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A critical state model for sands dependent on stress and density
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SUMMARY

An elastoplastic model for sands is presented in this paper, which can describe stress–strain behaviour
dependent on mean effective stress level and void ratio. The main features of the proposed model are: (a) a
new state parameter, which is dependent on the initial void ratio and initial mean stress, is proposed and
applied to the yield function in order to predict the plastic deformation for very loose sands; and (b)
another new state parameter, which is used to determine the peak strength and describe the critical state
behaviour of sands during shearing, is proposed in order to predict simply negative/positive dilatancy and
the hardening/softening behaviour of medium or dense sands. In addition, the proposed model can also
predict the stress–strain behaviour of sands under three-dimensional stress conditions by using a
transformed stress tensor instead of ordinary stress tensor. Copyright # 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Modified Cam-clay model [1] has been successfully used to describe stress–strain behaviour
of normally consolidated clay. To achieve a better agreement between predicted and observed
behaviour of sands, a large number of revisions have been proposed since the Modified Cam-
clay model was developed. The authors also developed a simple and unified three-dimensional
elastoplastic model [2] for both clay and sand by introducing a new hardening parameter H and
a new transformed stress tensor *ssij to the Modified Cam-clay model.

The mean effective stress level and void ratio are probably the two most significant factors to
influence deformation and strength of sands among many factors, such as fabric and inherent
anisotropy. If a sample is initially in a very loose state, strain hardening and volume contraction
behaviour will be generally observed only, while a medium dense sample may exhibit both
volume contraction and dilation as well as strain hardening/softening. On the other hand, the
volume dilation of a dense sample may be suppressed totally if the mean effective stress is raised
sufficiently.
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In this paper, a unified elastoplastic constitutive model for sands, which can account for the
mean effective stress level and void ratio dependencies, is proposed. The main features of the
proposed model are: (1) a new state parameter w1; which is dependent on the initial void ratio
and initial mean stress, is proposed and applied to the yield function in order to predict the
plastic deformation for very loose sands; and (2) another new state parameter w2; which is used
to determine the peak strength Mf and describes the critical state behaviour of sands during
shearing, is proposed in order to predict simply negative/positive dilatancy and the hardening/
softening behaviour of medium or dense sands. In addition, the proposed model can also predict
the stress–strain behaviour of sands under three-dimensional stress conditions by using a
transformed stress tensor [3] *ssij based on the spatially mobilized plane (SMP) criterion [4, 5]
instead of ordinary stress tensor sij: Throughout this paper, the term ‘stress’ is to be interpreted
as ‘effective stress’.

2. DEFINITION OF STATE PARAMETERS w1 AND w2

2.1. Dilatancy and peak strength of sands dependent on stress level and void ratio

Several basic lines are shown in v (specific volume) – ln p (mean stress) space in Figure 1. It is
experimentally confirmed that there exists a critical state line (CSL) where every sand sample
reaches infinite shear strain irrespective of initial void ratio in the same way as normally
consolidated clay [6]. The slope of CSL is assumed l: The reference consolidation line in
Figure 1, which is similar to the normal consolidation line for normally consolidated clay, is
called RCL. RCL is assumed to be parallel with CSL as shown in Figure 1. So, the slope of RCL
is also l: RCL is not a locus of points of maximum possible void ratio. The distance between
RCL and CSL is assumed to be ðl� kÞ ln 2 based on the Modified Cam-clay model in which the
distance between normal consolidation line and critical state line is ðl� kÞ ln 2 at the same mean
stress. When a sample is sheared from an initial state on RCL, it shows only volume contraction
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Figure 1. Description of dilatancy of sand with different initial densities in v–ln p plane.
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(negative dilatancy). When a sample is sheared from an initial state looser than RCL, it also
shows only volume contraction, but a negative dilatancy larger than that from the initial state
on RCL. On the other hand, sand denser than RCL shows both negative and positive dilatancy.
The isotropic consolidation line for the densest possible state of sand is the lowest boundary line
and its slope is equal to the slope of the unloading or reloading line, which is called DCL in
Figure 1. The slope of DCL is k:

In Figure 1, vr; vG and vd are three values of specific volume for a given mean stress p on
RCL, CSL and DCL respectively; Nr; G and Nd are the values of specific volume for unit mean
stress on RCL, CSL and DCL respectively, which are three basic void ratio parameters of sand.
From Figure 1, the following three equations can be obtained:

vr ¼ Nr � l ln p ð1Þ

vG ¼ G� l ln p ð2Þ

vd ¼ Nd � k ln p ð3Þ

Figure 1 also shows different dilatancy behaviour of sand with different initial void ratios in
v–ln p space. The dilatancy of sand for a given initial void ratio (e.g. points A, B, C, D and E in
Figure 1) is analysed as follows:

(1) Point B: When a sample is sheared from an initial state at point B on RCL, sand behaves
only volume contraction (negative dilatancy) and finally reaches the critical state (point
F on CSL). In this condition that the initial state is on RCL, the dilatancy of sand is the
same as that of the normally consolidated clay. Hence, the Modified Cam-clay model can
be used to predict the stress–strain relationship of sand in this state.

(2) Point A: When a sample is sheared from an initial state at point A looser than RCL, it
shows only also volume contraction (negative dilatancy) and finally reaches the critical
state (point F on CSL). But sand in this state exhibits a volume contraction larger than
that at the initial state of point B. The Modified Cam-clay model cannot be used to
predict directly the stress–strain relationship of sand in this state.

(3) Points C and D: The sample denser than RCL (e.g. for initial state at points C and D)
shows positive dilatancy after volume contraction and then reaches the same critical state
ðC ! C0 ! F and D ! D0 ! FÞ as the loose sand. It should be noted that although
points C and B are all higher than the point F on CSL under the same mean stress in
v–ln p space, the dilatancy of sand from points C and B is different and sand from point
C shows positive dilatancy after negative dilatancy. Points C0 and D0 are characteristic
points [7, 8] in Figure 1.

(4) Point E: When the densest possible sample is sheared from an initial state at point E on
DCL, it shows almost positive dilatancy and finally reaches critical state ðE ! FÞ:

Sand in different initial void ratios reaches different peak shear strengths. Figure 2 shows that
sand denser than RCL reaches shear strength greater than M, which is a shear strength for sand
on RCL, and the denser the sand, the greater its shear strength. However, sand looser than RCL
reaches the same shear strength as sand on RCL. That is ðZmaxÞE > ðZmaxÞD > ðZmaxÞC > ðZmaxÞB ¼
ðZmaxÞA ¼ M with Zmax as a maximum stress ratio.

Comparing points D and G whose initial void ratios are the same, as shown in Figure 1, we
can find a value of pn at which only volume contraction occurs during shearing. So soon as the
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mean stress is raised to pn (point G from point D in Figure 1) the volume dilation of sand may
be suppressed totally.

From the above discussions, we can know how both the mean stress and initial void ratio
affect the dilatancy and strength of sands.

2.2. State parameters w1; w2 and their application

Considerable research efforts have been directed at investigating the effects of the mean stress
level and void ratio on the dilatancy and peak strength of sands. In order to describe these
effects, several typical state parameters [8–15] have been proposed, respectively.

In order to take the mean stress level and void ratio dependencies into consideration in
modelling sand behaviour, two new state parameters are proposed here. A new state parameter
w1 is proposed to predict the plastic deformation for the initial state looser than RCL and
another new state parameter w2 is proposed to predict the peak strength Mf of sand for the
initial state denser than RCL.

