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Abstract
Background, aim, and scope Pharmaceuticals and personal
care products (PPCPs) including antibiotics, endocrine-
disrupting chemicals, and veterinary pharmaceuticals are
emerging pollutants, and their environmental risk was not
emphasized until a decade ago. These compounds have
been reported to cause adverse impacts on wildlife and
human. However, compared to the studies on hydrophobic
organic contaminants (HOCs) whose sorption character-
istics is reviewed in Part IV of this review series,
information on PPCPs is very limited. Thus, a summary
of recent research progress on PPCP sorption in soils or
sediments is necessary to clarify research requirements and
directions.
Main features We reviewed the research progress on PPCP
sorption in soils or sediments highlighting PPCP sorption
different from that of HOCs. Special function of humic
substances (HSs) on PPCP behavior is summarized according
to several features of PPCP–soil or sediment interaction. In
addition, we discussed the behavior of xenobiotic chemicals
in a three-phase system (dissolved organic matter (DOM)–
mineral–water). The complexity of three-phase systems was
also discussed.

Results Nonideal sorption of PPCPs in soils or sediments is
generally reported, and PPCP sorption behavior is relatively
a more complicated process compared to HOC sorption,
such as the contribution of inorganic fractions, fast
degradation and metabolite sorption, and species-specific
sorption mechanism. Thus, mechanistic studies are urgently
needed for a better understanding of their environmental
risk and for pollution control.
Discussion Recent research progress on nonideal sorption
has not been incorporated into fate modeling of xenobiotic
chemicals. A major reason is the complexity of the three-
phase system. First of all, lack of knowledge in describing
DOM fractionation after adsorption by mineral particles is
one of the major restrictions for an accurate prediction of
xenobiotic chemical behavior in the presence of DOM.
Secondly, no explicit mathematical relationship between
HS chemical–physical properties, and their sorption char-
acteristics has been proposed. Last but not least, nonlinear
interactions could exponentially increase the complexity and
uncertainties of environmental fate models for xenobiotics.
Discussion on proper simplification of fate modeling in the
framework of nonlinear interactions is still unavailable.
Conclusions Although the methodologies and concepts for
studying HOC environmental fate could be adopted for PPCP
study, their differences should be highly understood. Predic-
tion of PPCP environmental behavior needs to combine
contributions from various fractions of soils or sediments and
the sorption of their metabolites and different species.
Recommendations and perspectives More detailed studies
on PPCP sorption in separated soil or sediment fractions are
needed in order to propose a model predicting PPCP
sorption in soils or sediments based on soil or sediment
properties. The information on sorption of PPCP metabo-
lites and species and the competition between them is still
not enough to be incorporated into any predictive models.
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1 Background, aim, and scope

Pharmaceuticals and personal care products (PPCPs)
include a wide range of chemicals, such as human and
veterinary drugs, “nutraceuticals,” and sunscreen agents.
These compounds have been reported to cause adverse
impacts on wildlife and human; thus, they are emerging
organic contaminants (Daughton and Ternes 1999). More
background information on PPCPs is available from EPA
website (http://www.epa.gov/esd/chemistry/pharma/over
view.htm), and the readers could refer to several reviews
on occurrence, detection, and degradation of PPCPs
(Daughton and Ternes 1999; Sarmah et al. 2006). The
presence of hormonal pharmaceuticals or their metabolites
in the environment, which are synthesized to adjust
endocrine system for human body, could unexpectedly
interfere with natural hormones of human and wildlife
(Snyder et al. 2003), and they are noted as endocrine
disrupting chemicals (EDCs). Researchers sometimes
classify EDCs as an individual group of chemicals
independent of PPCPs (Daughton and Ternes 1999).
Because this review will mainly focus on synthetic EDCs,
which are also pharmaceuticals, we consider EDCs as one
type of PPCPs. Antibiotics or anti-microorganisms are
another major class of pharmaceuticals of concern. The
demand of environmental risk assessment of PPCPs has
been highly stressed a decade ago (Desbrow et al. 1998;
Daughton and Ternes 1999). Reviews are available on the
occurrence, detection, and toxicology of EDCs (Hollert
et al. 2005; Ying et al. 2002), veterinary pharmaceuticals
(Boxall et al. 2004; Sarmah et al. 2006; Tolls 2001), and
antibiotics (Thiele-Bruhn 2003). Knowledge on the fate of
PPCPs in soils or sediments is critical for their environ-
mental exposure and risk assessment (Kuster et al. 2004;
Peck et al. 2004), but the study on PPCP–soil or sediment
interactions is very limited compared to the occurrence
and toxicology investigations (Ying et al. 2002). This
review summarizes the studies on PPCPs sorption in soils
or sediments with an emphasis on their differences from
HOCs. The special functions of humic substances (HSs)
on PPCP adsorption will be summarized in the features of
nonideal sorption, contribution of both organic and
inorganic soil fractions, fast degradation, and influences
of environmental conditions. The complexity of modeling
xenobiotic behavior in three-phase system will also be
presented.

