
Provable Secure Scalable Block Ciphers

Dissertation
zur Erlangung des Grades

eines Doktors der Naturwissenschaften

dem Fachbereich 6 (Mathematik)
der Universität Duisburg-Essen

vorgelegt von

Lenka Fibı́ková
aus Bratislava (Slowakische Republik)

im Juli 2003

Die Disputation fand am 29. Oktober 2003 statt.

Vorsitzender:
Prof. Dr. Jürgen Herzog (Universität Duisburg-Essen, Deutschland)

Gutachter:
Prof Dr. Trung van Tran (Universität Duisburg-Essen, Deutschland)
Prof Dr. Spyros S. Magliveras (Florida Atlantic University, USA)

Zusammenfassung

Beweisbare Sicherheit und Skalierbarkeit sind zwei wünschenswerte Eigenschaften einer Blockchiffre. Die
erste garantiert, dass die Chiffre unsere Erwartung der Sicherheit verschlüsselter Daten erfüllt. Die Skalier-
barkeit macht die Nutzung der Chiffre einfacher und ermöglicht Anpassung des Sicherheitsniveaus an die
gegenwärtigen Anforderungen durch Änderung gewisser Parameter. In dieser Dissertation untersuchen wir
die beweisbare Sicherheit von drei skalierbaren Blockchiffren (Feistel-Chiffre, TST und IDEA) im Ran-
dom Oracle Model.

Die Dissertation besteht aus zwei Teilen. Der erste Teil ist eine Einführung in die Theorie der beweis-
baren Sicherheit. Bis jetzt existieren in der Literatur nur wenige Artikel, welche sich mit der Theorie der be-
weisbaren Sicherheit von Verschlüsselungsverfahren befassen. Zusätzlich verwenden sie unterschiedliche
Sicherheitsmodelle und Begriffe der Ununterscheidbarkeit. Im ersten Teil der Dissertation wird die Theorie
der beweisbaren Sicherheit vereinheitlicht und vervollständigt. Dabei werden das uniforme Modell und
Vaudenays Begriff von Ununterscheidbarkeit verwendet. Wir illustrieren die Methoden am Beispiel der
Analyse des asymmetrischen Feistel-Netzwerks. Im zweiten Teil wird diese Theorie angewandt, um die
Sicherheit von zwei anderen skalierbaren Blockchiffren, nämlich TST und IDEA, zu analysieren.

Das erste Kapitel des ersten Teils (Kapitel 2) beschreibt die grundlegenden Begriffe der beweisbaren
Sicherheit und führt das Sicherheitsmodell sowie die mathematischen Grundlagen ein. Das darauf fol-
gende Kapitel diskutiert allgemeine Angriffe, nämlich die Known-Plaintext-Attack, die (Adaptive-)Chosen-
Plaintext-Attack, die (Adaptive-)Chosen-Ciphertext-Attack und die (Adaptive-)Chosen-Plaintext-Cipher-
text-Attack. Die Matrixnormen, die mit den individuellen Angriffen im Zusammenhang stehen, und die,
die zu den oberen Grenzwerten der “Advantage” der Angriffe führen, werden hergeleitet. Die Beweise der
Sicherheit für einige der Angriffe werden am Beispiel des asymmetrischen Feistel-Netzwerks illustriert.

Es wird oft versucht, einen iterativen Angriff durchzuführen, indem eine einfache Angriffsmethode
auf eine Blockchiffre mehrfach angewandt wird. Ein iterativer Angriff ist offensichtlich stärker als ein
Einfacher. Eine andere Möglichkeit, einen stärkeren Angriff zu erreichen, ist, mehrere einfache Angriffe
nacheinander durchzuführen. Dabei ist die natürliche Frage, welcher Anteil der Advantage in dieser Weise
erhöht werden könnte. In Kapitel 4 überprüfen wir die kombinierten Angriffe und leiten die oberen
Schranken ihrer Advantage her. Die bekanntesten iterativen Angriffe sind differentielle und lineare Kryp-
toanalyse. Aufgrund ihrer großen Bedeutung werden sie getrennt behandelt.

Da die Blockgröße der Blockchiffre viel kürzer als die zu verschlüsselnden Nachrichten ist, werden
Methoden benötigt, welche lange Daten zu verarbeiten ermöglichen. Einige solche Methoden wurden im
NIST-FIPS 81 Standard vorgeschlagen. Das letzte Kapitel des ersten Teils analysiert diese Methoden, sowie
eine modifizierte Methode von Diffie, und evaluiert deren Sicherheit.

Im zweiten Teil der Dissertation wird die Sicherheit der skalierbaren Blockchiffren behandelt. Es wer-
den zwei Methoden der Skalierbarkeit — Skalierbarkeit der Chiffre durch Anpassung der Primitive und
Skalierbarkeit durch Anpassung der Struktur — eingehend untersucht, und dabei wird die Sicherheit von
zwei skalierbaren Verfahren, TST und IDEA, hergeleitet.

Das erste skalierbare Verfahren TST wurde in [8] eingeführt. Es basiert im wesentlichen auf einem mod-
ifizierten asymmetrischen Feistel-Netzwerk. Da die Sicherheit des asymmetrischen Feistel-Netzwerkes im
ersten Teil bereits behandelt wurde, besprechen wir hier kurz die Auswirkung von Änderungen der Struktur
auf die Sicherheit des gesamten TST-Verfahrens und fokussieren uns dann auf die Sicherheit seiner Prim-
itiven und auf deren Beitrag zur Sicherheit der Chiffre. Genauer zeigen wir, dass eine in TST verwendete
Hashfunktion schwach ist, und dass das Hinzufügen einer anderen Funktion in das Feistel-Netzwerk nicht
den genügenden Ausgleich für die Schwäche liefert. Weiter zeigen wir, dass wenn eine gute Hashfunktion
verwendet wird, die P-Box in TST nicht erheblich zur Sicherheit beiträgt, und damit entfernt werden kann.
In dieser Weise wird das Schema vereinfacht. Anschließend analysieren wir andere Hashfunktionen und
deren Anwendung im Verfahren. Wir zeigen, wie die beste Hashfunktion im Hinblick auf die Sicherheit
des gesamten Verfahrens gewählt werden kann.

i

Die IDEA-Chiffre ist eine der bekanntesten Chiffren, die nicht auf einem Feistel-Netzwerk basieren.
Jedoch ist die Skalierbarkeit ihrer Primitiven begrenzt, so dass die Blockgröße der Chiffre nicht 64 Bits
übersteigen kann, was gegenwärtigen Anforderungen nicht gerecht wird. In Kapitel 8 untersuchen wir
zuerst die Sicherheit des IDEA-Verfahrens, dann zeigen wir, wie aus der IDEA-Chiffre neue skalierbare
Chiffren konstruiert werden können. Wir stellen zwei skalierbare Verfahren vor: das erste hat eine paral-
lele Struktur unter Verwendung des zugrundeliegenden IDEA-Verfahrens im größtmöglichen Umfang, das
zweite ist seriell und verwendet das IDEA-Verfahren nur einmal pro Runde. Wir evaluieren die Zahl der
Runden, die notwendig sind, um Pseudorandomness und Super-Pseudorandomness sicherzustellen.

Die Dissertation schließt mit vier Anhängen. Die ersten Zwei listen die verwendeten Symbole und die
Akronyme, der Dritte gibt Eigenschaften der verwendeten Matrixnormen an, und der Letzte enthält eine
Anzahl von Lemmas, die in mehreren Beweisen eingesetzt werden.

Ich habe diese Arbeit selbständig verfasst und dabei keine anderen als die in der Literaturliste aufgeführ-
ten Hilfsmittel benutzt.

Lenka Fibı́ková
Essen, Juli 2003

ii

Acknowledgements

First of all, I would like to thank my supervisor Prof. Tran van Trung for the possibility to work on my PhD
thesis at the Institute for Experimental Mathematics of the University of Essen (now University Duisburg-
Essen). I would further like to thank Prof. Han Vinck, the head of the Digital Communication Group, for
the pleasant atmosphere he was able to create in our working group. I am thankful to both of them for
the possibility to work on interesting and challenging projects during my study here which gave me the
opportunity to apply my theoretical knowledge to practical security problems.

This thesis would not be as it is without three people: Valér Čanda, one of the authors of TST, who gave
me insight to the cipher for its further analysis and later motivated my research on IDEA, Jozef Vyskoč
with his numerous remarks and suggestions, and Oliver Meili with his invaluable and patient help at the
finalization of the thesis.

Finally, I would like to thank my colleagues from our group — Lejla Batina, Valér Čanda, Jürgen
Häring, Yuan Luo, Sosina Martirosyan, Oliver Meili, Chaichana Mitrpant, and Tadashi Wadayama — for
their support, friendship, and contribution to the pleasant working environment in the group.

iii

iv

Contents

1 Introduction 1
1.1 Short History of Provable Security . 1
1.2 Scalability of Encryption Algorithms . 2
1.3 Thesis Overview . 3

I Provable Security in Symmetric Key Cryptography 5

2 Security Model 7
2.1 Random Oracle Model . 7
2.2 Distinguishers . 7
2.3 Decorrelation . 10
2.4 Proof of Security . 14

3 General Attacks 19
3.1 General Bounds . 19
3.2 Known Plaintext Attack . 23
3.3 Chosen Plaintext Attack . 25
3.4 Adaptive Chosen Plaintext Attack . 28
3.5 Chosen Ciphertext Attack . 35
3.6 Adaptive Chosen Ciphertext Attack . 36
3.7 Chosen Plaintext-Ciphertext Attack . 37
3.8 Adaptive Chosen Plaintext-Ciphertext Attack . 37
3.9 Summary . 40

4 Composed Attacks 43
4.1 Basic Differential Cryptanalysis . 43
4.2 General Iterated Attack . 45
4.3 Linear Cryptanalysis . 51
4.4 Combined Attacks . 51
4.5 Conclusions . 54

5 Modes of Operation 55
5.1 ECB Mode . 55
5.2 CBC Mode . 56
5.3 CFB Mode . 59
5.4 OFB Mode . 61
5.5 Counter Mode . 63
5.6 Summary . 66

II Provable Secure Scalable Block Ciphers 67

6 Scalability of Block Ciphers 69
6.1 Key Size Scalability . 69
6.2 Block Size Scalability . 70

v

7 TST 71
7.1 Unbalanced Feistel Networks and TST . 71
7.2 Security of the TST Scheme . 74

7.2.1 Known Plaintext Attack . 74
7.2.2 Adaptive Chosen Plaintext Attack . 75
7.2.3 Adaptive Chosen Plaintext-Ciphertext attack . 76

7.3 Conclusions about the Security of the TST Schemes . 77
7.4 S-Box S . 77
7.5 S-Box P . 78
7.6 Hash Function H . 79

7.6.1 Weak Structure . 79
7.6.2 Weak Underlying Primitive . 81
7.6.3 Strong Structure And Strong Primitive . 82

7.7 Conclusions . 88

8 IDEA 91
8.1 Properties of the Rotation Permutation . 92
8.2 Security of the IDEA Scheme . 93

8.2.1 Known Plaintext Attack . 93
8.2.2 Adaptive Chosen Plaintext Attack . 95
8.2.3 Adaptive Chosen Plaintext-Ciphertext Attack . 97

8.3 Scalable Scheme Based on IDEA . 99
8.3.1 Adaptive Chosen Plaintext Attack . 102
8.3.2 Adaptive Chosen Plaintext-Ciphertext Attack . 108

8.4 Simple Scalable Scheme Based on IDEA . 109
8.4.1 Adaptive Chosen Plaintext Attack . 111
8.4.2 Adaptive Chosen Plaintext-Ciphertext Attack . 116

8.5 Conclusions . 117

9 Comparison of the Analyzed Schemes 119

10 Summary 123

A Notation 125

B Acronyms 127

C Matrix Norms 129

D Some Simple Lemmas 135

vi

Chapter 1

Introduction

1.1 Short History of Provable Security

Before the second world war, security of encryption was usually based on secrecy of the ciphers. The rapid
development of communication and spying technologies in the last century caused extensive research of
ciphers with keys.

As early as 1949, theoretical security of cryptosystems was studied by Shannon [20]. He worked within
an ideal model assuming that cryptanalysts have unlimited time and computation power available, and cal-
culated the amount of information one may get about a plaintext from a ciphertext depending on its length
and on the statistical structure of the plaintext language. He introduced the notion of perfect secrecy, and
proved that the Vernam cipher (one-time pad) has this property. Except that the model is very restric-
tive, the (information-theoretic) approach led already for very simple ciphers, like a simple substitution, to
complicated results, and thus it is very difficult to apply.

Absence of a practical method for evaluation of security of cryptosystems caused ad-hoc design of
cryptosystems based on good ideas of their authors. Moreover, cryptosystems were considered to be secure
until they were broken. This turned into a “ball game” between cryptographers and cryptanalysts — the first
designed a cipher, the second found a way to break it, then the first tried to improve it or designed another
one and so forth in a never-ending cycle. At the best some consensus emerged that good cryptosystems
exhibit some common properties, like the avalanche criteria etc.

A turn arrived in 1984 when Goldwasser and Micali introduced the idea of provable security [11]. They
developed it in the context of asymmetric encryption, but it soon spread to other areas of cryptography. The
first step of proving a cryptographic scheme to be secure is to create a formal adversarial model and define
what it means for a scheme to be secure. Given this basis, a particular scheme can be analyzed in terms
of meeting the definition. The idea of provable security had great potential, but it did not have an actual
impact on cryptography for several reasons: First, the proposed method actually did not prove anything,
the idea was to reduce the problem of security of a scheme to the problem of security of the underlying
cryptographic primitives. However, in symmetric cryptography, block ciphers are the most used primitives,
and there was no tool for proving their security. Second, using public-key primitives leads to inefficient
constructions. And at last, the method only has asymptotic results about the infeasibility of breaking a
scheme in polynomial time; it does not quantify how much a scheme is secure. [1]

In 1988, Luby and Rackoff published their famous article [14], in which they proved security of the
idealized Feistel scheme. They used the model of indistinguishability, also known as the Turing test. There
were later several generalizations and applications of their results. One of the most significant was the
simplification of the proof by Ueli M. Maurer [16]. While Luby and Rackoff worked in the non-uniform
model using Boolean circuits for the definition of distinguishers and the complexity-theoretic approach
for evaluation of the complexity of a successful distinguisher, Maurer made use of the uniform model
and probability theory to evaluate the probability of success of a distinguisher. The Maurer’s approach
brought much simplification to provable security. It was later shown in [12] that the non-uniform model is
stronger than the uniform one, however, there is no practical example of a security theorem proved in the
non-uniform model, which cannot be proved in the uniform one.

In the 90’s, the technique of the provable security was improved by Bellare and Rogaway. They in-
troduced the practice-oriented provable security, also called concrete security, and formalized the random
oracle model (it was previously used intuitively by different authors, also by Luby and Rackoff), and de-
fined several notions of indistinguishability. The concept of the random oracle model is to build a secure
system in two steps: First, one designs an idealized system, where all underlying cryptographic primitives
are substituted by perfect random functions and permutations (i.e. random oracles), and proves security

1

2 CHAPTER 1. INTRODUCTION

of this idealized system. Next, one replaces the random oracles by “good” cryptographic functions and
permutations, and obtains an implementation of the ideal system in the “real world”, where random oracles
do not exist. Since the security of the primitives is not evaluated, the second substitution decreases credibil-
ity of the whole system; however, this method brought efficiency into provable security and some security
guarantees — although not at the same level as in the standard provable security approach, but superior to
those provided by totally ad-hoc system design. Furthermore, this approach is non-asymptotic, based on the
idea to treat cryptographic primitives as finite pseudo-random function families (since the key randomizes
the behavior of the primitive), and enables one to quantify security in term of how much computation of
the adversary the scheme can withstand in a certain type of attack. It also enables to compare different
schemes, rather than simply stating whether they are secure or non-secure.