2.2.1. State parameter w1 and yield function. For a given sand whose initial void state is on RCL
in Figure 3, we can calculate its plastic volumetric strain during shearing by the Modified Cam-
clay model, in which the yield function can be written as follows:

f ¼ ln
p
p0

þ ln ð1þ Z2=M2Þ �
Z

depv
cp

¼ 0 ð4Þ

where p0 is the initial mean stress, Zð¼ q=pÞ the stress ratio, M the value of Z at the critical state,
depv ð¼ depiiÞ the plastic volumetric strain increment and

cp ¼
l� k
1þ e0

ð5Þ
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Figure 2. Description of peak strength of sand with different initial densities in p–q plane.
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where l is the slope of normal consolidation line or critical state line, k the swelling index and e0
the initial void ratio at p ¼ p0: We can calculate the increment of specific volume between point
B and point F in Figure 3, based on Equation (4) as follows:

vr � vG ¼ ðl� kÞ ln ð1þ Z2=M2ÞjZ¼M ¼ ðl� kÞ ln 2 ð6Þ

From Equations (1), (2) and (6), we can also obtain Nr ¼ Gþ ðl� kÞ ln 2: However, when
sand looser than RCL is sheared, its increment of specific volume is larger than the value of
ðvr � vGÞ (e.g. from point A to point F in Figure 3), i.e. ðv0 � vGÞ > ðvr � vGÞ: Here a new state
parameter w1 is proposed to calculate the value of ðv0 � vGÞ: Let

v0 � vG ¼ ðl� kÞ ln 1þ
Z2=M2

1� w1Z2=M2

� �����
Z¼M

¼ ðl� kÞ ln 1þ
1

1� w1

� �
ð04w141Þ ð7Þ

where ðv0 � vGÞ ¼ ðvr � vGÞ when w1 ¼ 0; ðn0 � nGÞ > ðvr � vGÞ when w1 > 0 and ðv0 � vGÞ ! 1
when w1 ¼ 1: If we know the initial value of specific volume v0; then the state parameter w1 can
be solved from Equation (7) as follows:

w1 ¼
exp

v0 � vG
l� k

� �
� 2

exp
v0 � vG
l� k

� �
� 1

ð8Þ

Substituting Equation (2) into Equation (8) gives

w1 ¼
exp

v0 � Gþ l ln p0

l� k

� �
� 2

exp
v0 � Gþ l ln p0

l� k

� �
� 1

ð9Þ

From Equation (9), it can be seen that the parameter w1 can be calculated from the initial
value of specific volume v0 and initial mean stress p0: So, w1 is not a material parameter but an
initial state variable. By comparing Equation (6) with (7), the yield function, with which the

Figure 3. Sand looser than RCL expressed by point A.
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deformation behaviour of sand looser than RCL can be accounted for, is written as follows:

f ¼ ln
p
p0

þ ln 1þ
Z2=M2

1� w1Z2=M2

� �
�

Z
depv
cp

¼ 0 ð10Þ

When w1 ¼ 0; Equation (10) is the same as Equation (4), which is the yield function of the
Modified Cam-clay model. Here, it should be noted that w1 ¼ 0 when sand is denser than RCL.
Figure 4 shows the yield loci drawn by Equation (10) when the state parameter w1 ¼ 0:00; 0.25,
0.50, 0.75 and 1.00 respectively.

2.2.2. State parameter w2; peak strength Mf and hardening/softening parameter H . Another new
state parameter w2 is introduced to describe the peak strength and dilatancy of sand denser than
RCL, which is defined as

w2 ¼
vZ � v
vr � vd

ð11Þ

where vZ is the value of specific volume, equivalent to the value in the normal consolidation
condition for a given mean stress p and stress ratio Z as shown in Figure 5, ðvZ � vÞ is the
difference in specific volume between the state of stress ratio Z and the current void state for a
given mean stress p in Figure 5. ðvr � vd Þ is the difference in specific volume between RCL and
DCL for the mean stress p (Figure 5). ðvr � vd Þ and ðvZ � vÞ can also be written as follows:

ðvr � vd Þ ¼ ðNr � NdÞ � ðl� kÞ ln p ð12Þ

ðvZ � vÞ ¼ ðvr � vÞ � ðvr � vZÞ

¼ ðvr � vp � veÞ � ðvr � vpZ � veÞ

¼ ðvr � vpÞ � ðvr � vpZÞ ð13Þ

where

ðvr � vpÞ ¼ Nr � l ln p0 � n0ð1� epv Þ ð14Þ

ðvr � vpZÞ ¼ ðl� kÞ ln
p
p0

1þ
Z2

M2

� �� �
ð15Þ
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Figure 4. Yield loci of sand for different values of state parameter w1:
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Substituting Equations (12)–(15) into Equation (11) gives

w2 ¼
fNr � l ln p0 � v0ð1� epv Þg � ðl� kÞ ln

p
p0

1þ
Z2

M2

� �� �
ðNr � Nd Þ � ðl� kÞ ln p

ð04w241Þ ð16Þ

It can be seen from Equation (16) that the state parameter w2 correlates both the initial state
values ðv0;p0 and Z0 ¼ 0Þ and the current state values ðvðepv Þ;p and Z). So, this parameter can
rationally account for the dependency of sand behaviour on the mean stress level and void ratio
during shearing.

The peak strengthMf of sand denser than RCL is assumed to be a function of state parameter
w2 as follows:

Mf ¼ ðMfmax �MÞ
ffiffiffiffiffi
w2

p
þM ð17Þ

where M is the stress ratio at the characteristic or critical state, Mfmax the maximum possible
peak strength which is a soil parameter and can be determined by test results of sand. Mfmax can
be found from a triaxial compression test on a maximum density sample at any confining
pressure. From Equation (17), when the initial state of sand is on RCL ðw2 � 0Þ; Mf ¼ M ; while
Mf ¼ Mfmax when the initial state of sand is on DCL ðw2 ¼ 1Þ:

Figure 6 shows the comparison between experimental results and calculated results (Equation
(17)) about peak strength Mf and state parameter w2 for Toyoura sand. The calculations were
conducted using Mfmax ¼ 1:93; M ¼ 1:05; which are listed in Table I. Also from Figure 6, it can
be seen that Equation (17) can predict peak strength rationally.

The yield function like Equation (10) cannot describe the dilatancy of sand denser than RCL
when the plastic volumetric strain is used as the hardening parameter. Therefore, it is necessary
to introduce a new hardening/softening parameter H to Equation (10) so as to transform it into
a more general yield function:

f ¼ ln
p
p0

þ ln 1þ
Z2=M2

1� w1Z2=M2

� �
� H ¼ 0 ð18Þ
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Figure 5. Definition of state parameter w2:
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Based on experimental results of triaxial tests on clay and sand, we have proposed a
hardening parameter for a hardening elastoplastic model for soils exhibiting negative and
positive dilatancy [2]. Here, the hardening parameter is extended to a new hardening/softening
parameter as follows:

H ¼
Z

dH ¼
Z

1

%ccp

M4

M4
f

M4
f � Z*

4

M4 � Z*
4 de

p
v ð19Þ

Zn ¼
Z dZ50

Zmax dZ50

(
ð20Þ

where Zmax is the maximum stress ratio during shearing, %ccp is plastic index for denser sand and is
assumed as

%ccp ¼
%ll� k
1þ e0

¼ cp
M4

M4
f

¼
l� k
1þ e0

M4

M4
f

ð21Þ

where %ll is the slope of the consolidation lines for sand denser than RCL. The swelling slope k is
assumed to be constant for all cases. However, the slope %ll of the consolidation lines for
specimens consolidated from different initiate states (for example, C or D in Figure 1) are
different, which are seen from the calculation of %ccP in Equation (21). So, k4%ll4l: From
Equation (21), it can be seen that %ccp ¼ cp; i.e. %ll ¼ l when Mf ¼ M for normally consolidated
clay, and %ccp reaches the least value when Mf ¼ Mfmax:
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2
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�
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Figure 6. Comparison between predicted and observed shear strength for Toyoura sand (experimental
data after Nakai et al. [13]).