2 Nonideal sorption of PPCPs in soils or sediments

Nonlinear sorption of PPCPs in soils or sediments has been
generally reported (Li and Lee 1999; Thiele-Bruhn et al.
2004; Yu et al. 2004; Loffredo and Senesi 2006; Yu et al.
2006; Zeng et al. 2006; Gu et al. 2007). After HOC
sorption concept, dual reactive domain model was also
employed to describe the sorption of bisphenol A on
sediments (Zeng et al. 2006). Consistent with nonlinear
sorption, desorption hysteresis was also reported (Li and
Lee 1999; During et al. 2002; Zeng et al. 2006; Williams
et al. 2006; Gu et al. 2007). Nonlinear sorption and
desorption hysteresis have been attributed to black carbon
(Yu et al. 2006; Zeng et al. 2006). However, it could be
easily predicted that heterogeneous nature of soils or
sediments can contribute to nonideal PPCP sorption.
Nonideal sorption is also supported by concentration-
dependent sorption kinetics (Yu et al. 2004), two-stage
(Loffredo and Senesi 2006; Zhou 2006), and three-site
sorption (Wehrhan et al. 2007). Fan et al. (2006) observed
that soil samples with higher organic carbon content
showed longer equilibrium time. Thus, the diffusion and
entrapment of PPCPs in organic matter could be a rate-
limiting step as for HOCs. By analyzing pyrolysis-mass
spectra and adsorption coefficients, phenolic and carboxylic
groups, N-heterocyclic compounds, and lignin decomposi-
tion products in HSs were believed to be preferred binding
sites and responsible to site-specific sorption (Thiele-Bruhn
et al. 2004). However, the dominated contribution by a
given organic fraction could not be easily concluded as
discussed in the next section.

Chemical extraction was applied to distinguish sorbed
PPCPs according to their sorption strength, and non-
extractable fraction was observed (Colucci et al. 2001;
Colucci and Topp 2002). This non-extractable fraction
showed very low availability to chemical and biological
process (Colucci et al. 2001; Heise et al. 2006) and was
attributed to strong binding with HSs (Fan et al. 2007). A
detailed investigation of PPCP bound residue distribution in
soil or sediment fractions is not available yet. Introduction
of the concepts developed in pesticide-bound residue
studies (Gevao et al. 2000) will greatly improve our
understanding of the mechanisms of PPCP bound residue.

3 Both organic and inorganic fractions controlling
PPCP sorption

Both Freundlich sorption parameter KF and distribution
coefficient Kd of PPCPs were found to be positively related
to organic carbon content (During et al. 2002; Bowman
et al. 2002; Holthaus et al. 2002; Loffredo and Senesi 2006;
Maskaoui et al. 2007; Uslu et al. 2008). This is not
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surprising because most of PPCPs are moderately hydro-
phobic compounds. The interactions between PPCPs and
soil or sediment organic matter (SOM) control their
environmental fate greatly, such as enhancing sorption,
reducing bioavailability (Jacobsen et al. 2005) and, thus,
reducing their environmental risk (Fan et al. 2007). PPCP-
SOM interactions also caused antigenotoxic action of
humic substances to both human cells (Ferrara et al.
2006) and plant species (Ferrara et al. 2001).