This method was further elaborated by Vaudenay to the decorrelation theory. His original goal was to
design a tool for proving security against differential and linear cryptanalysis, however, it turned out that
it is more general and can be used for different types of attacks [21]. The main idea is to construct a few
primitives with small distance from a perfect random function/permutation (decorrelation modules) and to
plug them into any regular cryptographic scheme. The distance of a function/permutation from a perfect
random function/permutation is measured by norms on matrix sets since matrices are used to represent
the probability that a particular input is mapped to a particular output. Different types of attacks induce
application of different types of norms. Generally, the stronger the attack, the more sophisticated the matrix
used to measure the distance has to be.

The random oracle model is very strong tool, and may be used to evaluate security of the main scheme;
the construction of the basic decorrelation modules eventually eliminates the loose end of the random oracle
model. Thus, by choosing a particular norm and corresponding decorrelation modules, and by plugging
them into a cryptographic scheme proved to be secure in the random oracle model, one can obtain a system
secure against the particular type of attack with no further conditions.

The decorrelation theory is a nice tool for designing provable secure ciphers and cryptographic func-
tions; however, its use for proving security of an existing cipher has a shortcoming: When one proves that
a cipher is secure in this model, then it is secure in a very strong notion of not being distinguishable from
a perfect random function. On the other hand, when one proves that a cipher is not secure in this model, it
says only that an attacker has some (eventually high) probability to distinguish that it is not a perfectly ran-
dom output; it does not say anything about how secure the cipher is against weaker attacks which are more
advantageous for an attacker, like for example finding an encryption key, or being able to encrypt/decrypt a
different message.

1.2 Scalability of Encryption Algorithms

One of the most difficult tasks in the conventional cryptography has always been the distribution of secret
keys among all parties involved in secret communication. The solution was usually based on the personal
exchange of the keys or on their distribution through a trusted third party. For obvious reasons, neither
of these methods was satisfying: One had either to meet the other party personally, what may have been
a problem at distant communication, or both had to entrust their secrets to someone else. The idea of
the asymmetric cryptography therefore meant a big turnover: It has enabled one to communicate privately
without the necessity of any mediator.

The main problem of asymmetric ciphers is often seen in their slowness. But they have another draw-
back which comes from their very substance and cannot be eliminated by any fast hardware or efficient
algorithm: If the plaintext message space is small, the exhaustive search through all possible plaintexts
unfolds the encrypted message in a reasonable time. An attacker does not need to recover any key, since
anyone may have access to the encryption (public) key. With the symmetric ciphers, the combination of
the unknown message and the unknown key makes the space to be searched significantly larger, and by
enlargement of these parameters it may be theoretically made as large as one wishes. Therefore, the con-
junction of a symmetric and an asymmetric cipher into a so called hybrid system creates a scheme which
(with respect to security properties) makes use of the best of both of them: Messages are encrypted with a
random session key, which takes advantage of the speed of the symmetric cipher, and of using the secret
key only once; and the asymmetric cipher is used to encrypt just a random string, the session key, chosen
from a sufficiently large key space.

Naturally, using the hybrid schemes requires both of the ciphers to provide equal, or at least comparable,
level of security. Otherwise, attacks may be aimed against the weaker one. Consequently, the whole system
is only as secure as the weaker part. Here, flexibility plays an important role. Particularly, unlike the
asymmetric algorithms which are scalable by nature, symmetric ciphers have usually a fixed key and block
size. (Although it is possible to use a stream cipher for the symmetric encryption in hybrid systems, block

1.3. THESIS OVERVIEW 3

ciphers are commonly used.) In asymmetric ciphers, the size of the plaintext block is given by a key
parameter, e.g. by the size of the underlying finite field or group. By contrast, the block and key size of a
block cipher may not necessarily be equal, but the security of the system depends also on their mutual rate.
Therefore, we assume both the block and key size as essential parameters of block ciphers.

Since the minimal size of the security parameters necessary to ensure the appropriate level of security
grows with technology progress, after some time it must happen that a symmetric algorithm with a fixed
key and block size does not provide sufficient security any more and has to be replaced. It means replac-
ing/reprogramming at least part of the cryptographic system. Therefore, the wide application of the hybrid
schemes naturally calls for symmetric ciphers scalable to a similar extent as asymmetric ones. Changing
view and increased preferences given to the scalability have been nicely illustrated with the requirements
for AES, where the proposed architecture of the cipher was required to provide three different key sizes.

There is not much research done in the field of scalable block ciphers. Some scalable Feistel-like
structures were studied in [27], and [22]. In the first case using the non-uniform model of Luby and Rackoff,
in the other one in the context of the AES candidates. Some research oriented to scalability was done
by Valér Čanda and Tran van Trung, and led to a design of a practical scalable cipher TST based on an
unbalanced Feistel network [8].

1.3 Thesis Overview

The thesis is divided into two parts. The first part provides a general introduction to provable security. There
are several papers devoted to provable security, however using different models of security and different
notions of indistinguishability. In the first part, we unify and complete the theory of provable security using
the uniform model and Vaudenay’s notion of indistinguishability. We illustrate the methods on the example
of analysis of the unbalanced Feistel networks. In the second part, we use the theory to analyze security of
two scalable block ciphers: TST and IDEA.

The first chapter of the first part (Chapter 2) explains the basic terms of provable security, and introduces
the security model and mathematical tools used in the rest of the thesis. The next chapter is devoted to the
general attacks, namely to the known plaintext attack, the (adaptive) chosen plaintext attack, the (adaptive)
chosen ciphertext attack, and the (adaptive) chosen plaintext-ciphertext attack. The matrix norms associated
with the individual attacks and upper bounds on the success of the attacks are derived. The security proofs
for some of the attacks are illustrated on example of the unbalanced Feistel scheme.

Having a simple attack against a cipher, one may try to repeat it several times with hope that the resulting
iterated attack will be stronger than the underlying one. Another possibility is to perform several distinct
attacks in sequence. The natural question is, how much improvement one can get in this way. In Chapter 4,
we examine the composed attacks and derive the upper bounds on their success depending on the strength of
the underlying attacks. The best known attacks of the iterative type are differential and linear cryptanalysis.
Because of their popularity, we discuss them separately.

Since the block size of block ciphers is usually much shorter than the expected messages to be encrypted,
one needs a method how to handle the long messages. Several modes of operations were suggested in the
NIST FIPS 81 standard. The last chapter of the first section is devoted to these modes and one modification
proposed by Diffie, and their security is evaluated.

In the second part of the thesis, we study security of scalable block ciphers. We address two methods
of scalability: scalability through primitives of the cipher and scalability through the structure, and prove
security of two scalable schemes: TST and IDEA.

The first one, TST, is a scalable symmetric scheme introduced in [8]. It is based on the unbalanced
Feistel scheme with some modifications. Since the security of the unbalanced Feistel network is studied in
the first part of the thesis, we only shortly discuss influence of the modifications to the security of the TST
scheme and focus on the security of its primitives and on their contribution to the overall security of the
cipher. Namely, we show that a hash function used in the TST scheme is weak and even addition of another
primitive to the unbalanced Feistel scheme does not provide sufficient compensation for the weakness.
Further on, we show that if a good (strong) hash function is used in the scheme, then the new primitive does
not significantly contribute to the security, and may be removed thus simplifying the scheme. Subsequently,
we will investigate other hash functions and their use in the scheme and show how one can select the best
one with respect to security of the overall scheme.

The IDEA cipher is one of the most popular ciphers not based on the Feistel scheme. However, scala-
bility of its underlying primitive (the round function) is limited so that the block size of the cipher cannot
exceed 64 bits, which does not satisfy current requirements. In Chapter 8 we first discuss security of the
basic scheme of IDEA, and then we show how to use it in order to build a scalable IDEA scheme. We
introduce two scalable schemes — the first one has a parallel structure using the underlying primitive in

4 CHAPTER 1. INTRODUCTION

the greatest possible extent, the other one is non-parallel using it only once per round — and evaluate the
number of rounds necessary to ensure their pseudorandomness and super-pseudorandomness.

The thesis concludes with four appendices. The first two lists the used symbols and acronyms, the third
one proves properties of the matrix norms associated with the general attacks, and the last one gives some
simple lemmas employed in several proves.

Part I

Provable Security in Symmetric Key
Cryptography

5

Chapter 2

Security Model

In this part of the thesis, we present foundations of provable security. It is mainly based on the work of
Vaudenay and Bellare. We unify and complete published results, which use different models of security,
into an integrated theory. For being able to track the original sources, we refer to them at the theorems taken
from different articles, as well as at the theorems using methods introduced there. In the first case, we put
the reference at the begin of the theorem, in the other one at the begin of the proof.

In this chapter we introduce the model of security used in the following chapters to study the security
of block ciphers. It is based on three general ideas: The first is the random oracle model which enables
decomposition of the proof of security into smaller tasks. Next, the distinguishing approach to attacks that
defines very strong notion of security based on rather simple method. And finally decorrelation, which
provides a mathematical tool for the proofs.

2.1 Random Oracle Model

In our security model we will use oracles in two different meanings. The first one is the concept of the
random oracle model (ROM). It was formalized by Bellare and Rogaway [3] and its principle is substitution
of building blocks of a cryptographic scheme by random oracles, i.e. by oracles generating perfectly
random outputs.

Cryptographic schemes are built on various pseudorandom functions and permutations, which do not
solve any specific cryptographic problem, but have to be put together to create a scheme. These functions
and permutations are called atomic primitives of the scheme. For example in a Feistel cipher (e.g. DES)
the round functions are its atomic primitives. On a higher level, for modes of encryption operation (ECB,
CBC, etc.), the whole block cipher may be considered to be an atomic primitive of the mode (see Chapter
5).

Analyzing security of a scheme together with the specific primitives causes two problems: First, the
structure of the primitives brings much complexity into the analysis; second, every change in a primitive
demands reevaluation of the whole scheme. The approach of the random oracle model is to build a system
in two steps. The first step is to design an idealized scheme where all underlying cryptographic primitives
are substituted by random oracles, and prove security of this idealized scheme. Next, the random oracles are
replaced by “good” cryptographic functions and permutations. In this way, one obtains an implementation
of the ideal system in the “real world”, where random oracles do not exist.

Notation: Since we will use also another type of oracles (see Section 2.2) in our security
proofs, in the following we will use the term “perfect random function” or “perfect random per-
mutation” instead of the “random oracle”. Further, the random oracles will always be marked
with a star, usually writing F ∗ for a perfect random function and C∗ for a perfect random
permutation (perfect cipher).

2.2 Distinguishers

Using the ROM, we will work in a rather strict model — the attacker’s goal will be to distinguish a cryp-
tographic scheme from a perfect random function in the following game: The attacker has access to an
oracle which implements either the cryptographic scheme or a perfect random function — it is not known
to the attacker which one, but it is known that the oracle implements the same function during the whole
game. Querying the oracle a limited number of times and using its answers (and unlimited computation

7

8 CHAPTER 2. SECURITY MODEL

power), the attacker has to decide which function the oracle implements, and output 1 (“accept”) if it is the
encryption scheme, or 0 (“reject”) if it is a perfect random function.

Since the goal of the attacker is to distinguish two functions, it is called a distinguisher [21]. A
distinguisher which may query the oracle up to d times is called a d-limited distinguisher [21]. In general,
the goal of a distinguisher can be to distinguish any two fixed random functions from each other.

Different types of distinguishers may be defined, depending on the type of attack they perform. For
example:

• a known-plaintext-attack (KPA) distinguisher may query the oracle only with a predefined set of
plaintexts and gets its ciphertexts;

• a chosen-plaintext-attack (CPA) distinguisher queries the oracle by any set of plaintexts chosen in
advance;

• an adaptive-chosen-plaintext-attack (ACPA) distinguisher may choose any set of plaintexts adaptively
depending on all previous answers of the oracle.

Similar distinguishers can be defined for attacks which query the oracle with ciphertexts and get plain-
texts (ciphertext-attack distinguishers), as well as attacks which combine choosing plaintexts and cipher-
texts (plaintext-ciphertext-attackdistinguishers). The adaptive-chosen-plaintext-ciphertext-attack(ACPCA)
distinguishers are the most powerful ones.

The success of a distinguisher D to distinguish a random function F from a perfect random function
F ∗ is determined by two probabilities:

• probability of answering “accept” when the oracle implements F (a correct answer) — p0, and

• probability of answering “accept” when the oracle implements F ∗ (an incorrect answer) — p1.

The overall ability of a distinguisher D implementing an attack ATK using at most d oracle queries to
distinguish the two functions is measured by the advantage defined as Adv

ATK(d)
D (F, F ∗) = |p0 − p1|. It

is a value in the interval 〈0, 1〉 expressing the probability that the distinguisher is able to distinguish the two
functions from each other — a high advantage implies that it can distinguish them with high probability,
and vice versa, if the advantage is small, the probability that it distinguishes them is small.

Notation: The advantage of the best distinguisher between a random function and a per-
fect random function for a particular class of attacks will be denoted by AdvF ATK(d)(F) =

maxD{Adv
ATK(d)
D (F, F ∗)}, and similarly AdvCATK(d)(C) = maxD{Adv

ATK(d)
D (C, C∗)}

will denote the advantage of the best distinguisher between a random permutation and a per-
fect random permutation.

Example 2.2.1 Consider a simple distinguisher for a function F , which always returns “accept”. When-
ever the oracle implements the function F , the distinguisher “accepts”, and thus p0 = 1. When a perfect
random function is implemented, it also always accepts, and therefore p1 = 1 too. Hence, the advantage of
this distinguisher is |1 − 1| = 0, which means that the distinguisher cannot distinguish the two functions at
all.

The example above shows that the attacker has to use a cleverer idea then always accepting in order to get
nonzero probability of success. However, the goal of a designer of a cryptographic function is to make it
difficult for an attacker to distinguish it from a perfect random one, even when the attacker has the very
best idea how to attack the function. In other words, the advantage should be very small even for the best
possible attack — in the ideal case equal to 0, which means that the attacker cannot do anything better than
always accept.

Note that this model of security is very strong. When one proves that a cipher is secure in this model,
then it looks like a perfect random function. On the other hand, when one proves that a cipher is not secure
in this model, it says only that an attacker has some (eventually high) probability to distinguish that it is not
a perfectly random output. This fact does not say anything about how secure the cipher is against weaker
attacks which are more practical for an attacker, like for example finding an encryption key, or being able
to encrypt/decrypt another message.

When we discuss the best d-limited distinguisher for a particular type of attacks, we will sometimes
consider that AdvF

ATK(d)
D (F) = p0 − p1. We may do this without loss of generality, because in the case

that p0 − p1 < 0 for the best distinguisher D, we can construct another distinguisher D′ which returns the
inverse answers of D, i.e. it accepts whenever D rejects, and vice versa. For this distinguisher

p′0 = PrD′ [“accept”|F] = PrD[“reject”|F] = 1 − PrD[“accept”|F] = 1 − p0.