Table I. Soil parameters used in model predictions.

l k G Nd M Mfmax n

0.09 0.02 2.40 1.69 1.05 1.93 0.00
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Substituting Equation (21) into Equation (19) gives

H ¼
Z

dH ¼
Z

1

cp

M4
f � Z*

4

M4 � Z*
4 de

p
v ð22Þ

From Equation (19), we can get

depv ¼ %ccp
M4

f

M4

M4 � Z*
4

M4
f � Z*

4 dH ð23Þ

It can be known from the stress-dilatancy equation that the stress ratio Zn is a function of the
ratio of plastic volumetric strain to plastic shear strain. Hence, the hardening/softening
parameter H can be considered as a combination of plastic volumetric strain and plastic shear
strain from Equation (19). Since H is a hardening/softening parameter, dH is larger than zero
before peak strength and is less than zero after peak strength. Taking these into account, the
following features can be deduced from Equation (23):

(1) When Z ¼ 0 or Mf ¼ M ; dH ¼ depv= �ccp; i.e. the hardening/softening parameter H
becomes the plastic volumetric strain epv= �ccp; which is the same as the hardening
parameter in the Cam-clay model.

(2) In the case of dH > 0; when 05Z5M ; depv > 0; when Z ¼ M ; depv ¼ 0; and when M5Z
5Zmax; depv50: That is, negative and positive dilatancy of sand is described in the
hardening zone.

(3) In the case of dH50; when M5Z5Zmax; Z
n ¼ Zmax and M5Mf5Zmax; depv50; i.e.

positive dilatancy of sand is described in the softening zone.
(4) In the case of dH ¼ 0; when Z ¼ Mf ¼ Zmax; depv50; i.e. peak strength of sand is

described, and when Z ¼ M ; Mf ¼ M ; depv ¼ 0; i.e. critical state condition is described.

The nature of the hardening process in the proposed model is explained as follows.
In the Modified Cam-clay model, since the hardening law in isotropic stress for normally

consolidated clays is assumed as
R
ð1þ e0Þ=ðl� kÞ depv ¼ ln p=p0; the general hardening law

during shearing can be written as Z
1þ e0
l� k

depv ¼ ln
px

p0
ð24Þ

where px is a value in p axes on the yield surface corresponding to current stress state, p0 the
initial mean stress and depv the plastic volumetric strain increment during shearing.

Similarly, the nature of the hardening process described by the hardening/softening parameter
H for sands is that a hardening law

R
ð1þ e0Þ=ð%ll� kÞ depv ¼ ln p=p0 in isotropic stress is

extended to a general hardening law:Z
1þ e0
%ll� k

M4ðM4
f � Z*

4

Þ

M4
f ðM

4 � Z*
4 Þ
depv ¼ ln

px

p0
ð25Þ

By comparing Equation (24) with (25), we can see that it is a coefficient concerning stress ratio
Zn in front of depv in Equation (25) that adjusts the positive or negative value of depv : That is,
positive and negative dilatancy of sands can be described in the hardening zone.

Since the peak strength Mf is not a constant but a function of state parameter w2 and finally
reaches the critical state stress ratio M when w2 ¼ 0 according to Equation (17), the softening
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behaviour and positive dilatancy of sands after the peak strength can also be modelled
according to Equation (23) and the following constitutive equation.

The direction of the plastic strain increment is always directed outward from the current yield
surface and plastic potential surface. The yield surface may increase in size with positive dH in
the hardening zone (positive volumetric strain increment for 05Z5M ; negative volumetric
strain increment for M5Z5Mf ), and may decrease in size with negative dH in the softening
zone (negative volumetric strain increment).

3. MATHEMATICAL DESCRIPTION OF STRESS–STRAIN BEHAVIOUR OF SANDS

3.1.3. 3-D method using transformed stress tensor on SMP criterion

A transformed stress tensor *ssij; by which the SMP criterion [4, 5] could be drawn as a circle in
the transformed p-plane, has been proposed by authors [3]. In the condition that the principal
directions of *ssij and sij are the same, the transformed stress tensor *ssij can be written by

*ssij ¼ *ppdij þ *ssij ¼ pdij þ
‘0ffiffiffiffiffiffiffiffiffiffi
sklskl

p sij ð26Þ

where dij is Kronecker’s delta, sij the deviatoric stress tensor, *pp the mean transformed stress and
*ssij the deviatoric transformed stress tensor:

*pp ¼ 1
3
*ssii ð27Þ

*ssij ¼ *ssij � *ppdij ð28Þ

‘0 is the radius of the SMP curve along triaxial compression stress path, which is written by [3]

‘0 ¼

ffiffiffi
2

3

r
2I1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI1I2 � I3Þ=ðI1I2 � 9I3Þ

p
� 1

ð29Þ

where I1; I2 and I3 are, respectively, the first, second and third stress invariants.