The importance of SOM on PPCP sorption promotes the
application of carbon normalized sorption coefficient, KOC.
However, large variation of KOC was observed (Tolls 2001;
Zhou et al. 2007) and was attributed to SOM property
difference (Thiele 2000; Fan et al. 2006; Stumpe and
Marschner 2007). Very limited studies examined the
relationship of SOM chemical properties with their sorption
characteristics (such as aromaticity in Sun et al. 2007).
Because of PPCP amphiphilic characteristic, they can
interact with both polar and nonpolar surfaces (Suntisukaseam
et al. 2007). Thus, it is not surprising that the application of
linear free energy concept to predict KOC of PPCPs from
KOW generally failed (Holbrook et al. 2004; Liu et al. 2005;
Patrolecco et al. 2006), and none of the separate soil property
could explain the variation of sorption coefficient (ter Laak
et al. 2006b). PPCP sorption in soil or sediment could not be
adequately explained by hydrophobic interaction because a
combination of mechanisms of cation exchange, cation
bridging, surface complexation, and hydrogen binding in
addition to hydrophobic interaction are operating (Tolls
2001; Kwon and Armbrust 2008).

Different from HOC sorption by soils or sediments in
which sorption by inorganic fractions could be neglected in
the presence of water, the sorption capacity of PPCPs by
inorganic particles is 10–40% of that by a whole soil or
sediment sample (Lai et al. 2000; Schafer et al. 2002).
Jones et al. (2005) observed that organic carbon dominated
PPCP sorption only in soil with organic carbon content
higher than 9%. Therefore, in assessing EDC sorption
capacity by soils or sediments, the contribution by
inorganic fractions can be of great importance. Table 1
showed that the sorption coefficient Kd for PPCP sorption
on soils or sediments is comparable to those on mineral
particles. Therefore, in most cases, organic and inorganic
fractions are equally important for PPCP sorption (Lai et al.
2000; Schafer et al. 2002; Strock et al. 2005). Pils and Laird
(2007) further concluded that SOM could mask sorption
sites or inhibit interlayer diffusion in clays, and reduce
tetracycline sorption. Normalization of sorption coefficient by
organic carbon content neglects contribution by inorganic
components in soils or sediments, thus, generally over-
estimating the contribution of SOM. Thereby, it is safe not
using organic carbon normalized sorption coefficient to
describe PPCP sorption in soils or sediments, and character-

ization of soil or sediment properties regarding both organic
and inorganic fractions is required for understanding PPCP-
soil or sediment interactions. In addition, because different
PPCPs vary greatly in their behavior (Ra et al. 2008), proper
classification according to their chemical properties is
required in order to establish predictive models to describe
PPCP behavior.

PPCP sorption on pure mineral particles provides
important information to understand PPCP sorption mech-
anism. Compared to goethite, illite, and kaolinite, mont-
morillonite showed slower sorption kinetics, higher
sorption capacity, and stronger desorption hysteresis (Van
Emmerik et al. 2003; Shareef et al. 2006). Montmorillonite
interlayer spaces contribute greatly to PPCP sorption. Other
particle properties, such as pore distribution (Tsai et al.
2006a, b), surface charge density (Strock et al. 2005), and
particle size (Casey et al. 2003) are also reported to be
important for PPCP sorption. In addition, chemical reaction
is involved between PPCPs and metal oxides (Rubert and
Pedersen 2006). Therefore, dual mode model or dual
reactive domain model of SOM would be too simple to
describe PPCP sorption in soils or sediments. Unfortunately,
data from previous studies are not enough to propose a
realistic and accurate model to predict the interactions
between PPCPs and soils or sediments.

After attenuated total reflection Fourier transformed
infrared analysis of ciprofloxacin (antibiotics) sorption to
hydrous oxides of Al (HAO) and Fe (HFO), Gu and
Karthikeyan (2005b) proposed a weak hydrogen-bonding
association between the keto group of ciprofloxacin and the
protonated surface hydroxyl group of HAO and a mono-
nuclear bidentate complex (i.e., a six-membered ring) with
an Fe atom on the HFO surface through the keto O and one
of the oxygen in the carboxyl group. Their proposed
mechanism explained well the different sorption properties
of HAO and HFO with ciprofloxacin. Gao and Pedersen
(2005) excluded formation of π complexes of basal plane
oxygen on smectite surface with either the aniline or 4,6-
dimethyl-pyrimidine rings of sulfamethazine. They concluded
that water and cation bridging is a possible interaction
mechanism. On montmorillonite surface, because sulfame-
thazine could complex with exchangeable cations through a
pyrimidine N and/or the –SO2– group, pyrimidine forms
inner and outer sphere complexes with exchangeable metal
cations (Akyuz and Akyuz 2003). Therefore, the sorption
mechanism varies for different chemicals on various mineral
particles, which needs future investigations.

