It can be seen from this figure that
the predictions (solid lines) of the proposed model agree
well with the observed test results (marked s) for clay
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and sand with increasing mean stress under triaxial com-
pression and extension conditions.

6.3. Path r1 = const

Fig. 15 compares the predicted and observed test results
for the drained behavior of Fujinomori clay and Toyoura
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test results (Fig. 15a). But, it can be seen from Fig. 15a and
b that the predicted results (solid lines) agree well with the
test results (marked �) for clay under triaxial extension con-
dition and for sand under triaxial compression and exten-
sion conditions.

6.4. Stress paths including constant and decrease in stress

ratio in triaxial compression for sand

Fig. 16 shows two special stress paths, which contain a
constant and a decrease in stress ratio under triaxial
compression, for tests on a sand. The values of the sand
parameters used in the model are M = 1.08, Mf = 1.68, k/
(1 + e0) = 0.00462, j/(1 + e0) = 0.00259 and m = 0.3,
respectively. The above soil parameters were determined
by an isotropic compression test and a conventional triax-
ial compression test.

Fig. 17 shows the predicted and observed test results for
the drained stress–strain behavior along the stress paths
ABC and DEF, respectively. It can be seen from this figure
that the results (solid lines) predicted by the proposed
model agree well with the test results (marked s) in those
special stress paths.

6.5. Stress paths in plane strain for clay

In order to validate the present model under plane strain
condition, the model is used to predict the results of the
plane strain tests on Fujinomori clay [13].

Fig. 18 shows the stress paths tested in the plane strain
tests. The tests are conducted along four kinds of stress
paths (AB, AC, AB 0 and AC 0) under plane strain condition
from K0-consolidation state (point A: ry = 196 kPa,
rx = rz = 98 kPa). The model parameters used in the pre-
dictions are the same as the above for Fujinomori clay.

Figs. 19 and 20 show the comparison between predicted
and measured stress–strain behavior and intermediate prin-
cipal stress along paths AB and path AC, respectively,
without change in principal stress directions.

Figs. 21 and 22 show the comparison between predicted
and measured stress–strain behavior and intermediate prin-
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cipal stress along paths AB 0 and path AC 0, respectively,
with change in principal stress directions.

It is seen from Figs. 19–22 that the present model gives
relatively good predictions of the measured stress–strain
behavior and the measured intermediate principal stress
values.

Therefore, it can be seen from the above comparisons
that the proposed model can reasonably describe the
stress–strain characteristics of clay and sand under three-
dimensional stresses, as well as the dilatancy of sand along
various stress paths.

7. Conclusions

(1) A new hardening parameter is derived by considering
unified yield and plastic potential functions for both
clay and sand. It not only describes the dilatancy
for lightly to heavily dilatant sand, but also reduces
to the plastic volumetric strain for clay. The validity
of the hardening parameter is confirmed by triaxial
compression and extension tests on sand along vari-
ous stress paths.

(2) An elastoplastic model is proposed by applying the
transformed stress tensor ~rij (based on the SMP crite-
rion) and the new hardening parameter H to the
Cam-clay model. The proposed model can reason-
ably describe the stress–strain behavior of clay and
sand under three-dimensional stress states.

(3) The five soil parameters (k, j, M, Mf and m) in the
proposed model can be determined by a loading
and unloading isotropic compression test and a con-
ventional triaxial compression test.
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