3.2. Modelling stress–strain relation of sands

In the proposed elastoplastic model, Equation (18) is used as the yield function and the plastic
potential function is assumed to be the same as that of the Modified Cam-clay model (i.e.
g ¼ ln p=p0 þ lnð1þ Z2=M2ÞÞ; but the transformed stress tensor *ssij based on the SMP criterion
is adopted to model the stress–strain behaviour of sands in three-dimensional stresses.

The total strain increment is given by the summation of the elastic component and the plastic
component as usual

deij ¼ deeij þ depij ð30Þ

Here, the elastic component deeij is given by Hooke’s law, i.e.

deeij ¼
1þ n
E

dsij �
n
E
dsmmdij ð31Þ

where n is Poisson’s ratio and elastic modulus E is expressed as

E ¼
3ð1� 2nÞð1þ e0Þ

k
p ð32Þ
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And, the plastic component depij is given by assuming the flow rule to obey not in sij-space but in
the *ssij-space

depij ¼ L
@g
@ *ssij

ð33Þ

Because the transformed stress takes place of the ordinary stress in the model, the basic
equations of the proposed elastoplastic model are given in details respectively as follows:

The yield function f is written as

f ¼ ln
*pp

*pp0
þ ln 1þ

*ZZ2=M2

1� w1 *ZZ2=M2

� �
� *HH ¼ 0 ð34Þ

The plastic potential function g is written as

g ¼ ln
*pp

*pp0
þ ln 1þ

*ZZ2

M2

� �
¼ 0 ð35Þ

The hardening/softening parameter *HH for 3D stress condition is extended from Equation (22) to

*HH ¼
Z

d *HH ¼
Z

1

cp

M4
f � *ZZ*

4

M4 � *ZZ*
4 de

p
v ð36Þ

*ZZ * ¼
*ZZ d*ZZ50

*ZZmax d*ZZ50

(
ð37Þ

The proportionality constant L and the stress gradient @g=@ *ssij are written respectively as
follows:

L ¼ %ccp
M4 � *ZZ*

4

M4
f � *ZZ*

4

ðM2 þ *ZZ2Þ
ðM2 � *ZZ2ÞðM2 � w1 *ZZ2Þ

: fM
4 � ð1þ 2w1ÞM

2 *ZZ2 � w1ð1� w1Þ*ZZ
4g d *ppþ 2M2 *ZZ d *gg

M2 þ ð1� w1Þ*ZZ2

ð38Þ

@g
@ *ssij

¼
1

M2 *pp2 þ *qq2
M2 *pp2 � *qq2

3 *pp
dij þ 3ð *ssij � *ppdijÞ

� �
ð39Þ

In the above equations, *qq; *ZZ and Mð*ZZ at critical state) are written respectively as follows:

*qq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
ð *ssij � *ppdijÞð *ssij � *ppdijÞ

q
ð40Þ

*ZZ ¼ *qq= *pp ð41Þ

M ¼
3 sin f

6� sin f
ð42Þ

where f is the friction angle at the characteristic or critical state.
The model predictions for different values of initial void ratio and initial mean stresses are

presented in the following section.
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4. PREDICTIONS OF MODEL

The effects of mean stress and initial void ratio on sand behaviour are investigated for Toyoura
sand in drained and undrained triaxial conditions using the proposed elastoplastic model. The
model has 7 soil parameters ðl; k;G;Nd ;M ;Mfmax and n), which can be all determined from the
results of conventional tests on sand. Table I lists out all the soil parameters used in the
following model predictions. These values were borrowed from the literatures for Toyoura sand
[6, 13, 16].