4 Fast degradation and sorption of metabolites

PPCPs can quickly degrade in the environment, with half-
lives generally within 1 month (Cousins et al. 2002; Lucas
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and Jones 2006; Accinelli et al. 2007), especially in aerobic
environments (Ying et al. 2004; Ying and Kookana 2005).
Therefore, they have been reported to be nonpersistent in
the environment (Klecka et al. 2001; Lucas and Jones
2006). This information is encouraging because PPCPs can

be easily dissipated. However, new problems emerged. Fan
et al. (2007) reported that although significant degradation
was observed for EDCs in soils, mineralization, as detected
by CO2 production, was not observed. Thus, EDCs may be
transformed to other compounds, such as estradiol to

Table 1 A summary table of PPCP sorption on soils or sediments

Solute chemical names pKa Sw
(mg/L)

logKow MW Sorbent

description

pH TOC

(%)

Kd (mL/g) Reference

Bisphenol A

(BPA)

9.59–10.2 120–

300

3.4 228.3 Sediment 7.15–7.71 2.06–6.29 3.7–11.5a Zeng et al. 2006

Soil 8.9 1.9 2.75a Ying et al. 2003

Soil 6.9–8.13 0.92–2.11 4.94–8.62a Fent et al. 2003

Minerals 4–10 12.3–212.8a Shareef et al. 2006

Zeolite 11.2a Tsai et al. 2006a

17β-Estradiol

(E2)

N/A 3.6 3.1 to 4.0 272.3 Soil 7.2–7.6 0.8–1.4 16.0–29.6a Stumpe and

Marschner 2007

Soil 3.3–9.2 80.2–455.5a Casey et al. 2003

Soil 7.9 9.2 84.41 Casey et al. 2005

Soil 3.6–83.2 Lee et al. 2003

Minerals 4.9–177.2 Van Emmerik et al. 2003

Minerals 0 11.3–40a Casey et al. 2003

17α-Ethinyl

Estradiol (EE2)

10.4 11–44 4.15 296.4 Sludge 7.1 27.7 584 Andersen et al. 2005

Soil 0.95–1.88 53.7–97.7a Yu and Huang 2005

Soil 8.9 1.9 6.98a Ying et al. 2003

Soil 6.4–7.3 0.22–2.91 2.33–23.4 Lee et al. 2003

Minerals 4–10 41.4–744.9a Shareef et al. 2006

Carbadox (CBX) N/A N/A –1.40 to

0.15

262 Soil 4.4–7.3 0.22–2.39 1.4–154 Strock et al. 2005

Kaolinite 4.63 19.8 Strock et al. 2005

Desoxycarbadox

(DCBX)

N/A N/A 1.9 to 2.1 230 Soil 4.3–6.9 0.36–2.39 7.07–62.4a Strock et al. 2005

Clay 4.67 0 7.6 Strock et al. 2005

Tetracycline (TC) 3.3; 7.7;

9.7

231–

52000

–1.97 to –

0.47

444.4 Soil 3.8–7.5 0.48–2.91 3102–

312447

Sassman and Lee 2005

HS 7 1.0–5.7E4 Pils and Laird 2007

Al or Fe oxide 5.3 41.8–133a Gu and Karthikeyan

2005a

MMLT 5.5 865a Figueroa et al. 2004

Clay 7 2.2–6.5E4 Pils and Laird 2007

Oxytetracycline

(OTC)

3.27; 7.32;

9.11

300 –1.97 to –

0.45

460 Soil 3.8–7.5 0.48–2.91 1229–

269097

Sassman and Lee 2005

950–7200 ter Laak et al. 2006a

MMLT 1.5–11 2691–

33884a
Kulshrestha et al. 2004

Sulfathiazole (STZ) 2.4; 7.1 590 1 255.3 MMLT 4–7.5 0.5–1.5 Kahle and Stamm 2007

Ferrihydrite 5.3–7.2 3–20 Kahle and Stamm 2007

Soil 0.4–3.5 ter Laak et al. 2006a

Sulfapyridine (SPY) 8.4 270 0.35 249.3 Whole soil 7 1.61 1.75a Thiele-Bruhn et al. 2004