2.2. DISTINGUISHERS 9

Similarly, p′1 = 1 − p1, and AdvF
ATK(d)
D (F) = p1 − p0 = p′0 − p′1 = AdvF

ATK(d)
D′ (F). Thus, there

is another best distinguisher, for which AdvF
ATK(d)
D′ (F) = p′0 − p′1. By analogy, we may write that

AdvF
ATK(d)
D (F) = p1 − p0.

The following lemma makes use of this property.

Notation: Let A be a condition for the oracle queries and responses. AdvF
ATK(d)
D (F |A) will

denote the advantage of the distinguisher D under the condition that the oracle queries and re-
sponses satisfy the condition A. For the advantage of a cipher we will write AdvC

ATK(d)
D (C|A)

Lemma 2.2.2 Let F be a random function, d an integer, and A a condition for the oracle queries and
responses. Let ATK be a class of attacks. Then,

AdvFATK(d)(F) = AdvFATK(d)(F |A) · Pr[A] + AdvF ATK(d)(F |¬A) · Pr[¬A].

Proof: Let D be the best d-limited distinguisher for the class of attacks ATK

AdvF
ATK(d)
D (F) = p0 − p1 = Pr[“accept”|F] − Pr[“accept”|F ∗]

= Pr[“accept”|F ∧ A] · Pr[A] + Pr[“accept”|F ∧ ¬A] · Pr[¬A]

− Pr[“accept”|F ∗ ∧ A] · Pr[A] − Pr[“accept”|F ∗ ∧ ¬A] · Pr[¬A]

= (Pr[“accept”|F ∧ A] − Pr[“accept”|F ∗ ∧ A]) · Pr[A]

+ (Pr[“accept”|F ∧ ¬A] − Pr[“accept”|F ∗ ∧ ¬A]) · Pr[¬A]

= AdvF
ATK(d)
D (F |A) · Pr[A] + AdvF

ATK(d)
D (F |¬A) · Pr[¬A]

Now, we use this lemma to show how the overall advantage depends on the local quality of the function.

Theorem 2.2.3 Let F be a random function, d an integer, and A a condition for the oracle queries and
responses, under which output of the function F is undistinguishable from a perfectly random output, then
for any class of attacks ATK:

AdvFATK(d)(F) ≤ 1 − Pr[A],

where Pr[A] is probability that queries of an execution of the attack satisfy the condition A.

Proof:

AdvFATK(d)(F) = AdvFATK(d)(F |A) · Pr[A] + AdvF ATK(d)(F |¬A) · Pr[¬A]

≤ 0 + Pr[¬A] = 1 − Pr[A]

The theorem states that if we are able to construct a function which is almost always ideal then the
overall advantage will be small.

The advantage of a distinguisher expresses the probability that an attacker is able to distinguish between
the random function and a perfect random one. However, often the goal of an attacker is considered to be
the generation of a valid plaintext-ciphertext pair after seeing a particular number of plaintext-ciphertext
pairs (a generating attack). The following theorem tell us how difficult it is to meet this task comparing to
the distinguishing one.

Theorem 2.2.4 ([21]) Let C be a cipher (a random permutation) on M, ATK a class of attacks, and d
an integer. If AdvCATK(d)(C) = a(d), then for any generating attack of the same type, which queries the
oracle up to d − 1 times and which issues a pair (xd, yd) such that xd 6= xi (for all i = 1, . . . , d − 1), the
probability that C(xd) = yd is at most 1

|M| + a(d).

Proof: Let G be a generating attack which queries the oracle up to d − 1 times and which issues a pair
(xd, yd) such that xd 6= xi for all i = 1, . . . , d − 1. Let p be the probability that this attack is
successful.

We can construct a distinguisher D from the attack G. The following example is true for
ATK = ACPA, but similar distinguishers can be defined for other types of attacks by modifying
Steps 1–3.

10 CHAPTER 2. SECURITY MODEL

DISTINGUISHER 2.1 (G → D): d-limited distinguisher for C

1. For j = 1 to d − 1 do

1.1 Let G choose a plaintext xj .

1.2 Query the oracle with xj , and get yj = C̃(xj), where C̃ is either C or C∗.

2. Let G calculate the pair (xd, yd) depending on (x1, y1), . . . (xd−1, yd−1).

3. Query the oracle with xd, and get y′
j = C̃(xj), where C̃ is either C or C∗.

4. Outputs “accept” if and only if yd = y′
d.

The probability that the distinguisher D outputs “accept” when the oracle implements C is the same
as the probability, that the attack G is successful, i.e. p. The probability that the distinguisher
outputs “accept” when the oracle implements a perfect cipher is 1

|M| , since the output of the oracle

for xd is random. Hence, AdvC
ATK(d)
D (C) =

∣

∣p − 1
M

∣

∣ ≤ a(d), and therefore p ≤ a(d) + 1
|M| .

We will further study only distinguishing attacks.

2.3 Decorrelation

A cryptographic function can be seen as a map F : K × M1 → M2, where K is the space of keys,
M1 is the domain (set of plaintexts) and M2 is the range (set of ciphertexts). Fixing the key, we get a
map with one input FK : M1 → M2 by setting FK(x) = F (K, x) for all x ∈ M1. This function
takes a plaintext and returns a ciphertext corresponding to the fixed key and the plaintext. Using different
keys we get a collection of maps — a family of functions (function family) [2] — where each map is
associated with one key. In case that M1 = M2, the collection is called a permutation family [2]. If the
key K is chosen uniformly at random from K, FK is a random instance of F , and F is called a random
function/permutation family [2].

Notation: For short, we will further omit the word “family”, and call F a random func-
tion/permutation). When it is important that the function is a permutation, we will denote it
by C rather than F .

A random function is locally random of degree d [16] if for every set of at most d inputs, the outputs
of the random function are independent and uniformly distributed, i.e. the function behaves like a perfect
random function as long as it is evaluated for at most d inputs. More formally, a random function F : M1 →
M2 is locally random of degree d if for all possible d-tuples of inputs (x1, . . . , xd) ∈ Md

1 and outputs
(y1, . . . , yd) ∈ Md

2, Pr[F (x1) = y1, . . . , F (xd) = yd] = Pr[F ∗(x1) = y1, . . . , F
∗(xd) = yd]. Therefore,

if an attacker is able to obtain maximally d input/output pairs of the function, he cannot distinguish whether
he has outputs of the function or outputs of a perfectly random source.

The probabilities of all combinations of input and output d-tuples may be organized into a huge |M1|d×
|M2|d matrix, denoted by [F]d and called the d-wise distribution matrix [21], i.e. [F]dX,Y = Pr[F (X) =

Y], for all X = (x1, . . . , xd) ∈ Md
1 and Y = (y1, . . . , yd) ∈ Md

2. Entries of the matrix [F]d are thus
real numbers from the interval 〈0, 1〉. Furthermore, if there is a pair of indices (i, j) such that xi = xj and
yi 6= yj then [F]dX,Y = 0, since the same inputs have to be projected into the same output; and if F is
a permutation, [F]dX,Y = 0 also when yi = yj and xi 6= xj . Each row of the d-wise distribution matrix
corresponds to the distribution of all output d-tuples (F (x1), F (x2), . . . , F (xd)) over all possible d-tuples
of Md

2 for a fixed multi-point X = (x1, . . . xd). Therefore,
∑

Y ∈Md
2
[F]dX,Y = 1, for any X ∈ Md

1.
Let F ∗ be a perfect random function (a uniformly distributed random function) and C∗ a perfect random

permutation (a uniformly distributed random permutation). Then for any X = (x1, . . . xd) with c pairwise
different entries among xi’s and any Y = (y1, . . . yd),

[F ∗]dX,Y =

{

1/|M2|c if ∀i, j : xi = xj ⇒ yi = yj

0 otherwise

and

[C∗]dX,Y =

{

1/|M2|c if ∀i, j : xi = xj ⇔ yi = yj

0 otherwise

The following lemmas show basic properties of d-wise distribution matrices:

2.3. DECORRELATION 11

Lemma 2.3.1 ([26]) Let F1 : M1 → M2 and F2 : M0 → M1 be two independent random functions,
and F ∗ : M0 → M2, F ∗

1 : M1 → M2, and F ∗
2 : M0 → M1 be three independent perfect random

functions. Then

1. [F1 ◦ F2]
d = [F2]

d × [F1]
d

2. [F2]
d × [F ∗

1]d = [F ∗
2]d × [F1]

d = [F ∗]d

3. [F1 ◦ F2]
d − [F ∗]d = ([F2]

d − [F ∗
2]d) × ([F1]

d − [F ∗
1]d)

Proof:

1. ∀X, Y : [F1 ◦ F2]
d
X,Y = Pr[(F1 ◦ F2)(X) = Y] =

∑

Z Pr[F2(X) = Z ∧ F1(Z) = Y] =
∑

Z Pr[F2(X) = Z] · Pr[F1(Z) = Y] =
∑

Z [F2]
d
X,Z · [F1]

d
Z,Y = ([F2]

d × [F1]
d)X,Y

2. i. Let x1, ..., xd be pairwise different. Then [F ∗]dX,Y = 1/|M2|d for any Y and thus

([F2]
d × [F ∗

1]d)X,Y =
∑

Z

[F2]
d
X,Z · [F ∗

1]dZ,Y =
1

|M2|d
∑

Z

[F2]
d
X,Z =

1

|M2|d
= [F ∗]dX,Y

ii. Let there is a pair (a, b) such that xa = xb. Then for all Y = (y1, . . . , yd) with ya 6= yb

[F1 ◦ F2]
d
X,Y = [F ∗]dX,Y = 0. Hence,

([F2]
d × [F ∗

1]d)X,Y =
∑

Z
za=zb

[F2]
d
X,Z · [F ∗

1]dZ,Y

=
∑

Z
za=zb

Pr[F2(xi) = zi ∧ F ∗
1 (zi) = yi | ∀i ∈ {1, . . . , d}]

=
∑

Z
za=zb

Pr[F2(xi) = zi ∧ F ∗
1 (zi) = yi | ∀i ∈ {1, . . . , d} \ {b}]

=
∑

Z′

[F2]
d−1
X′,Z′ · [F ∗

1]d−1
Z′,Y ′ = ([F2]

d−1 × [F ∗
1]d−1)X′,Y ′

where X ′, Z ′, Y ′ arise from X, Z, Y by dropping the b-th coordinate. Following this
method, we can eliminate all equal pairs and then apply the step i.

3. ([F2]
d − [F ∗

2]d) × ([F1]
d − [F ∗

1]d) = [F2]
d × [F1]

d − [F2]
d × [F ∗

1]d − [F ∗
2]d × [F1]

d +
[F ∗

2]d × [F ∗
1]d = [F2]

d × [F1]
d − [F ∗]d − [F ∗]d + [F ∗]d = [F1 ◦ F2]

d − [F ∗]d

Lemma 2.3.2 Let C1 and C2 be two independent random permutations and C∗ a perfect random permu-
tation on a set M. Then

1. [C1 ◦C2]
d = [C2]

d × [C1]
d

2. [C1]
d × [C∗]d = [C∗]d × [C1]

d = [C∗]d

3. [C1 ◦C2]
d − [C∗]d = ([C2]

d − [C∗]d) × ([C1]
d − [C∗]d)

Proof: The proof is similar to the one of the previous lemma and is omitted.

Lemma 2.3.3 Let C be a random permutation on a set M. Then

[C−1]d =
[

[C]d
]T

Proof: ∀X, Y : [C−1]dX,Y = Pr[C−1(X) = Y] = Pr[C(Y) = X] = [C]dY,X =
[

[C]d
]T

X,Y

Similarity of two random functions may be measured by distance of their distribution matrices. Given
two random functions F and G from a set M1 to a set M2, an integer d, and a distance D over the space of
all
∣

∣Md
1

∣

∣×
∣

∣Md
2

∣

∣ matrices, the d-wise decorrelation D-distance [21] between F and G is D([F]d, [G]d).

12 CHAPTER 2. SECURITY MODEL

A decorrelation distance of zero means that for any multi-point X = (x1, . . . , xd) the d-tuples of output
values (F (x1), F (x2), . . . , F (xd)) and (G(x1), G(x2), . . . , G(xd)) have the same distribution.

The goal of cryptographers is to construct functions, which look random. In other words, they try
to construct functions with minimal distance from a perfect random one. The decorrelation D-distance
between a random function F and a perfect random function F ∗ is called the d-wise decorrelation D-bias
[21].

Notation: The decorrelation bias of a function F will be denoted by DecF d
D, i.e. DecF d

D(F)
= D([F]d, [F ∗]d). If it is important that the distance is measured between a random permuta-
tion and a perfect cipher, we will denote it by DecCd

D(C) = D([C]d, [C∗]d).

A random function (permutation) with zero d-wise decorrelation distance from a perfect random one
is said to have perfect d-wise decorrelation. It means, that for any pairwise different x1, . . . xd the ran-
dom variable (F (x1)), . . . , F (xd)) ((C(x1)), . . . , C(xd))) is uniformly distributed among all (y1, . . . , yd)
(among all pairwise different (y1, . . . , yd)).

We present here some examples of ciphers with a perfect decorrelation of some order.

Example 2.3.4 [21] The Vernam Cipher has perfect 1-wise decorrelation.

Proof: The Vernam Cipher is a cipher on a set M defined as C(x) = x + K, where K is uniformly
distributed on M. For all x, y ∈ M it holds:
Pr[C(x) = y] = Pr[x + K = y] = Pr[K = y − x] = 1/|M| = Pr[C∗(x) = y]

Note that although the 1-wise decorrelation of the Vernam Cipher is perfect, its 2-wise decorrelation is far
from the ideal: Since [C]2X,Y = Pr[x1 + K = y1 ∧ x2 + K = y2] = Pr[x1 − x2 = y1 − y2], for each
fixed pair X = (x1, x2), most of the values [C]2X,Y are zero. More precisely, in each line (x1, x2) of

the distribution matrix, only |M| entries of all |M|2 are nonzero, and for those [C]2X,Y = 1/|M|, while

[C∗]2X,Y = 1/|M|2 whenever x1 6= x2 and y1 6= y2.

The next example is a generalization of the Vernam cipher using two different keys:

Example 2.3.5 [21] Let C : M → M be defined as follows: C(x) = ax + b, where K = (a, b) is a key
uniformly distributed in M+ ×M. The cipher C has perfect 2-wise decorrelation.

Proof: Let X = (x1, x2), Y = (y1, y2) ∈ M2.

1. Let x1 = x2 and y1 = y2 (1-wise decorrelation). Then

Pr[C(X) = Y] = Pr[ax1 + b = y1] =
|{(a, b) : b = y1 − ax1, a ∈ M+, b ∈ M}|

|M+ ×M|

=
|M+|

|M+| · |M| =
1

|M| = Pr[C∗(X) = Y]

2. Let x1 = x2 and y1 6= y2. Then Pr[C(X) = Y] = 0 = Pr[C∗(X) = Y].

3. Let x1 6= x2 and y1 = y2. Then
Pr[C(X) = Y] = Pr[ax1 + b = y1 ∧ ax2 + b = y1] = 0 = Pr[C∗(X) = Y]

4. Let x1 6= x2 and y1 6= y2. Then

Pr[C(X) = Y] = Pr[ax1 + b = y1 ∧ ax2 + b = y2]

= Pr

[

a =
y1 − y2

x1 − x2
∧ b = y2 − x2

y1 − y2

x1 − x2

]

=
1

|M+| ·
1

|M| =
1

(|M| − 1)|M| = Pr[C∗(X) = Y]

Example 2.3.6 [21] Let C : M → M be defined as follows: C(x) = a + b/(c + x), where K = (a, b, c)
is a key uniformly distributed in M×M+ ×M, and let 1/0 = 0 by definition. The cipher C has perfect
1-wise, and almost perfect 2- and 3-wise decorrelation.