4.1. Effect of state parameter w1

Two values of initial void ratio, i.e. e0 ¼ 0:89 and 0.97, were used in the analysis of triaxial
conditions at a mean stress of p ¼ 490 kPa: Figure 7 shows the influence of void ratio looser
than RCL on the response of sand in triaxial compression and extension, respectively. It can be
seen from Figure 7 that the sand ðe0 ¼ 0:97Þ looser than RCL tends to the same strength as sand
on RCL ðe0 ¼ 0:89Þ but looser sand ðe0 ¼ 0:97Þ shows a larger volume contraction.

4.2. Effect of state parameter w2

The strength and dilatancy of sand denser than RCL are predicted at different initial void ratios
and different mean stresses as follows.

4.2.1. Effect of initial void ratio. Three values of initial void ratio, i.e. e0 ¼ 0:68; 0.77 and 0.85,
were used in the analysis of triaxial conditions at a mean stress of p ¼ 196 kPa: Figure 8 clearly
shows the influence of the initial void ratio on the stress–strain response of sand in triaxial
compression and extension conditions, respectively. In Figure 8, the stress–strain curves present
the peak strength increases with initial void ratio decreasing. The corresponding volume change
is also given in Figure 8, which shows that the volume change is different for different initial
states.

4.2.2. Effect of mean stress level. The sand with the initial void ratio fixed at e0 ¼ 0:77 and mean
stresses of p ¼ 196; 490 and 784 kPa was used to discuss the dilatancy dependent on mean
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Figure 7. Effect of initial density looser than RCL (state parameter w1) on stress–strain behaviour of sand
in drained triaxial tests.
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stress level. Figure 9 shows the predicted results in that the post peak softening behaviour
gradually decreases with increasing mean stress. In fact, at higher mean stress for the same
initial void ratio, the volume dilation of sand may be suppressed completely.

4.3. Prediction in undrained triaxial tests

Five values of initial void ratio, i.e. e0 ¼ 0:762; 0.861, 0.883, 0.930 and 0.970, were used in the
analysis of undrained triaxial tests at an initial mean stress of p0 ¼ 490 kPa in Figure 10. Four
values of initial mean stress, i.e. p0 ¼ 98; 980; 1960 and 2940 kPa; were used in the analysis of
undrained triaxial tests at an initial void ratio of e0 ¼ 0:833 in Figure 11. The predicted stress–
strain behaviour in Figures 10 and 11 clearly shows how the initial void ratio and initial mean
stress influence the stress–strain response of the sand in undrained triaxial compression tests.
These trends are the same as the experimental results [6, 17, 18].

4.4. Prediction and experiment in drained triaxial tests

Figure 12 shows the observed results [13] (dots) and predicted curves of triaxial compression and
extension tests respectively under constant mean stress (p ¼ 196 kPa) on Toyoura sand
(e0 ¼ 0:68 and 0.85). Although the soil parameters used are completely the same, the proposed
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Figure 8. Effect of initial density denser than RCL on stress–strain behaviour of sand
in drained triaxial tests.
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Figure 9. Effect of mean stress on stress–strain behaviour of sand in drained triaxial tests.
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model can predict the strength and dilatancy of sand for different initial void ratios not only in
triaxial compression but also in triaxial extension.
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Figure 10. Effect of initial density on stress–strain behaviour of sand in undrained triaxial tests.
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Figure 11. Effect of consolidation stress on stress–strain behaviour of sand in undrained triaxial tests.
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Figure 12. Comparison between predicted and observed stress–strain curves of Toyoura sand for p ¼
196 kPa in drained triaxial tests (experimental data after Nakai et al. [13]).
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5. CONCLUSIONS

A unified elastoplastic model was proposed, which can describe well the mechanical behaviour
of sands at different values of void ratio and mean effective stress by introducing two state
parameters w1 and w2: Parameter w1 is proposed to account for the deformation behaviour of the
sands looser than RCL, while parameter w2 is proposed to describe the negative/positive
dilatancy and the hardening/softening behaviour of the sands denser than RCL. The stress–
strain behaviour of sands under three-dimensional stress conditions was modelled using a
transformed stress tensor *ssij based on the SMP criterion.
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