Mineral 4 Gu and Karthikeyan

2005b

Sulfamethazine

(SMZ)

2.3; 7.4 1500 0.8 278.33 Soil 7.2–7.5 0.94–1.8 2.4–4.2a Accinelli et al. 2007

Mineral 7.8–14.2a Gao and Pedersen 2005

p-Aminobenzonic acid

(pABA)

4.9 6100 0.83 137.1 Soil 7 1.61 0.47a Thiele-Bruhn et al. 2004

Coarse silt 6.4 0.1 1.82a Thiele-Bruhn et al. 2004

Sw solubility in water, MW molecular weight, N/A not available, MMLT montmorillonite
aKd was calculated at 10 μg/L if the data was provided as fitting results using the Freundlich or Langmuir model.
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estrone (Hildebrand et al. 2006). The presence of metabo-
lites may compete with parent compounds for sorption sites
(Strock et al. 2005; Casey et al. 2004) and, hence, increase
the mobility of parent compounds. More importantly, the
metabolites of PPCPs have potential environmental risk.
Although some metabolites are inactive, such as glucuro-
nide and sulfated conjugates, these chemicals can be
deconjugated by the bacteria producing β-glucuronidase
(Dray et al. 1972) or sulfate enzymes (Ternes et al. 1999)
and, thus, be activated. Because the conjugates have
stronger polarity, higher solubility, and low sorption affinity
with soils or sediments (Ternes et al. 1999), the mobility of
these compounds is higher than their parent compounds.
Therefore, the potential environmental risk of those
metabolites should be taken into consideration for PPCP
fate modeling and risk assessment. The competition
between PPCPs and their metabolites and the behavior of
the inactive metabolites should also be incorporated in
future environmental fate studies.

HSs play very important roles in PPCP deactivation by
either Michael addition with PPCP active functional groups
(Bialk et al. 2007; Bialk and Pedersen 2008) or acting like a
photosensitizer and, thus, promoting PPCP photodegrada-
tion (Werner et al. 2005; Kwon and Armbrust 2005). On the
other hand, PPCPs may be protected by HSs from photo-
degradation through nonchemical interaction, possibly be
released later on, causing environmental risk (Belden et al.
2007). Therefore, for some PPCPs, HSs are inner filters
which decrease photodegradation. But for other PPCPs,
HSs are photosensitizers which promote photodegradation
(Andreozzi et al. 2003; Lam and Mabury 2005). Again,
because of the diverse PPCP properties, a proper classifi-
cation scheme is needed.

5 Influence of environmental conditions on PPCP
behavior

The importance of dissolved organic matter (DOM) for
PPCP behavior is expected from its effect on HOC
behavior. The effect of third-phase or solid concentration
on apparent sorption coefficient was observed for EDCs
(Bowman et al. 2002; Zhou 2006). As estimated by Zhou
et al. (2007), colloid-associated EDC accounted for 10–
29% in the environment, and more than 70% in aqueous
phase. Nonlinear sorption and sorption–desorption hyster-
esis between tetracycline and DOM have been recently
observed (Gu et al. 2007), which could be valuable
evidence to attract research interest on nonideal PPCP–
DOM interactions. Also, because of the presence of
functional groups, various species, and metabolites, PPCPs
could bind with DOM in a more complicated way
compared to HOCs, such as amorphous inclusion complex

(Agarwal et al. 2008). Because the same methods as for
HOC-DOM studies are employed for investigating PPCP–
DOM interactions, such as fluorescence (Yamamoto et al.
2003), equilibrium dialysis (Gu et al. 2007; Yamamoto
et al. 2004), solubility enhancement (Yamamoto et al.
2003), and cross-flow ultrafiltration (Zhou et al. 2007), the
limitations of those methods are the same as presented in
part IV of this review series.