Proof: Let X = (x1, x2, x3), Y = (y1, y2, y3) ∈ M3.

2.3. DECORRELATION 13

1. If there is a pair (i, j) such that xi = xj and yi 6= yj or yi = yj and xi 6= xj then
Pr[C(X) = Y] = 0 = Pr[C∗(X) = Y]. (If xi = xj then
yi = a + b/(c + xi) = a + b/(c + xj) = yj . If yi = yj then
xi = c + b/(a + yi) = c + b/(a + yj) = xj .)

2. If x1 = x2 = x3 and y1 = y2 = y3 (1-wise decorrelation). Then

Pr[C(X) = Y] = Pr

[

a +
b

c + x1
= y1

]

=
|{(a, b, c) : b = (y1 − a)(c + x1), b ∈ M+, a, c ∈ M}|

|M×M+ ×M|

=
|M+| · |M|

|M| · |M+| · |M| =
1

|M| = Pr[C∗(X) = Y]

3. Let there be two distinct xi’s and yi’s (2-wise decorrelation). Without loss of generality, we
may assume x1 6= x2 and y1 6= y2. Then

Pr[C(X) = Y] = Pr

[

a +
b

c + x1
= y1 ∧ a +

b

c + x2
= y2

]

=
|{(a, b, c) : b = (y1 − a)(c + x1), a = y1(x1+c)−y2(x2+c)

x1−x2
, b ∈ M+, a, c ∈ M}|

|M×M+ ×M|

=
|M+|

|M| · |M+| · |M| =
1

|M|2 = Pr[F ∗(X) = Y]

4. Let all xi’s and all yi’s be pairwise distinct (3-wise decorrelation). Then

Pr[C(X) = Y] = Pr

[

a +
b

c + x1
= y1 ∧ a +

b

c + x2
= y2 ∧ a +

b

c + x3
= y3

]

=
1

|M|(|M| − 1)|M|

The last two probabilities only slightly differ from Pr[C∗(X) = Y]
(Pr[C∗(X) = Y] − Pr[C(X) = Y] = 1

|M|·|M|2 and 2
|M|·|M|3 respectively).

The distance between two matrices may be measured by norms on matrix sets. A mapping from a set of
matrices A to the set of real numbers is a norm if the following properties hold for all matrices A, B ∈ A,
for which the according operations make sense:

1. ‖A‖ = 0 if and only if A = 0,

2. ‖u · A‖ = |u| · ‖A‖, for any real number u,

3. ‖A + B‖ ≤ ‖A‖ + ‖B‖.

A norm is a matrix norm [26], if

4. ‖A × B‖ ≤ ‖A‖ · ‖B‖

For examples of different norms, see Appendix C. Given a norm ‖ · ‖, the distance between two functions
F and G can be defined as D‖·‖(F, G) = ‖[F]d − [G]d‖.

Using matrix norms has the advantage of being able to determine the decorrelation of a composite
function from the decorrelation of its components, as the following theorem shows.

Theorem 2.3.7 ([25]) Let ‖ · ‖ be a matrix norm. Then for any independent random functions F1 and F3

from M1 to M2, and F2 and F4 from M0 to M1, the following properties hold:

1. DecF d
‖·‖(F1 ◦ F2) ≤ DecF d

‖·‖(F1) · DecF d
‖·‖(F2)

14 CHAPTER 2. SECURITY MODEL

2. ‖[F1 ◦ F2]
d − [F1 ◦ F4]

d‖ ≤ DecF d
‖·‖(F1) · ‖[F2]

d − [F4]
d‖

3. ‖[F1 ◦ F2]
d − [F3 ◦ F4]

d‖ ≤ DecF d
‖·‖(F1) · ‖[F2]

d − [F4]
d‖ + DecF d

‖·‖(F4) · ‖[F1]
d − [F3]

d‖

Proof: Let F ∗ : M0 → M2, F ∗
1 : M1 → M2, and F ∗

2 : M0 → M1 be three independent perfect
random functions. Then

1. DecF d
‖·‖(F1 ◦ F2) = ‖[F1 ◦ F2]

d − [F ∗]d‖ Lemma 2.3.1
= ‖([F1]

d − [F ∗
1]d) × ([F2]

d − [F ∗
2]d)‖

≤ ‖[F1]
d − [F ∗

1]d‖ · ‖[F2]
d − [F ∗

2]d‖ = DecF d
‖·‖(F1) · DecF d

‖·‖(F2)

2. DecF d
‖·‖(F1) · ‖[F2]

d − [F4]
d‖ = ‖[F1]

d − [F ∗
1]d‖ · ‖[F2]

d − [F4]
d‖ ≥

‖([F1]
d − [F ∗

1]d) × ([F2]
d − [F4]

d)‖ =

‖[F1]
d × [F2]

d − [F1]
d × [F4]

d − [F ∗
1]d × [F2]

d + [F ∗
1]d × [F4]

d‖ Lemma 2.3.1
=

‖[F1]
d × [F2]

d − [F1]
d × [F4]

d − [F ∗]d + [F ∗]d‖ = ‖[F1 ◦ F2]
d − [F1 ◦ F4]

d‖
3. DecF d

‖·‖(F1) · ‖[F2]
d − [F4]

d‖ + DecF d
‖·‖(F4) · ‖[F1]

d − [F3]
d‖ =

‖[F1]
d − [F ∗

1]d‖ · ‖[F2]
d − [F4]

d‖ + ‖[F4]
d − [F ∗

2]d‖ · ‖[F1]
d − [F3]

d‖ ≥
‖([F1]

d − [F ∗
1]d) × ([F2]

d − [F4]
d) + ([F1]

d − [F3]
d) × ([F4]

d − [F ∗
2]d)‖ =

‖[F1 ◦ F2]
d − [F1 ◦ F4]

d + [F1 ◦ F4]
d − [F3 ◦ F4]

d‖ = ‖[F1 ◦ F2]
d − [F3 ◦ F4]

d‖

A similar theorem holds also for composite permutations:

Theorem 2.3.8 Let ‖ · ‖ be a matrix norm. Then for any independent random permutations C1, C2, C3,
and C4 on M, the following properties hold:

1. DecCd
‖·‖(C1 ◦ C2) ≤ DecCd

‖·‖(C1) · DecCd
‖·‖(C2)

2. ‖[C1 ◦ C2]
d − [C1 ◦ C4]

d‖ ≤ DecCd
‖·‖(C1) · ‖[C2]

d − [C4]
d‖

3. ‖[C1 ◦ C2]
d − [C3 ◦ C4]

d‖ ≤ DecCd
‖·‖(C1) · ‖[C2]

d − [C4]
d‖ + DecCd

‖·‖(C4) · ‖[C1]
d − [C3]

d‖

Proof: The proof is similar to the one of the previous theorem and is omitted.

2.4 Proof of Security

An implementation of a cryptographic scheme Ω may be considered to be a random function (or permu-
tation) which calls another random functions and permutations — its primitives. We will denote this by
F = Ω[F1, . . . , Fr, C1, . . . , Cs], or shortly F = Ω[F1,...,r, C1,...,s]. The proof of security of the function F
using the decorrelation theory consists of the following five steps:

1. Definition of a class of attacks the cipher should be secure against.

Different types of attacks (distinguishers) can be defined. Besides the general attacks mentioned in the
previous section, it is possible to define special subclasses of attacks (differential cryptanalysis, linear
cryptanalysis, etc.) in order to get a more accurate evaluation of security.

Generally, one has to keep in mind that it may not be enough to consider only one type of attack when
dealing with composite ciphers. Particularly, it is necessary to distinguish between attacks against the
scheme as a whole and attacks against its primitives (functions). For example, in Feistel networks (see
page 71) we never need to calculate inverse of the round functions (neither during the decryption). Thus,
studying a ciphertext attack against a Feistel network, we get a plaintext attack related to the underlying
round functions. Table 2.1 shows what type of attack applies for underlying functions when a particular
attack against the cipher is regarded.

Notation: Since the induced attack is independent from the function F — it depends only
on its usage in the particular attack — ATK+ will denote the induced attack when only F
is used, ATK− when only F−1 is used, and ATK± when both F and F−1 are used when
attacking the scheme. On the other hand, when the usage of the function is not determined,
we will write ATKF .

2.4. PROOF OF SECURITY 15

Attack against C[F] Calculation of F Induced attack against F
(ATK) in the attack ATK ATKF

KPA any KPA
(A)CPA F (A)CPA
(A)CPA F, F−1 (A)CPCA
(A)CCA F (A)CPA
(A)CCA F−1 (A)CCA
(A)CCA F, F−1 (A)CPCA

(A)CPCA F (A)CPA
(A)CPCA F, F−1 (A)CPCA

Table 2.1: Induced attacks against F in C[F]

2. Identification of a norm corresponding with the defined class of attacks.

The definition of a particular class of attacks usually induces a special norm, which measures the advan-
tage of distinguishers realizing an attack from this class (see Chapter 3). In other words, there is a norm
‖ · ‖ such that for any random function F , AdvF ATK(d)(F) ≤ f(DecF d

‖·‖(F)) for some function f .

3. Evaluation of the advantage of the individual cryptographic primitives of the scheme.

The decorrelation of the functions F1, . . . , Fr, and permutations C1, . . . , Cs is calculated separately. In
more complex scheme, some of them may be decomposed in a similar way as the main scheme; then the
advantage may be calculated recursively.

4. Evaluation of the advantage of the scheme in the random oracle model.

The primitives of the schemes are substituted by perfect random functions F ∗
1 , . . . , F ∗

r and C∗
1 , . . . , C∗

s

permutations, and the advantage of Ω[F ∗
1 , . . . , F ∗

r , C∗
1 , . . . , C∗

s] is calculated. This is usually a much
easier task than the evaluation of the advantage of the whole scheme at once. However, Steps 3 and 4
are the most difficult, since there is no universal method for the evaluation.

5. Proof of how the decorrelation of the underlying primitives propagates to the scheme.

Here, the results of Steps 2 and 3 are combined into the final advantage. The following theorems show
how the advantage of composite schemes depends on the advantage of their primitives, if the function f
is defined to be f(x) = kx for a fixed constant k.

Theorem 2.4.1 Let F1, . . . , Fr be r independent random functions, and C1, . . . , Cs be s independent ran-
dom permutations, which are used in order to define a function F = Ω[F1, . . . , Fr, C1, . . . , Cs]. Let the
computation of the function F require ai computations of the function Fi (i = 1, . . . , r), and bi computa-
tions of the permutation Ci (i = 1, . . . , s). Let d be an integer, and F ′ = Ω[F ∗

1 , . . . , F ∗
r , C∗

1 , . . . , C∗
s], where

F ∗
1 , . . . , F ∗

r are independent perfect random functions, and C∗
1 , . . . , C∗

s are independent perfect ciphers. If
a class of attacks ATK is associated with a matrix norm ‖ · ‖ such that AdvF ATK(d)(F) = k ·DecF d

‖·‖(F),
then

AdvFATK(d)(F) ≤ AdvFATK(d)(F ′) +

r
∑

i=1

AdvFATKFi
(aid)(Fi) +

s
∑

i=1

AdvCATKCi
(bid)(Ci).

Proof: [Similar theorems for ACPA and ACPCA only can be found in [25].]

Since the class of attacks ATK is associated with the norm ‖ · ‖, the best distinguisher has
advantage AdvF ATK(d)(F) = k · DecF d

‖·‖(F) = k · ‖[F]d − [F ∗]‖, where F ∗ is a perfect random
function, independent from all other perfect random functions (F ∗

1 , . . . , F ∗
r).

• DecF d
‖·‖(F) = ‖ [Ω[F1,...,r, C1,...,s]]

d − [F ∗]d‖ ≤
‖ [Ω[F1,...,r, C1,...,s]]

d −
[

Ω[F ∗
1,...,r, C

∗
1,...,s]

]d ‖ + ‖
[

Ω[F ∗
1,...,r, C

∗
1,...,s]

]d − [F ∗]d‖

• The second term ‖
[

Ω[F ∗
1,...,r, C

∗
1,...,s]

]d − [F ∗]d‖ corresponds to the best d-limited
distinguisher D between F ′ and F ∗ for the class of attacks ATK. Hence,

‖
[

Ω[F ∗
1,...,r, C

∗
1,...,s]

]d − [F ∗]d‖ =
1

k
AdvFATK(d)(F ′)

16 CHAPTER 2. SECURITY MODEL

• ‖ [Ω[F1,...,r, C1,...,s]]
d −

[

Ω[F ∗
1,...,r, C

∗
1,...,s]

]d ‖ ≤
‖ [Ω[F1,...,r, C1,...,s]]

d −
[

Ω[F1, F
∗
2,...,r, C

∗
1,...,s]

]d ‖ +

‖
[

Ω[F1, F
∗
2,...,r, C

∗
1,...,s]

]d −
[

Ω[F ∗
1,...,r, C

∗
1,...,s]

]d ‖ ≤ · · · ≤
∑r

i=1 ‖
[

Ω[F1,...,i, F
∗
i+1,...,r, C

∗
1,...,s]

]d −
[

Ω[F1,...,i−1, F
∗
i,...,r, C

∗
1,...,s]

]d ‖ +
∑s

i=1 ‖
[

Ω[F1,...,r, C1,...,i, C
∗
i+1,...,s]

]d −
[

Ω[F1,...,r, C1,...,i−1, C
∗
i,...,s]

]d ‖

• Each term ‖
[

Ω[F1,...,i, F
∗
i+1,...,r, C

∗
1,...,s]

]d −
[

Ω[F1,...,i−1, F
∗
i,...,r, C

∗
1,...,s]

]d ‖ corresponds to
the best d-limited distinguisher Di between Ω[F1,...,i, F

∗
i+1,...,r, C

∗
1,...,s] and

Ω[F1,...,i−1, F
∗
i,...,r, C

∗
1,...,s] for the class of attacks ATK.

The distinguisher Di can be transformed into a (aid)-limited distinguisher D′
i between Fi and

F ∗
i for the class of attacks ATKFi

. The following example shows the construction of D′
i if

ATKFi
= (A)CPA. Distinguishers for other attacks can be created in a similar way.

DISTINGUISHER 2.2 (D′

i
): d-limited distinguisher for Fi

1. For j = 1 to d do

1.1 Let Di choose an input value xj .

1.2 Calculate subterms of Ω using the functions F1, . . . Fi−1, F ∗
i+1, . . . , F

∗
r , and

permutations C∗
1 , . . . , C∗

s , and each time the subterm Fi occurs, query the or-
acle implementing Fi or F ∗

i with its subterm as the input. The distinguisher
has to query the oracle ai times and at the end of the calculation it gets either
Ω[F1,...,i−1, Fi, F

∗
i+1,...,r, C

∗
1,...,s] or Ω[F1,...,i−1, F

∗
i , F ∗

i+1,...,r, C
∗
1,...,s] depend-

ing on which function the oracle implements.