For HOC–soil or sediment interactions, the change of
water chemistry mainly alters the properties of soils or
sediments, thus, affecting their sorptive characteristics.
However, because pKa values of PPCPs are in the range
of pH values in soils or sediments, these compounds can be
protonated or deprotonated in soil or sediment solution and,
thus, can exist as different species, such as cation,
zwitterion, and anion (Figueroa et al. 2004; MacKay and
Canterbury 2005; Gu et al. 2007). Different mechanisms for
PPCP–soil or sediment interactions are involved for
different species (Kulshrestha et al. 2004). For example,
cation exchange has been proven to be the most important
mechanism for the sorption of PPCP cation species, while
for the zwitterion species, surface complexation (Figueroa
et al. 2004) and hydrophobic interactions (Kulshrestha et al.
2004; Sibley and Pedersen 2008) are important. Therefore,
species-specific sorption coefficient is one of the most
important differences between PPCPs and HOCs and
should be coupled in PPCP-soil or sediment modeling (ter
Laak et al. 2006a). In addition, the increase of pH increases
PPCP solubility (Campbell et al. 2006; Zeng et al. 2006)
and decreases their sorption. ter Laak et al. (2006a) also
explained the decrease of sorption by the competition
between cations and positively charged PPCP species or
complexes.

Ternary complexation of PPCP–metal–SOM may en-
hance their sorption capacity and strength in soils or
sediments (MacKay and Canterbury 2005; Gu et al.
2007), which is why Kd was generally reported to increase
with increasing salinity (Zhou and Liu 2000; Bowman et al.
2002; Zhou 2006). On the other hand, metals could also
compete with PPCPs for SOM sorption sites depending on
PPCP charges (Sibley and Pedersen 2008; Bai et al. 2008).
In addition, HS conformational changes (as discussed in Part
IVof this review series) in the presence of metal ions further
complicate PPCP–HS interaction system. Therefore, it is safe
to say that limited information is available on PPCP–metal–
SOM complexation and systematical research is warranted.

Existence of various contaminants is a common case in
the environment. PPCPs could compete with each other
(Lai et al. 2000; Sanders et al. 2008) or with their
metabolites (Casey et al. 2004; Strock et al. 2005), HOCs
(Yu and Huang 2005), and DOM (Graham et al. 2000) for
sorption sites. The competition can modulate PPCP activity,
or increase their mobility (Kannan et al. 2000). Unfortu-
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nately, the competition study regarding PPCPs is still rare.
Various models have been proposed to describe PPCP
environmental fate (such as Rose and Pedersen 2005);
however, co-solute competition, species-specific sorption,
metabolites, and inorganic fraction sorption need to be
examined and factored in future predictive models.

6 Behavior of Xenobiotics in DOM–mineral–water
three-phase system

Soils and sediments are a mixture of various components.
Inevitably, SOM could interact with other non-humic compo-
nents in soils or sediments, such as lipid, biopolymer, and
minerals. This topic has generated great research interest on
interaction between SOM and mineral particles (as reviewed
by Schulten and Leinweber 2000) and the subsequent effect
on HOC-SOM interactions. Unfortunately, studies on PPCP
behavior in a three-phase system are very rare up to now
(such as Gu and Karthikeyan 2008). The following
discussion will be mainly based on the research of HOC
behavior. However, the issues addressed below also apply to
investigations of PPCP sorptive behaviors.

6.1 DOM–mineral complexation and its interaction
with Xenobiotics

The DOM sorption on minerals as influenced by mineral
types (Kaiser and Guggenberger 2000; Laor et al. 1998)
and water chemistry (ion type, ionic strength, and pH) was
investigated to study the sorption mechanism. Generally,
decreasing pH (Laor et al. 1998; Weng et al. 2006 and
references therein; Yoon et al. 2004) and increasing ionic
strength (Tombacz et al. 2000) enhance DOM sorption by
minerals. The importance of multivalence ions could not be
emphasized enough in the formation of DOM–mineral
complex. Yang et al. (2001) reported that the introduction
of metal chelate could disrupt SOM–(metal ion)–mineral
linkage, mobilize SOM, or reduce the cross-linking and,
thus, accelerate HOC release.

As frequently mentioned in this review, SOM is a highly
heterogeneous mixture. Different components have differ-
ent affinities to mineral particles. Therefore, mineral
adsorption process practically fractionates SOM. For
example, large hydrophobic molecules showed higher
affinity with kaolinite and montmorillonite (Specht et al.
2000). Wang and Xing (2005) observed that aliphatic
fraction was preferentially adsorbed by kaolinite and
montmorillonite, while aromatic fraction left in the solution.
However, some other studies reported a priority sorption of
aromatic carbons on kaolinite and goethite (Namjesnik-
Dejanovic et al. 2000). Using HR-MAS NMR, Feng et al.
(2006) observed that polymethylene groups were prevalent

at the surface of kaolinite, while aromatic groups were
prevalent on montmorillonite. Thus, the properties of mineral
particles, such as surface area and surface charges lead to
different sorption affinity and selectivity of HS components
(Baham and Sposito 1994).

SOM complexed on minerals had higher (Jones and
Tiller 1999; Terashima et al. 2003) or lower (Laor et al.
1998) sorption affinity with HOCs compared with the
original SOM depending on the differences of fractionated
components. Hur and Schlautman (2004) observed both
decrease and increase of KOC after the formation of HS–
mineral complex. For both sorbed and unsorbed HS, a strong
positive correlation between logKOC and log (weight-average
molecular weight) was observed. Therefore, the change of
sorption affinity after SOM adsorption on mineral particles
depends on the fractionation process. More interestingly,
physical reconformation is also involved during the forma-
tion of HS–mineral complex. Wershaw (1993) stated that the
interactions of SOM with mineral could result in a
membrane-like structure and the interface between SOM
and mineral is hydrophobic. Gunasekara and Xing (2003)
proposed a more condensed structure when organo-mineral
complex was formed at lower HA loading, contributing to
the enhanced nonlinearity.

Imaginably, conformation of SOM in solution could also
affect the formation of HS–mineral complex. Murphy et al.
(1994) reported that low ionic strength resulted in an
extended conformation, higher coverage on mineral sur-
face, and greater HOC sorption than at high ionic strength.
Feng et al. (2006) also observed that the conformation at
acidic condition promoted the formation of HS–mineral
complex with higher sorption affinity. Therefore, as for
HOC sorption, SOM adsorption on minerals was also
affected by both sorbate (HS) and sorbent (mineral)
properties. Ionic type and strength, pH, and DOM type
and concentration are all reported to alter the formation of
DOM–mineral complex. However, how to consider all
these factors in predictive models is still unclear. Further-
more, quantitative description of DOM fractionation and
the subsequent change of KDOC after adsorption on mineral
particles are still lacking.

6.2 The complexity of the three-phase sorption

All the above-mentioned studies intend to provide more
accurate information for HOC fate modeling and risk assess-
ment. However, recent progress on HOC–SOM interactions has
not been incorporated in any of HOC-fate modeling yet. For
example, HOC multimedia fate models, such as the fugacity
model (Cao et al. 2004), still use the linear free energy
relationships proposed decades ago. The reason could be the
lack of explicit mathematical relationships between SOM
chemical–physical properties and its sorption characteristics.
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The inland water body often contains 20 mg L–1 of
DOM on average (Shi et al. 2005). Therefore, the behavior of
HOC in a three-phase (water–particle–DOM) system is
of more environmental relevance (Fig. 1). Various models
have been proposed to consider HOC sorption on particles,
DOM sorption on particles, and HOC sorption byDOMbased
on linear interaction, and overall sorption coefficient is:

Kp ¼ Sb þ S

Cb þ Cf
ð1Þ

or

Kp ¼ Kb � KDOC � DOM½ � þ Kd

KDOC � DOM½ � þ 1
ð2Þ

where Cb and Cf are concentrations of HOCs bound with
DOM left in aqueous phase and of free dissolved HOCs,
respectively. Sb and S are concentrations of HOCs bound
with DOM coated on solid particles and sorbed directly by
solid particles, respectively. Kp is the overall sorption
coefficient for HOCs sorption in the three-phase system, Kb

is DOM sorption coefficient on particles, Kd is HOC sorption
coefficient by particles, and KDOC is HOC sorption
coefficient by DOM.