2. Get answer a from the oracle Di for (x1, y1), . . . , (xd, yd)

3. Outputs “accept” if and only if a is “accept”.

From the definition of D′
i follows, that both Di and D′

i have the same advantage. Since ATK
depends on the norm ‖ · ‖,

‖
[

Ω[F1,...,i, F
∗
i+1,...,r, C

∗
1,...,s]

]d −
[

Ω[F1,...,i−1, F
∗
i,...,r, C

∗
1,...,s]

]d ‖

=
1

k
AdvFATK(d)(Ω[F1,...,i, F

∗
i+1,...,r, C

∗
1,...,s], Ω[F1,...,i−1, F

∗
i,...,r, C

∗
1,...,s])

=
1

k
AdvF

ATKFi
(aid)

D′
i

(Fi) ≤
1

k
AdvFATKFi

(aid)(Fi)

Similarly, each term ‖
[

Ω[F1,...,r, C1,...,i, C
∗
i+1,...,s]

]d −
[

Ω[F1,...,r, C1,...,i−1, C
∗
i,...,s]

]d ‖
corresponds to the best d-limited distinguisher between Ω[F1,...,r, C1,...,i, C

∗
i+1,...,s] and

Ω[F1,...,r, C1,...,i−1, C
∗
i,...,s] in the class of attacks ATK, and following the same steps, we get

‖
[

Ω[F1,...,r, C1,...,i, C
∗
i+1,...,s]

]d −
[

Ω[F1,...,r, C1,...,i−1, C
∗
i,...,s]

]d ‖ ≤ 1

k
AdvCATKCi

(bid)(Ci)

• Combining the previous results, we get:

DecF d
‖·‖(F) ≤ 1

k
AdvFATK(d)(F ′) +

r
∑

i=1

1

k
AdvFATKFi

(aid)(Fi) +

s
∑

i=1

1

k
AdvCATKCi

(bid)(Ci)

and thus

AdvFATK(d)(F) = k · DecF d
‖·‖(F)

≤ AdvFATK(d)(F ′) +

r
∑

i=1

AdvFATKFi
(aid)(Fi) +

s
∑

i=1

AdvCATKCi
(bid)(Ci)

A similar theorem holds also for permutations:

2.4. PROOF OF SECURITY 17

Theorem 2.4.2 Let F1, . . . , Fr be r independent random functions, and C1, . . . , Cs s independent random
permutations, which are used in order to define a permutation C = Ω[F1, . . . , Fr, C1, . . . , Cs]. Let the com-
putation of the permutation C require ai computations of the function Fi (i = 1, . . . , r), and bi computa-
tions of the permutation Ci (i = 1, . . . , s). Let d be an integer, and C ′ = Ω[F ∗

1 , . . . , F ∗
r , C∗

1 , . . . , C∗
s], where

F ∗
1 , . . . F ∗

r are independent perfect random functions, and C∗
1 , . . . C∗

s are independent perfect ciphers. If a
class of attacks ATK is associated with a matrix norm ‖ · ‖ such that AdvCATK(d)(C) = k ·DecCd

‖·‖(C),
then

AdvCATK(d)(C) ≤ AdvCATK(d)(C ′) +

r
∑

i=1

AdvFATKFi
(aid)(Fi) +

s
∑

i=1

AdvCATKCi
(bid)(Ci).

Proof: The proof is similar to the one of the previous theorem and is omitted.

Another way to combine functions into a more complex scheme is a composition. The following theo-
rem evaluates decorrelation of a composite function depending of decorrelation of its components.

Theorem 2.4.3 Let F1, . . . , Fr be r independent random functions such that Fi : Mi → Mi−1, F =
F1 ◦ . . . ◦Fr, and d be an integer. If a class of attacks ATK is associated with a matrix norm ‖ · ‖ such that
AdvFATK(d)(F) = k · DecF d

‖·‖(F), then

AdvFATK(d)(F) ≤ k1−r
r
∏

i=1

AdvFATK(d)(Fi).

Proof: From Theorem 2.3.7:

AdvFATK(d)(F) = k · DecF d
‖·‖(F1 ◦ . . . ◦ Fr) ≤ k

r
∏

i=1

DecF d
‖·‖(Fi)

= k

r
∏

i=1

k−1AdvFATK(d)(Fi) = k1−r
r
∏

i=1

AdvFATK(d)(Fi)

Again, a similar theorem holds also for permutations.

Theorem 2.4.4 Let C1, . . . , Cr be r independent random permutations on M, C = C1 ◦ . . .◦Cr, and d be
an integer. If a class of attacks ATK is associated with a matrix norm ‖ · ‖ such that AdvCATK(d)(C) =
k · DecCd

‖·‖(C), then

AdvCATK(d)(C) ≤ k1−r
r
∏

i=1

AdvCATK(d)(Ci).

Proof: The proof is similar to the one of the previous theorem and is omitted.

Note that the bounds given by Theorems 2.4.1–2.4.4 are not tight.
Splitting the proof into the steps described above enables one to separate the design of a cipher into

several independent tasks. It also enables quantification of security in terms of how much computation of
the adversary the cipher can withstand in a certain type of attack, and comparison of different ciphers as
more or less secure than others.

18 CHAPTER 2. SECURITY MODEL

Chapter 3

General Attacks

In this chapter we discuss the following classes of attacks:

• known plaintext attack,

• chosen plaintext attack,

• chosen ciphertext attack,

• chosen plaintext-ciphertext attack,

• adaptive chosen plaintext attack,

• adaptive chosen ciphertext attack,

• adaptive chosen plaintext-ciphertext attack,

For each class of attacks, we derive a norm which determines the advantage of the best distinguisher from
the class (Step 2 of the design methodology introduced in Section 2.4)), and show how the advantage
depends on the norm. We also evaluate advantage of the attacks against mixed unbalanced Feistel networks
(for more details about unbalanced Feistel networks see page 71) in the random oracle model (Step 4 of the
design methodology).

Applying any attack, an attacker has a possibility to obtain d plaintext-ciphertext pairs from an oracle
and has to decide whether the oracle implements a particular random function or a perfect random one. The
individual attacks differ in the way how the attacker obtains the pairs. In general, the distinguisher constructs
(en bloc, or adaptively, depending on the type of attack it performs) a sequence of queries Q = (q1, . . . , qd),
and gets a sequence of responses R = (r1, . . . , rd) from the oracle. To be able to handle any attack, we can
define the query as a pair qk = (0, xk) if the distinguisher queries with a plaintext — in this case it gets a
ciphertext rk = yk as the response from the oracle; or a pair qk = (1, yk) if the distinguisher queries with
a ciphertext, and gets a plaintext rk = xk as the response. Note that plaintext attacks always query with
qk = (0, xk); ciphertext attacks always query with qk = (1, yk); only plaintext-ciphertext attacks may use
both types of queries.

Notation: For simplicity, a trace τ will denote the sequence of all queries and responses
τ = (Q, R) occurred during the attack; Xτ = (x1, . . . , xd) the sequence of plaintexts, and
Yτ = (y1, . . . , yd) the sequence of ciphertexts which the distinguisher can extract from τ .

Remember that the only difference between an adaptive attack and its non-adaptive form is that the
non-adaptive attack has to choose all queries before it can access the oracle, while the adaptive one can
adapt its choice at each query based on its previous queries and responses from the oracle.

We will further assume that queries to the oracle are always pairwise different. If there is an oracle
D which chooses an entry more than once, we can construct another oracle D′, which replaces repeated
queries with some new values, but returns the same answers as D — i.e. it ignores the new responses.
The distinguisher D′ has thus the same advantage as D, and satisfies the requirements that it queries with
different entries.

3.1 General Bounds

Consider a random function F , and a perfect random function F ∗, each from a set M1 to a set M2. During
the attack, a d-limited distinguisher D between F and F ∗ obtains a d-tuple of plaintexts Xτ and a d-tuple
of ciphertexts Yτ , and it has to decide which function (F or F ∗) was implemented. It outputs “accept” when

19

20 CHAPTER 3. GENERAL ATTACKS

it concludes it was F , or “reject” otherwise. Let A ⊆ Md
1 ×Md

2 be the set of all pairs (Xτ , Yτ), for which
the distinguisher outputs “accept”. The probability that it outputs “accept” when the oracle implements the
function F is

p
D

=
∑

τ=(Q,R)

1(Xτ ,Yτ)∈A Pr[Q] Pr[F (Xτ) = Yτ] =
∑

τ=(Q,R)

1(Xτ ,Yτ)∈A Pr[Q] · [F]dXτ ,Yτ
,

where Pr[Q] is the probability that the distinguisher queries with Q, and Pr[F (Xτ) = Yτ] is the probability
that it gets R as the response. Similarly, the probability that the distinguisher D outputs “accept” when the
oracle implements a perfect random function F ∗ is

p∗
D

=
∑

τ=(Q,R)

1(Xτ ,Yτ)∈A Pr[Q] Pr[F ∗(Xτ) = Yτ] =
∑

τ=(Q,R)

1(Xτ ,Yτ)∈A Pr[Q] · [F ∗]dXτ ,Yτ
,

and the advantage of D is AdvF
ATK(d)
D (F) = |p∗D − pD|.

The following theorems upper-bound the advantage of a distinguisher realizing an attack against F .
First, we consider only specialized classes of attacks, and then we introduce a general norm limiting the
advantage of any distinguisher.

Theorem 3.1.1 Let F be a random function from a set M1 to a set M2. Let X be the subset of Md
1 of

all (x1, . . . , xd) with pairwise different entries. Let F ∗ be a perfect random function from M1 to M2,
p0 = 1/|M2|d, and d an integer. If there is a subset Y ⊆ Md

2, and two positive real values ε1 and ε2 such
that:

• |Y|p0 ≥ 1 − ε1 (i.e. there are almost all d-tuples over M2 in the set Y), and

• ∀X ∈ X , ∀Y ∈ Y : [F]dX,Y ≥ [F ∗]dX,Y (1 − ε2) (i.e.[F]dX,Y is close to [F ∗]dX,Y for all X ∈ X and
Y ∈ Y),

then for any class of plaintext attacks ATK,

AdvFATK(d)(F) ≤ ε1 + ε2.

Proof: [This is an extension of Lemma 4 in [22].] Let D be the best d-limited distinguisher between F
and F ∗. Let A be the set of all pairs (X, Y) such that the distinguisher outputs “accept”. We may
assume that all queries X which occur in A have pairwise different entries.

AdvF
ATK(d)
D (F) = p∗D − pD =

∑

τ=(Q,R)

1(Xτ ,Yτ)∈A Pr[Xτ] ·
(

[F ∗]dXτ ,Yτ
− [F]dXτ ,Yτ

)

=
∑

τ=(Q,R)
(Xτ ,Yτ)∈A

Yτ∈Y

Pr[Xτ] ·
(

[F ∗]dXτ ,Yτ
− [F]dXτ ,Yτ

)

+
∑

τ=(Q,R)
(Xτ ,Yτ)∈A

Yτ /∈Y

Pr[Xτ] ·
(

[F ∗]dXτ ,Yτ
− [F]dXτ ,Yτ

)

≤
∑

τ=(Q,R)
(Xτ ,Yτ)∈A

Yτ∈Y

Pr[Xτ] · (p0 − p0(1 − ε2)) +
∑

τ=(Q,R)
(Xτ ,Yτ)∈A

Yτ /∈Y

Pr[Xτ] · p0

≤ ε2p0|Y| + p0

∣

∣Y
∣

∣ ≤ ε2 + ε1

Corollary 3.1.2 Let F be a random function from a set M1 to a set M2. Let X be the subset of Md
1 of

all (x1, . . . , xd) with pairwise different entries. Let F ∗ be a perfect random function from M1 to M2. Let
p0 = 1/|M2|d, and d an integer. If there is a subset Y ⊆ Md

2, a condition A, and three positive real values
ε1, ε2, and ε3 such that:

• |Y|p0 ≥ 1 − ε1,

• ∀X ∈ X , ∀Y ∈ Y : A ⇒ [F]dX,Y ≥ [F ∗]dX,Y (1 − ε2), and

3.1. GENERAL BOUNDS 21

• Pr[A] ≥ 1 − ε3,

then for any class of plaintext attacks ATK,

AdvFATK(d)(F) ≤ ε1 + ε2 + ε3.

Proof:

[F]dX,Y = Pr[F (X) = Y] ≥ Pr[F (X) = Y ∧ A] = Pr[F (X) = Y |A] · Pr[A]

≥ [F ∗]dX,Y (1 − ε2)(1 − ε3) ≥ [F ∗]dX,Y (1 − ε2 − ε3)

Now we may apply Theorem 3.1.1.

Similar theorems may be proved for permutations:

Theorem 3.1.3 Let C be a random permutation on a set M. Let X be the subset of Md of all (x1, . . . , xd)

with pairwise different entries. Let C∗ be a perfect random permutation on M, p0 = 1/|M|d, and d an
integer. If there is a subset Y ⊆ Md, and two positive real values ε1 and ε2 such that:

• |Y|p0 ≥ 1 − ε1, and

• ∀X ∈ X , ∀Y ∈ Y : [C]dX,Y ≥ [C∗]dX,Y (1 − ε2).

then for any class of plaintext attacks ATK,

AdvCATK(d)(C) ≤ ε1 + ε2.

Proof: The proof is similar to the one of Theorem 3.1.1 and is omitted.

Corollary 3.1.4 Let C be a random permutation on a set M. Let X be the subset of Md of all (x1, . . . , xd)

with pairwise different entries. Let C∗ be a perfect random permutation on M, p0 = 1/|M|d, and d an
integer. If there is a subset Y ⊆ Md, a condition A, and three positive real values ε1, ε2, and ε3 such that:

• |Y|p0 ≥ 1 − ε1, and

• ∀X ∈ X , ∀Y ∈ Y : A ⇒ [C]dX,Y ≥ [C∗]dX,Y (1 − ε2), and

• Pr[A] ≥ 1 − ε3,

then for any class of plaintext attacks ATK,

AdvCATK(d)(C) ≤ ε1 + ε2 + ε3.

Proof: The proof is similar to the one of the Corollary 3.1.2 and is omitted.

When dealing with ciphertext and plaintext-ciphertext attacks, we are not able to make restrictions on
the set of outputs. The following theorem is actually a generalization of the previous one for ε1 = 0.

Theorem 3.1.5 Let C be a random permutation on a set M. Let X be the subset of Md of all (x1, . . . , xd)
with pairwise different entries. Let C∗ be a perfect random permutation on M, and d an integer. If there
is a positive real value ε such that ∀X, Y ∈ X : [C]dX,Y ≥ [C∗]dX,Y (1 − ε) then for any class of attacks
ATK,

AdvCATK(d)(C) ≤ ε.

Proof: [This is an extension of Lemma 5 in [22].] Let p0 = 1/Md, D be the best d-limited distinguisher
between C and C∗, and A the set of all pairs (X, Y) such that the distinguisher outputs “accept”. As
in the previous proofs, we may assume that all queries X occurred in A have pairwise different
entries, i.e. Xτ , Yτ ∈ X .

AdvC
ATK(d)
D (C) = p∗D − pD =

∑

τ=(Q,R)

1(Xτ ,Yτ)∈A Pr[Q] ·
(

[C∗]dXτ ,Yτ
− [C]dXτ ,Yτ

)

≤
∑

τ=(Q,R)

1(Xτ ,Yτ)∈A Pr[Q] · (p0 − p0(1 − ε))

≤ εp0|Y| ≤ ε

22 CHAPTER 3. GENERAL ATTACKS

Corollary 3.1.6 Let C be a random permutation on a set M. Let X be the subset of Md of all (x1, . . . , xd)
with pairwise different entries. Let C∗ be a perfect random permutation on M, and d an integer. If there is
a condition A, and two positive real values ε1 and ε2 such that:

• ∀X, Y ∈ X : A ⇒ [C]dX,Y ≥ [C∗]dX,Y (1 − ε1), and

• Pr[A] ≥ 1 − ε2,

then for any class of attacks ATK,

AdvCATK(d)(C) ≤ ε1 + ε2.

Proof: The proof is similar to the one of the Corollary 3.1.2 and is omitted.

Consider now the norm N∞ (see Appendix C). The following theorem shows how this norm bounds
the advantage of a distinguisher.

Theorem 3.1.7 Let F be a random function from M1 to M2, and d an integer. Then for any class of
attacks ATK,

AdvFATK(d)(F) ≤ DecF d
N∞

(F).

Proof: [A similar theorem can be found in [21] for CPA.]

Let ε = DecF d
N∞

(F) = N∞([F]d − [F ∗]d) = maxX,Y
|[F]dX,Y −[F∗]dX,Y |

[F∗]d
X,Y

. It means that for all pairs

(X, Y) ∈ M1 ×M2

ε ≥
∣

∣

∣

∣

∣

[F]dX,Y

[F ∗]dX,Y

− 1

∣

∣

∣

∣

∣

.

Therefore, [F]dX,Y ≤ (1 + ε) [F ∗]dX,Y , and for any distinguisher D

p
D

=
∑

τ=(Q,R)

1(Xτ ,Yτ)∈A Pr[Q] · [F]dXτ ,Yτ

≤
∑

τ=(Q,R)

1(Xτ ,Yτ)∈A Pr[Q] (1 + ε) [F ∗]dXτ ,Yτ
= (1 + ε) p∗

D
≤ p∗

D
+ ε

Hence, p
D
− p∗

D
≤ ε. If p

D
− p∗

D
≥ 0, then AdvF

ATK(d)
D (F) = p

D
− p∗

D
≤ ε. Otherwise, we can

construct another distinguisher D′ which returns inverse answers as D, i.e. accepts whenever D
rejects, and vice versa. For this distinguisher p

D′ = 1 − p
D

. Similarly, p∗
D′

= 1 − p∗
D

. Therefore,

AdvF
ATK(d)
D (F) = p∗

D
− p

D
= p

D′ − p∗
D′

, and since the above inequality holds for any
distinguisher, it is also less or equal to ε. Consequently,

AdvFATK(d)(F) = max
D

{

AdvF
ATK(d)
D (F)

}

≤ ε.

A similar theorem holds also for permutations.

Theorem 3.1.8 Let C be a cipher on M, and d an integer. Then for any class of attacks ATK,

AdvCATK(d)(C) ≤ DecCd
N∞

(C).

Proof: The proof is similar to the one of the previous theorem and is omitted.

Although this result is general for any class of attacks, N∞ is not a matrix norm, thus Theorem 2.4.4
cannot be applied. In the following chapters we derive norms for individual attacks. They give exacter
bounds on the advantage, and all of them are matrix norms. Furthermore, we study the attacks more
generally, considering distinguishers between any two fixed random functions F1 and F2 with the same
domain and range (we do not limit ourselves to comparison with a perfect random function).

3.2. KNOWN PLAINTEXT ATTACK 23

3.2 Known Plaintext Attack

The known plain attack is the simplest and least powerful type of attack — the attacker may access some
independent randomly chosen plaintext-ciphertext pairs. A d-limited distinguisher D for a known plaintext
attack between two independent random functions F1 and F2 defined from a set M1 to a set M2 obtains d
pairs of inputs and outputs, and has to decide which of the functions was implemented. It works as follows:

DISTINGUISHER 3.1 (KPA): d-limited known-plaintext-attack distinguisher

1. Get X = (x1, . . . , xd), and Y = (Fi(x1), . . . , Fi(xd)), where i ∈ {1, 2}, and x1, . . . , xd are pairwise
different and uniformly distributed on M1.

2. Depending on X and Y , output “accept” if you “think” the oracle implements F1 or “reject” other-
wise.

Let A be the set of all pairs (X, Y) such that the distinguisher outputs “accept”. The probability that it
outputs “accept” when the oracle implements the function Fi (i = 1, 2) is

pi =
∑

X

Pr[X]
∑

Y

1(X,Y)∈A[Fi]
d
X,Y

Since the distinguisher gets a random set of d pairwise different xi’s,

pi =
∑

X

1

|M1|d
∑

Y

1(X,Y)∈A[Fi]
d
X,Y =

1

|M1|d
∑

X,Y

1(X,Y)∈A[Fi]
d
X,Y

Hence, the advantage of the distinguisher is

Adv
KPA(d)
D (F1, F2) = |p1 − p2| =

1

|M1|d

∣

∣

∣

∣

∣

∣

∑

X,Y

1(X,Y)∈A

(

[F1]
d
X,Y − [F2]

d
X,Y

)

∣

∣

∣

∣

∣

∣

≤ 1

|M1|d
∑

X,Y

1(X,Y)∈A

∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣

The advantage is maximal if A contains all pairs (X, Y) such that [F1]
d
X,Y − [F2]

d
X,Y have the same sign.

In that case,

AdvKPA(d)(F1, F2) =
1

|M1|d
∑

X,Y

1(X,Y)∈A

∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣

Theorem 3.2.1 Let F1 and F2 be two independent random functions from a set M1 to a set M2, and d be
an integer. Then

AdvKPA(d)(F1, F2) =
1

2 |M1|d
∥

∥[F1]
d − [F2]

d
∥

∥

1
.

Proof: Since
∑

Y Pr[Fi(X) = Y] = 1 for any X , then
∑

X,Y ([F1]
d
X,Y − [F2]

d
X,Y) = 0, and from the

definition of A (the terms have the same sign), it follows that
∑

X,Y

1(X,Y)/∈A|[F1]
d
X,Y − [F2]

d
X,Y | =

∑

X,Y

1(X,Y)∈A|[F1]
d
X,Y − [F2]

d
X,Y |

Therefore,
∥

∥[F1]
d − [F2]

d
∥

∥

1
=
∑

X,Y

∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣

=
∑

X,Y

1(X,Y)∈A

∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣+
∑

X,Y

1(X,Y)/∈A

∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣

= 2
∑

X,Y

1(X,Y)∈A

∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣

= 2 |M1|d AdvKPA(d)(F1, F2)

24 CHAPTER 3. GENERAL ATTACKS

Corollary 3.2.2 Let F be a random function from M1 to M2, and d be an integer. Then

AdvFKPA(d)(F) =
1

2 |M1|d
DecF d

‖·‖1
(F).

Similar theorems for the advantage of ciphers can be proved.

Theorem 3.2.3 Let C1 and C2 be two independent ciphers on a set M, and d be an integer. Then

AdvKPA(d)(C1, C2) =
1

2 |M1|d
∥

∥[C1]
d − [C2]

d
∥

∥

1

Proof: The proof is similar to the one of the previous theorem and is omitted.

Corollary 3.2.4 Let C be a cipher on a set M, and d be an integer. Then

AdvCKPA(d)(C) =
1

2 |M1|d
DecCd

‖·‖1
(C).

Known Plaintext Attack Against Unbalanced Feistel Networks

In this subsection we examine security of the two-round unbalanced Feistel network (UFN) against the
known plaintext attack.

Theorem 3.2.5 Let F ∗
1 , F ∗

2 be two independent perfect random functions, F ∗
1 from M2 to M1 and F ∗

2

from M1 to M2, Ψ[F ∗
1 , F ∗

2] a two-round UFN on M = M1 ×M2, and d an integer. Then

AdvCKPA(d)(Ψ[F ∗
1 , F ∗

2]) ≤ d2

min{|M1|, |M2|}

Proof: The proof is based on the technique introduced in [16].

Any d-limited known-plaintext-attack distinguisher has access to d plaintext/ciphertext pairs
(x1, y1), . . . , (xd, yd). When the oracle implements the unbalanced Feistel network, the ciphertexts
are calculated as depicted on the following figure.

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F

Lk Rk

L′
k R′

k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .

F ∗
1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

xk = [Lk, Rk]

yk = [L′
k, R′

k]

L′
k = Sk = Lk ⊕ F ∗

1 (Rk)

R′
k = Rk ⊕ F ∗

2 (Sk)

If all Rk’s are pairwise distinct, then the sequence of all Sk’s (and thus also of all L′
k’s) is perfectly

random, because the function F ∗
1 is perfectly random. If all Sk’s are pairwise distinct, then the

sequence of R′
k’s is also perfectly random, because the function F ∗

2 is perfectly random. If both
sequences (of L′

k’s and of R′
k’s) are perfectly random, then sequence of Yk = [L′

k, R′
k] is also

perfectly random. In this case, output of the cipher Ψ looks like a perfect cipher.

Without loss of generality, we may assume that all xk’s are pairwise distinct. Since xk’s are
uniformly distributed, then for all k 6= l, Pr[Rk = Rl] = 1

|M2|
.

If Rk = Rl then Lk 6= Ll (since xk 6= xl), and thus Sk = Lk + F ∗
1 (Rk) 6= Ll + F ∗

1 (Rl) = Sl, what
means that Pr[Sk = Sl] = 0. If Rk 6= Rl then the probability that Sk = Sl is 1

|M1|
, since F ∗

1 (Rk)

and F ∗
1 (Rl) are independent and perfectly random. Therefore, Pr[Sk = Sl] ≤ 1

|M1|
.

Whenever the distinguisher gets inputs x1, . . . , xd such that the sequence of Yi’s is perfectly
random, it cannot distinguish them, and returns the same value whether the oracle implements
Ψ[F ∗

1 , F ∗
2] or C∗. Hence, from Theorem 2.2.3:

3.3. CHOSEN PLAINTEXT ATTACK 25

AdvCKPA(d)(Ψ[F ∗
1 , F ∗

2]) ≤ 1 − Pr[∀ k 6= l : Rk 6= Rl ∧ Sk 6= Sl]

= Pr[∃ k 6= l : Rk = Rl ∨ Sk = Sl]

≤ Pr[∃ k 6= l : Rk = Rl] + Pr[∃ k 6= l : Sk = Sl]

≤
(

d

2

)

1

|M2|
+

(

d

2

)

1

|M1|

≤ 2

(

d

2

)

1

min{|M1|, |M2|}
=

d2

min{|M1|, |M2|}

Corollary 3.2.6 (Corollary 3.2.4) Let F ∗
1 , and F ∗

2 be two independent perfect random functions, F ∗
1 from

a set M1 to a set M2 and F ∗
2 from M2 to M1, and d be an integer. Then

DecCd
‖·‖1

(Ψ[F ∗
1 , F ∗

2]) ≤ 2
d2

min{|M1|, |M2|}
.

3.3 Chosen Plaintext Attack

The chosen plaintext attack is more advantageous for an attacker than the known plaintext attack, because
he can choose messages which are encrypted for him. A d-limited chosen-plaintext-attack distinguisher D
between two independent random functions F1 and F2 from a set M1 to a set M2 works as follows:

DISTINGUISHER 3.2 (CPA): d-limited chosen-plaintext-attack distinguisher [21]

1. Choose plaintext messages X = (x1, . . . , xd).

2. Query the oracle with X , and get Y = (Fi(x1), . . . , Fi(xd)), where i ∈ {1, 2}.

3. Depending on X and Y , output “accept” if you “think” the oracle implements F1 or “reject” other-
wise.

Let A be again the set of all pairs (X, Y) such that the distinguisher outputs “accept”. The probability
that it outputs “accept” when the oracle implements the function Fi (i = 1, 2) is

pi =
∑

X

Pr[X]
∑

Y

1(X,Y)∈A[Fi]
d
X,Y

and the advantage of the distinguisher is

Adv
CPA(d)
D (F1, F2) = |p1 − p2| =

∣

∣

∣

∣

∣

∑

X

Pr[X]
∑

Y

1(X,Y)∈A

(

[F1]
d
X,Y − [F2]

d
X,Y

)

∣

∣

∣

∣

∣

≤
∑

X

Pr[X]
∑

Y

1(X,Y)∈A

∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣

The advantage is maximal when A contains all pairs (X, Y) such that [F1]
d
X,Y − [F2]

d
X,Y have the same

sign and when Pr[X] = 1 for the best choice. In that case,

AdvCPA(d)(F1, F2) = max
X

∑

Y

1(X,Y)∈A

∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣.

Lemma 3.3.1 Let D be the best d-limited chosen-plaintext-attack distinguisher. The distinguisher can
always choose X = (x1, . . . xd) with pairwise distinct xi’s in order to obtain the best advantage.

Proof: Without loss of generality we may assume that d ≤ |M1|, so that there are enough elements to
choose from. Let X = (x1, . . . xd) is such that

∑

Y 1(X,Y)∈A

∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣ is maximal. Let
there be c < d different xj ’s in X and σ be a monotone function from {0, . . . , c} to {0, . . . , d} such
that all xσ(j)’s are pairwise different. Further, if there is a pair (k, l) such that xk = xl and yk 6= yl

26 CHAPTER 3. GENERAL ATTACKS

then [Fi]
d
X,Y = 0. Otherwise, we can choose d − c new inputs x′

c+1, . . . , x
′
d distinct from

x1, . . . , xc, and since
∑

y Pr[Fi(x) = y] = 1 for any fixed x,

[Fi]
d
X,Y = Pr

d
∧

j=1

Fi(xj) = yj

 = Pr

c
∧

j=1

Fi(xσ(j)) = yσ(j)

=
∑

y′
c+1,...,y′

d

Pr

c
∧

j=1

Fi(xσ(j)) = yσ(j) ∧
d
∧

j=c+1

Fi(x
′
j) = y′

j

=
∑

y′
c+1,...,y′

d

Pr

d
∧

j=1

Fi(x
′
j) = y′

j

 =
∑

y′
c+1,...,y′

d

[Fi]
d
X′,Y ′

with x′
j = xσ(j) and y′

j = yσ(j) for j = 1, . . . , c. The advantage for the new choice is

Adv
CPA(d)
D (F1, F2) =

∑

Y

∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣ =
∑

y′
1,...,y′

c

∣

∣

∣

∣

∣

∣

∑

y′
c+1,...,y′

d

[F1]
d
X′,Y ′ − [F2]

d
X′,Y ′

∣

∣

∣

∣

∣

∣

≤
∑

Y ′

∣

∣[F1]
d
X′,Y ′ − [F2]

d
X′,Y ′

∣

∣

Hence, we have a new choice of X with the advantage at least the same as the previous one.

Theorem 3.3.2 Let F1 and F2 be two independent random functions from a set M1 to a set M2, and d be
an integer. Then

AdvCPA(d)(F1, F2) =
1

2

∣

∣

∣

∣

∣

∣[F1]
d − [F2]

d.
∣

∣

∣

∣

∣

∣

∞

Proof: Since
∑

Y [Fi]
d
X,Y = 1 for any fixed X , then

∑

Y [F1]
d
X,Y − [F2]

d
X,Y = 0, and thus from the

definition of A (the terms have the same sign), it follows that for all X :
∑

Y

1(X,Y)/∈A

∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣ =
∑

Y

1(X,Y)∈A

∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣

Therefore,
∣

∣

∣

∣

∣

∣[F1]
d − [F2]

d
∣

∣

∣

∣

∣

∣

∞
= max

X

∑

Y

∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣

= max
X

{

∑

Y

1(X,Y)∈A

∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣

+
∑

Y

1(X,Y)/∈A

∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣

}

= max
X

2
∑

Y

1(X,Y)∈A

∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣

= 2 max
X

∑

Y

1(X,Y)∈A

∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣

= 2 AdvCPA(d)(F1, F2)

Corollary 3.3.3 Let F be a random function, and d be an integer. Then

AdvFCPA(d)(F) =
1

2
DecF d

|||·|||∞
(F).

Similar theorems hold also for the advantage of ciphers.