According to recent results, however, only limited
studies considered nonlinear interaction of one of the bi-
phase among the three bi-phase interactions (such as
Lafrance et al. 1989). As has been widely reported, the

Fig. 1 HOC sorption in a three-phase-system. HOCs can be sorbed
by both DOM and mineral particles. DOM sorption on mineral
particles results in its fractionation. Kb sorption coefficient for DOM
sorption on mineral particles; Kd sorption coefficient for HOCs on
mineral particles; KDOC sorption coefficient for HOCs by bulk DOM;
KOC sorption coefficient of HOCs on DOM–mineral complex; KDOC′
sorption coefficient of HOCs on residue DOM

Fig. 2 The effect of DOM concentration on overall sorption coefficient
Kp in a three-phase system. Typical DOM sorption isotherm on solid
particles is a Langmuir curve (a). The sorption reaches saturation as
DOM concentration increases. The percentage of adsorbed DOM of the
overall DOM amount decreases, the percentage of unadsorbed DOM
increases and the degree of fractionation decreases as free DOM
concentration increases (b). The variation of Kp is due to combination
of HOC binding with adsorbed, unadsorbed and fractionated DOM (c).
At low DOM concentration, Kd increases because of the overwhelming
contribution of adsorbed DOM (high percentage of carbon adsorbed)
and DOM fractionation. As DOM concentration increases, both DOM
fractionation and adsorption reach saturation, and HOC sorption by
unadsorbed DOM dominates the overall sorption leading to the decrease
of Kd
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presence of DOM could enhance the solubility of HOCs
and, thus, promote their transport (Chiou et al. 1986).
However, adsorption of DOM by mineral particles de-
creased HOC mobility. The effect of DOM on HOC fate
could be viewed by the following two aspects: the overall
sorption can be enhanced because of the HOC sorption on
bound DOM and the mobility of HOC was, therefore,
decreased; on the other hand, the HOC sorption on
unbound DOM led to increased mobility and decreased
overall sorption. Considering the nonlinear sorption of
DOM by mineral particles, the percentage and fractionation
of bound DOM is higher at low DOM concentration than
that at high DOM concentration (Fig. 2).Therefore, the
apparent increasing or decreasing sorption depend on DOM
concentration range and its sorption characteristics on the
particles. However, as one can easily notice about the
modeling, nonlinear interactions could exponentially increase
the complexity and uncertainties of HOC environmental fate
model. Furthermore, no method has been proposed to
quantitatively describe DOM fractionation. Therefore, no
study has even tried to establish a model combining all these
nonlinear interactions.

The environmental risk of HOCs is dependent greatly
on their bioavailability. The effect of DOM on bioavail-
ability is even more complicated. Both increase (Bengts-
son and Zerhouni 2003; Bogan and Sullivan 2003;
Holman et al. 2002) and decrease (Bejarano et al. 2005;
Gourlay et al. 2003) of HOC bioavailability in the
presence of DOM have been reported. Classic results
indicate that DOM-bound HOCs could not pass through
the cell membrane and, thus, are impossible to be
bioavailable. This statement supports the decrease of
HOC bioaccumulation after the addition of DOM. Stein-
berg and his colleagues have systematically investigated
the toxicology of DOM to aqueous organisms and reported
that humic substances could be taken up by organisms and
act as xenobiotic chemicals (Steinberg et al. 2003). Their
results showed that SOM molecules could pass through
the cell membrane carrying HOCs. Haitzer et al. (1998)
reviewed that although most of the papers reported
decreased bio-concentration factor (BCF) in the presence
of DOM, one fourth of the reviewed studies presented
increased BCF in the presence of low DOM concentration.
The reason is not clear yet. If we simplify the living skin
in contact with water as a sorbent, the apparent Kp for
HOC sorption on the skin in the presence of DOM could
also be described in Fig. 2. However, no laboratory study
has incorporated this aspect in BCF investigation. Re-
garding HOC bioavailability in a three-phase system, other
conditions need to be considered, such as the coverage of
SOM on solid particles (Bogan and Sullivan 2003), micro-
organism species, and HOC properties (Bejarano et al.
2005).

7 Conclusions, recommendations, and perspectives

The differences between HOC and PPCP sorption in soils
or sediments should be clearly understood when introduc-
ing the methods and concepts of HOC experiments to the
PPCP ones. More detailed studies on PPCP sorption in
separated soil or sediment fractions is required in order to
propose a model predicting PPCP sorption in soils or
sediments based on soil or sediment properties. In addition,
more studies are needed on sorption of PPCP metabolites
and species and the competition between them in order to
develop accurate predictive models for environmental fate
and transport of PPCPs.
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