Theorem 3.3.4 Let C1 and C2 be two independent ciphers on a set M, and d be an integer. Then

AdvCPA(d)(C1, C2) =
1

2

∣

∣

∣

∣

∣

∣[C1]
d − [C2]

d.
∣

∣

∣

∣

∣

∣

∞

3.3. CHOSEN PLAINTEXT ATTACK 27

Proof: The proof is similar to the one of the previous theorem and is omitted.

Corollary 3.3.5 ([21]) Let C be a cipher, and d be an integer. Then

AdvCCPA(d)(C) =
1

2
DecCd

|||·|||∞
(C)

The following theorem evaluates the decorrelation distance between a perfect random permutation and a
perfect random function.

Theorem 3.3.6 Let C∗ be a perfect random permutation and F ∗ be a perfect random function on M, and
d <

√

|M| be an integer. Then

∣

∣

∣

∣

∣

∣[C∗]d − [F ∗]d
∣

∣

∣

∣

∣

∣

∞
= 2

(

1 − |M|d

|M|d

)

≤ d2

|M|

Proof: Let X be a fixed d-tuple (x1, . . . , xd). Let c be the number of distinct values among x1, . . . , xd.
Then for every Y = (y1, . . . , yd):

∣

∣[C∗]dX,Y − [F ∗]dX,Y

∣

∣ =

0 if ∃i, j : xi = xj ∧ yi 6= yj

1
|M|c

if ∀i, j : xi = xj ⇒ yi 6= yj ,
but ∃i, j : xi 6= xj ∧ yi = yj

1
|M|c − 1

|M|c if ∀i, j : xi = xj ⇔ yi = yj

Hence,
∑

Y

∣

∣[C∗]dX,Y − [F ∗]dX,Y

∣

∣ = |M|c
(

1
|M|c − 1

|M|c

)

+ (|M|c − |M|c) 1
|M|c = 2

(

1− |M|c

|M|c

)

.

Since for any c < d
|M|c

|M|c

|M|d

|M|d

=
|M|d−c

(|M| − c) . . . (|M| − d + 1)
> 1

(i.e. |M|c

|M|c > |M|d

|M|d
), then the greatest value one can obtain is when all xi’s are different.

In that case, 2 ·
(

1 − |M|d

|M|d

)

≤ 2 · d2

2|M| = d2

|M| .

Corollary 3.3.7 Let C∗ be a perfect random permutation and F ∗ be a perfect random function on M, and
d <

√

|M| be an integer. Then

AdvCCPA(d)(F ∗) = AdvFCPA(d)(C∗) ≤ d2

2|M| .

Proof: Follows from Theorem 3.3.6, and Corollary 3.3.3 or Corollary 3.3.5.

Chosen Plaintext Attack Against Unbalanced Feistel Networks

In the previous section we proved that in the random oracle model two-round UFNs are secure against
known plaintext attacks with a reasonable number of queries. Here we show that UFNs are not secure
against chosen plaintext attack.

Theorem 3.3.8 ([14]) Let F1 and F2 be any two independent random functions — F1 from a set M2 to a
set M1 and F2 from M1 to M2. Then Ψ[F1, F2] is not secure against the chosen plaintext attack.

Proof: There is a 2-limited chosen-plaintext-attack distinguisher between Ψ[F1, F2] and a perfect cipher:

DISTINGUISHER 3.3 (D): 2-limited CPA distinguisher for Ψ[F1, F2]

1. Choose two plaintexts such that x1 = [L1, R], and x2 = [L2, R].

2. Get y1 = [L′
1, R

′
1], and y2 = [L′

2, R
′
2].

If the oracle implements Ψ, then

yi = Ψ[F1, F2](xi) = [Li ⊕ F1(R), R ⊕ F2(Li ⊕ F1(R))] = [L′
i, R

′
i].

XOR of the left parts L′
1 ⊕ L′

2 of the ciphertexts is thus L1 ⊕ L2.

3. If L′
1 ⊕ L′

2 = L1 ⊕ L2 then output “accept”, otherwise output “reject”.

28 CHAPTER 3. GENERAL ATTACKS

If the oracle implements Ψ, then the distinguisher always “accepts”, i.e. p = 1. If the oracle
implements a perfect cipher, then the probability the distinguisher “accepts” is the same as the
probability that two random ciphertexts have the same left parts, i.e. p∗ = 1

|M1|
. The advantage of

the distinguisher is thus AdvC
CPA(2)
D (C) = 1 − 1

|M1|
.

By adding further plaintext, and following the same construction, a d-limited distinguisher with
advantage AdvC

CPA(d)
D (C) = 1 − 1

|M1|d−1 for any d ≥ 2 can be created.

3.4 Adaptive Chosen Plaintext Attack

Adaptive attacks are more powerful than non-adaptive ones, since the attacker may modify his choice
according to plaintext and ciphertext messages he obtains from the oracle. Luby and Rackoff defined in
their paper [14] that a cipher C is called pseudorandom if there is no d-limited adaptive-chosen-plaintext-
attack distinguisher between C and a perfect cipher for any d polynomial in lg(|M1|).

We will first consider a distinguisher between two general random functions. A d-limited adaptive-
chosen-plaintext-attack distinguisher between two independent random functions F1 and F2 from a set M1

to a set M2 works as follows:

DISTINGUISHER 3.4 (ACPA): d-limited adaptive-chosen-plaintext-attack distinguisher [21]

1. For k = 1 to d do

1.1 Choose a plaintext message xk , depending on the previous plaintexts and ciphertexts.

1.2 Query the oracle with xk , and get yk = Fi(xk), where i ∈ {1, 2}.

2. Depending on X = (x1, . . . , xd) and Y = (y1, . . . , yd), output “accept” if you “think” the oracle
implements F1 or “reject” otherwise.

Let A be again the set of all pairs (X, Y) such that the distinguisher outputs “accept”. The probability
that it outputs “accept” when the oracle implements the function Fi (i = 1, 2) is

pi =
∑

X,Y

1(X,Y)∈APr[x1] Pr[x2|x1, y1] . . . Pr[xd|x1, y1, . . . xd−1, yd−1] [Fi]
d
X,Y

and the advantage of the distinguisher is

Adv
ACPA(d)
D (F1, F2) = |p1 − p2|

=

∣

∣

∣

∣

∣

∣

∑

X,Y

1(X,Y)∈APr[x1] . . . Pr[xd|x1, y1, . . . xd−1, yd−1] ([F1]
d
X,Y − [F2]

d
X,Y)

∣

∣

∣

∣

∣

∣

≤
∑

X,Y

1(X,Y)∈APr[x1] . . . Pr[xd|x1, y1, . . . xd−1, yd−1]
∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣

The advantage is maximal when A contains all pairs (X, Y) such that [F1]
d
X,Y − [F2]

d
X,Y have the same

sign and when probabilities Pr[xi|x1, y1, . . . xi−1, yi−1] = 1 for the best choice. In that case,

AdvACPA(d)(F1, F2) = max
x1

∑

y1

max
x2

∑

y2

. . . max
xd

∑

yd

1(X,Y)∈A

∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣

Since the queries depend on the previous responses of the oracle, we can define a function f : Md
2 → Md

1

such that
AdvACPA(d)(F1, F2) =

∑

Y

1(X,Y)∈A|[F1]
d
f(Y),Y − [F2]

d
f(Y),Y |

i.e. X = f(Y) = [x1, . . . , xd] is the best choice of x1, . . . , xd for the fixed responses of the oracle Y .
Since the value of xi is fixed for given x1, y1, . . . , xi−1, yi−1,

∀ ỹi, . . . ỹd : xi = [f(Y)]i = [f(y1, . . . , yi−1, ỹi, . . . ỹd)]i

and we will write xi = f(y1, . . . , yi−1, ∗).

3.4. ADAPTIVE CHOSEN PLAINTEXT ATTACK 29

Lemma 3.4.1 Let D be the best d-limited adaptive-chosen-plaintext-attack distinguisher. The distinguisher
may always choose X = (x1, . . . xd) with pairwise distinct xi’s in order to obtain the best advantage.

Proof: Let Y be such that X = f(Y) = (x1, . . . , xd), that not all xi’s are distinct. Let k be the smallest
index such that there is l < k, and Y = (y1, . . . , yd), for which xk = xl. (Thus, for all Y and all
i, j < k: [f(Y)]i 6= [f(Y)]j .) Then for all Ỹ = (y1, . . . , yk−1, ỹk, . . . , ỹd), and for all i ≤ k:

xi = [f(y1, . . . , yk−1, ỹk, . . . , ỹd)]i

Furthermore, if ỹk 6= yl then [Fi]
d
f(Ỹ),Ỹ

= 0. Otherwise for any x′
d distinct from all [f(Y)]j’s

[Fi]
d
f(Ỹ),Ỹ

= Pr

d
∧

j=1

Fi([f(Ỹ)]j) = ỹj

 =
∑

y′
d

Pr

Fi(x
′
d) = y′

d ∧
∧

j∈{1,...,d}
i6=k

Fi([f(Ỹ)]j) = ỹj

=
∑

y′
d

Pr

d
∧

j=1

Fi([f
′(Y ′)]j) = y′

j

 =
∑

y′
d

[Fi]
d
f ′(Y ′),Y ′

where Y ′ = (y1, . . . , yk−1, ỹk+1, . . . , ỹd, y
′
d), and f ′ is a new function such that for any ỹk, . . . , ỹd

1. [f ′(y1, . . . , yj−1, ∗)]j = xj for all j ≤ k

2. [f ′(y1, . . . , yk−1, ỹk, . . . , ỹj−1, ∗)]j = [f(y1, . . . , yk−1, yl, ỹk, . . . , ỹj−1, ∗)]j+1, for all
k < j < d

3. [f ′(y1, . . . , yk−1, ỹk, . . . , ỹd−1, ∗)]d = x′
d(Y), where x′

d(Y) is a new value, different from all
xi = f ′(Y), for all Y = (y1, . . . , yk−1, ỹk, . . . , ỹd−1, ∗)

4. [f ′(ỹ1, . . . , ỹk−1, ỹk, . . . , ỹd)]j = [f(ỹ1, . . . , ỹk−1, ỹk, . . . , ỹd)]j , for all other values

Therefore, for a fixed values of y1, . . . , yk−1

∑

ỹk,...,ỹd

Ỹ =(y1,...,yk−1,ỹk,...,ỹd)

1(f(Ỹ),Ỹ)∈A

∣

∣

∣[F1]
d
f(Ỹ),Ỹ

− [F2]
d
f(Ỹ),Ỹ

∣

∣

∣

=
∑

ỹk+1,...,ỹd

Ỹ =(y1,...,yk−1,yl,ỹk+1,...,ỹd)

1(f(Ỹ),Ỹ)∈A

∣

∣

∣[F1]
d
f(Ỹ),Ỹ

− [F2]
d
f(Ỹ),Ỹ

∣

∣

∣

≤
∑

ỹk+1,...,ỹd

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

y′
d

Y ′=(y1,...,yk−1,ỹk,...,ỹd,y′
d)

1(f(Y ′),Y ′)∈A

(

[F1]
d
f(Y ′),Y ′ − [F2]

d
f(Y ′),Y ′

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∑

ỹk,...,ỹd

Y ′=(y1,...,yk−1,ỹk,...,ỹd)

1(f ′(Y ′),Y ′)∈A

∣

∣

∣[F1]
d
f ′(Y ′),Y ′ − [F2]

d
f ′(Y ′),Y ′

∣

∣

∣

and

Adv
ACPA(d)
D (F1, F2) =

∑

Y

1(f(Y),Y)∈A

∣

∣

∣[F1]
d
f(Y),Y − [F2]

d
f(Y),Y

∣

∣

∣

≤
∑

Y

1(f ′(Y),Y)∈A

∣

∣

∣[F1]
d
f ′(Y),Y − [F2]

d
f ′(Y),Y

∣

∣

∣

Repeating this construction we get a new choice with all xi’s different and with advantage greater or
equal to the previous one. Consequently, we may assume that the best distinguisher always uses
different queries

Theorem 3.4.2 ([25]) Let F1 and F2 be two independent random functions from a set M1 to a set M2,
and d be an integer. Then

AdvACPA(d)(F1, F2) =
1

2

∥

∥[F1]
d − [F2]

d
∥

∥

a

30 CHAPTER 3. GENERAL ATTACKS

Proof: Since for a fixed x1, . . . , xk and y1 . . . , yk−1, it holds
∑

yk
Pr
[

∧k
i=1 Fi(xi) = yi

]

= Pr
[

∧k−1
i=1 Fi(xi) = yi

]

, then

∑

Y

[Fi]
d
f(Y),Y =

∑

Y

Pr

d
∧

j=1

Fi([f(Y)]j) = yj

=
∑

y1,...,yd−1

∑

yd

Pr

d
∧

j=1

Fi([f(y1, . . . , yj−1, ∗)]j) = yj

=
∑

y1,...,yd−1

Pr

d−1
∧

j=1

Fi([f(y1, . . . , yj−1, ∗)]j) = yj

. . .

=
∑

y1

Pr [Fi([f(∗)]1) = y1] = 1

Therefore,
∑

Y [F1]
d
f(X),Y − [F2]

d
f(X),Y = 0, and

∑

Y

1(f(Y),Y)∈A

∣

∣

∣[F1]
d
f(X),Y − [F2]

d
f(X),Y

∣

∣

∣ =
∑

Y

1(f(Y),Y)/∈A

∣

∣

∣[F1]
d
f(X),Y − [F2]

d
f(X),Y

∣

∣

∣

Hence,
∥

∥[F1]
d − [F2]

d
∥

∥

a
= max

x1

∑

y1

max
x2

∑

y2

. . . max
xd

∑

yd

∣

∣[F1]
d
X,Y − [F2]

d
X,Y

∣

∣

=
∑

Y

∣

∣

∣[F1]
d
f(Y),Y − [F2]

d
f(Y),Y

∣

∣

∣

=
∑

Y

1(f(Y),Y)∈A

∣

∣

∣[F1]
d
f(Y),Y − [F2]

d
f(Y),Y

∣

∣

∣

+
∑

Y

1(f(Y),Y)/∈A

∣

∣

∣
[F1]

d
f(Y),Y − [F2]

d
f(Y),Y

∣

∣

∣

= 2
∑

Y

1(f(Y),Y)∈A

∣

∣

∣[F1]
d
f(Y),Y − [F2]

d
f(Y),Y

∣

∣

∣

= 2 AdvACPA(d)(F1, F2)

Corollary 3.4.3 Let F be a random function, and d be an integer. Then

AdvFACPA(d)(F) =
1

2
DecF d

‖·‖
a
(F).

Similar theorems hold also for permutations.

Theorem 3.4.4 Let C1 and C2 be two independent random permutations on a set M, and d be an integer.
Then

AdvACPA(d)(C1, C2) =
1

2

∥

∥[C1]
d − [C2]

d
∥

∥

a

Corollary 3.4.5 Let C be a cipher, and d be an integer. Then

AdvCACPA(d)(C) =
1

2
DecCd

‖·‖a
(C)

Like for the chosen plaintext attack, we evaluate here the distance between a perfect random function
and a perfect random permutation in the adaptive chosen plaintext attack.

Theorem 3.4.6 Let C∗ be a perfect cipher and F ∗ be a perfect random function on M, and d <
√

|M|
be an integer. Then

∥

∥[C∗]d − [F ∗]d
∥

∥

a
= 2

(

1 −
∣

∣Md
∣

∣

|Md|

)

≤ d2

|M| .

3.4. ADAPTIVE CHOSEN PLAINTEXT ATTACK 31

Proof: Let A = [C∗]d − [F ∗]d. For any fixed X = (x1, . . . , xd) with c distinct values among
x1, . . . , xd, and for any Y = (y1, . . . , yd):

|AX,Y | =

0 if ∃i, j : xi = xj ∧ yi 6= yj

1
|M|c

if ∀i, j : xi = xj ⇒ yi 6= yj ,
but ∃i, j : xi 6= xj ∧ yi = yj

1
|M|c − 1

|M|c if ∀i, j : xi = xj ⇔ yi = yj

Thus, there are only two distinct non-zero values in the matrix A. In the following, we first proof
which of the two values is greater, then we introduce a function which, as we show later, simulates
the calculation of the norm ‖A‖a, then we show how the xi’s have to be chosen in order to get the
maximal values in the norm, and at last we evaluate the norm.

A. 1
|M|c > 1

|M|c − 1
|M|c :

1
|M|c −

(

1
|M|c − 1

|M|c

)

= 2
|M|c − 1

|M|c = 1
|M|c

(

2 |M|c

|M|c − 1
)

≥
1

|M|c

[

2
(

1 − c2

2 |M|

)

− 1
]

= 1
|M|c

[

1 − c2

|M|

]

> 0

B. Let S(k, c) be defined as follows:

1. S(0, c) = 1
|M|c − 1

|M|c

2. S(k, c) = c · 1
|M|c+1 + (|M| − c) · S(k − 1, c + 1)

Then the closed formula for S is

S(k, c) =

k−1
∑

i=0

(c + i) · (|M| − c)i · 1

|M|c+i+1
+ (|M| − c)k ·

(

1

|M|c+k
− 1

|M|c+k

)

(3.1)

and S(k, c) < S(k + 1, c) for any constant c.
Proof (by induction on k):

1. • S(0, c) =
∑−1

i=0(c + i) · (|M| − c)i · 1
|M|c+i+1 + (|M| − c)0 ·

(

1
|M|c − 1

|M|c

)

=
1

|M|c − 1
|M|c

• S(1, c) =
∑0

i=0(c + i) · (|M|− c)i · 1
|M|c+i+1 + (|M|− c)1 ·

(

1
|M|c+1 − 1

|M|c+1

)

=

c · 1
|M|c+1 + (|M| − c) ·

(

1
|M|c+1 − 1

|M|c+1

)

= c · 1
|M|c+1 + (|M| − c) · S(0, c + 1)

• S(1, c) = c · 1
|M|c+1 + (|M| − c) ·

(

1
|M|c+1 − 1

|M|c+1

)

=

c ·
(

1
|M|c+1 −

(

1
|M|c+1 − 1

|M|c+1

))

+ |M|

|M|c+1 − |M|

|M|c+1

A
> |M|

|M|c+1 − |M|

|M|c+1 >

|M|−c

|M|c+1 − 1
|M|c = 1

|M|c − 1
|M|c = S(0, c)

2. Assume that Equation (3.1) is correct for all k < k0 for a constant k0, and that for any c,
S(k − 1, c) < S(k, c).

3. • S(k + 1, c) = c · 1
|M|c+1 + (|M| − c) · S(k, c + 1) =

c · 1
|M|c+1 + (|M| − c) ·

[

∑k−1
i=0 (c + i + 1) · (|M| − c − 1)i · 1

|M|c+i+2 +

(|M| − c − 1)k ·
(

1
|M|c+k+1 − 1

|M|c+k+1

)]

=

c · 1
|M|c+1 + (|M| − c) ·

[

∑k
i=1(c + i) · (|M| − c − 1)i−1 · 1

|M|c+i+1 +

(|M| − c − 1)k ·
(

1
|M|c+k+1 − 1

|M|c+k+1

)]

= c · (|M| − c)0 1
|M|c+1 +

∑k
i=1(c + i) ·

(|M| − c)i · 1
|M|c+i+1 + (|M| − c)k+1 ·

(

1
|M|c+k+1 − 1

|M|c+k+1

)

=
∑k

i=0(c + i) · (|M| − c)i · 1
|M|c+i+1 + (|M| − c)k+1 ·

(

1
|M|c+k+1 − 1

|M|c+k+1

)

• Since

S(k, c) = c · 1

|M|c+1 + (|M| − c) · S(k − 1, c + 1)

S(k + 1, c) = c · 1

|M|c+1 + (|M| − c) · S(k, c + 1)

32 CHAPTER 3. GENERAL ATTACKS

and from the induction assumption S(k − 1, c + 1) < S(k, c + 1) then
S(k, c) < S(k + 1, c) as well.

Recall that

‖A‖a =

max
x1

∑

y1

‖πx1,y1(A)‖a, d > 1,

max
x1

∑

y1

Ax1,y1 , d = 1,

In the following, we show how to choose the individual xi’s. We start with the smallest size (1), i.e.
when all x1, . . . , xd−1 are already fixed, and then continue by induction.

1. Let x1, . . . , xd−1 and y1, . . . , yd−1 be fixed. Let c be the number of distinct values among
x1, . . . , xd−1. And let B = πx1,y1πx2,y2 . . . πxd−1,yd−1

(A). Then

Case I(d – 1, c): If ∃i, j ≤ d − 1 such that xi = xj and yi 6= yj (i.e. there is no such
permutation or function) then B is a zero matrix, and thus for any xd,

∑

yd
Bxd,yd

= 0. It
means that choosing any value for xd the result will not change.

Case II(d – 1, c): If ∀i, j ≤ d − 1, xi = xj ⇒ yi = yj , but ∃i, j ≤ d − 1 such that xi 6= xj

and yi = yj (i.e. there is a function, but no permutation)

a) If we choose xd so that ∃j : xd = xj then

• if yd 6= yj then Bxd,yd
= 0

• if yd = yj then Bxd,yd
= 1

|M|c

Hence,
∑

yd
Bxd,yd

= 1
|M|c

b) If xd /∈ {x1, . . . , xd−1}, it adds a new distinct value, and thus all elements in the row
are 1

|M|c+1 . Hence,
∑

yd
Bxd,yd

= |M| · 1
|M|c+1 = 1

|M|c

It means that in this case one can choose any value for xd as well.

Case III(d – 1, c): If ∀i, j ≤ d − 1, xi = xj ⇔ yi = yj (i.e. there is a function as well as a
permutation)

a) If we choose xd so that ∃j : xd = xj then

• if yd 6= yj then Bxd,yd
= 0

• if yd = yj then Bxd,yd
= 1

|M|c − 1
|M|c

Hence,
∑

yd
Bxd,yd

= 1
|M|c − 1

|M|c
(B)
= S(0, c)

b) If xd /∈ {x1, . . . , xd−1}, it adds a new distinct value

• if yd = yj then there is no such permutation, and thus Bxd,yd
= 1

|M|c+1

• if yd 6= yj then Bxd,yd
= 1

|M|c+1 − 1
|M|c+1

Hence,
∑

yd
Bxd,yd

= c · 1
|M|c+1 + (|M| − c) ·

(

1
|M|c+1 − 1

|M|c+1

)

(B)
= S(1, c)

Since S(0, c) < S(1, c), in this case one has to choose a distinct xd in order to get the
better result.

2. Let x1, . . . , xk and y1, . . . , yk be fixed. Let c be number of distinct values among x1, . . . , xk.
And let B = πx1,y1πx2,y2 . . . πxk ,yk

(A). Assume that

Case I(k, c): If ∃i, j ≤ k such that xi = xj and yi 6= yj (i.e. there is no such permutation or
function) then for any xk+1,

∑

yk+1

∥

∥πxk+1,yk+1
(B)
∥

∥

a
= 0. It means that in this case one

can choose any value for xk+1.

Case II(k, c): If ∀i, j ≤ k, xi = xj ⇒ yi = yj , but ∃i, j ≤ k such that xi 6= xj and yi = yj

(i.e. there is a function, but no permutation)

a) If ∃j : xk+1 = xj then
∑

yk+1

∥

∥πxk+1,yk+1
(B)
∥

∥

a
= 1

|M|c

b) If xk+1 /∈ {x1, . . . , xk},
∑

yk+1

∥

∥πxk+1,yk+1
(B)
∥

∥

a
= 1

|M|c

It means that in this case one can choose any value for xk+1 as well.

Case III(k, c): ∀i, j ≤ k, xi = xj ⇔ yi = yj (i.e. there is a function as well as a
permutation).

a) If ∃j : xk+1 = xj then
∑

yk+1

∥

∥πxk+1,yk+1
(B)
∥

∥

a
= S(d − k − 1, c)

b) If xk+1 /∈ {x1, . . . , xk} then
∑

yk+1

∥

∥πxk+1,yk+1
(B)
∥

∥

a
= S(d − k, c)

3.4. ADAPTIVE CHOSEN PLAINTEXT ATTACK 33

Since S(d− k − 1, c) < S(d− k, c), one has to choose a different xk+1 in order to get the
better result.

3. Let x1, . . . , xk−1 and y1, . . . , yk−1 be fixed. Let c be number of distinct values among
x1, . . . , xk−1. And let B = πx1,y1πx2,y2 . . . πxk−1,yk−1

(A). Then

Case I(k – 1, c): If ∃i, j ≤ k − 1 such that xi = xj and yi 6= yj (i.e. there is no such
permutation or function) then B is a zero matrix, and thus for any xk,
∑

yk
‖πxk,yk

(B)‖a = 0. It means that in this case one can choose any value for xk.

Case II(k – 1, c): If ∀i, j ≤ k − 1, xi = xj ⇒ yi = yj , but ∃i, j ≤ k − 1 such that xi 6= xj

and yi = yj (i.e. there is a function, but no permutation)

a) If we choose xd so that ∃j : xk = xj then

• if yk 6= yj then πxk,yk
Bxk,yk

is a zero matrix (i.e. I(k, c)), and
‖πxk,yk

(B)‖a = 0

• if yk = yj then (II(k, c)) ‖πxk,yk
(B)‖a = 1

|M|c

Hence,
∑

yk
‖πxk,yk

(B)‖a = 1
|M|c

b) If xk /∈ {x1, . . . , xk−1}, it adds a new distinct value, and for any choice of yd (II(k,
c + 1)) πxk,yk

Bxk,yk
= 1

|M|c+1 Hence,
∑

yk
‖πxk ,yk

(B)‖a = |M| · 1
|M|c+1 = 1

|M|c

It means that in this case one can choose any value for xk as well.

Case III(k – 1, c): If ∀i, j ≤ k − 1, xi = xj ⇔ yi = yj (i.e. there is a function as well as a
permutation)

a) If we choose xd so that ∃j : xk = xj then

• if yk 6= yj then (I(k, c)) ‖πxk ,yk
(B)‖a = 0

• if yk = yj then (III(k, c)) ‖πxk,yk
(B)‖a = S(d − k, c)

Hence,
∑

yk
‖πxk,yk

(B)‖a = S(d − k, c)

b) If xk /∈ {x1, . . . , xk−1}, it adds a new distinct value

• if yk = yj then (II(k, c + 1)) ‖πxk,yk
(B)‖a = 1

|M|c+1

• if yk 6= yj then (III(k, c + 1)) ‖πxk ,yk
(B)‖a = S(d − k, c + 1)

Hence,
∑

yk
‖πxk ,yk

(B)‖a = c · 1
|M|c+1 + (|M| − c) · S(d − k, c + 1)

(B)
= S(d − k + 1, c)

Since S(d− k, c) < S(d− k + 1, c), one has to choose a different xk+1 in order to get the
better result.

At the beginning we have to choose x1, y1, and in order to get the best result, we have to start the
process in III(1, 1). Therefore, for any y1, we get S(d − 1, 1), and thus
‖A‖a =

∑

y1
πx1,y1Ax1,y1 = |M| · S(d − 1, 1) =

|M| ·
[

∑d−2
i=0 (i + 1) · (|M| − 1)i · 1

|M|i+2 + (|M| − 1)d−1 ·
(

1
|M|d

− 1
|M|d

)]

=

|M| ·
[

∑d−1
i=1 i · (|M| − 1)i−1 · 1

|M|i+1 + (|M| − 1)d−1 ·
(

1
|M|d

− 1
|M|d

)]

=
∑d−1

i=1 i · |M|i

|M|i+1 + |M|d ·
(

1
|M|d

− 1
|M|d

)

= 1
|M| ·

∑d−1
i=0 i · |M|i

|M|i
+
(

1 − |M|d

|M|d

)

Now, we show (by induction) that 1
|M| ·

∑d−1
i=1 i · |M|i

|M|i
= 1 − |M|d

|M|d

1. d = 1 :

• 1
|M| ·

∑0
i=0 i · |M|i

|M|i
= 0

• 1 − |M|1

|M|1
= 1 − |M|

|M| = 0

2. Assume that 1
|M| ·

∑k−1
i=1 i · |M|i

|M|i
= 1 − |M|k

|M|k

3. For k + 1: 1
|M| ·

∑k
i=1 i · |M|i

|M|i
= 1

|M| ·
∑k−1

i=1 i · |M|i

|M|i
+ 1

|M| · k · |M|k

|M|k
=

1 − |M|k

|M|k
+ k·|M|k

|M|k+1 = 1 − |M|k(|M|−k)

|M|k+1 = 1 − |M|k+1

|M|k+1

Hence, the greatest value, one can obtain, is:
1

|M| ·
∑d−1

i=0 i · |M|i

|M|i
+
(

1 − |M|d

|M|d

)

= 2
(

1 − |M|d

|M|d

)

≤ 2 d2

2 |M| = d2

|M|

34 CHAPTER 3. GENERAL ATTACKS

Corollary 3.4.7 Let C∗ be a perfect cipher and F ∗ be a perfect random function on M, and d <
√

|M|
be an integer. Then

AdvCACPA(d)(F ∗) = AdvFACPA(d)(C∗) ≤ d2

2|M|
Proof: Follows from Theorem 3.4.6, and Corollary 3.4.3, or Corollary 3.4.5.

Adaptive Chosen Plaintext Attack Against Unbalanced Feistel Networks

In this subsection we examine security of three-round UFNs in the random oracle model against the adaptive
chosen plaintext attack.

Theorem 3.4.8 ([25]) Let F ∗
1 , F ∗

2 , F ∗
3 be three independent perfect random functions, F ∗

1 and F ∗
3 from M2

to M1 and F ∗
2 from M1 to M2, Ψ[F ∗

1 , F ∗
2 , F ∗

3] a 3-round UFN, and d an integer. Then,

AdvCACPA(d)(Ψ[F ∗
1 , F ∗

2 , F ∗
3]) ≤ d2

min{|M1|, |M2|}
Proof: The proof is based on the technique introduced in [16].

Any d-limited known-plaintext-attack distinguisher has access to d plaintext/ciphertext pairs
(x1, y1), . . . , (xd, yd). When the oracle implements the unbalanced Feistel network, the ciphertexts
are calculated as depicted on the following figure.

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F

Lk Rk

L′
k R′

k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .

F ∗
1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

xk = [Lk, Rk]

yk = [L′
k, R′

k]

Sk = Lk ⊕ F ∗
1 (Rk)

R′
k = Tk = Rk ⊕ F ∗

2 (Sk)

L′
k = Sk ⊕ F ∗

3 (Tk)

If all Sk’s are pairwise distinct, then the Tk’s are perfectly random, since the function F ∗
2 is perfectly

random. If all Tk’s (and thus also R′
k’s) are pairwise distinct, then L′

k’s are also perfectly random,
since the function F ∗

3 is perfectly random. Consequently, if all Sk’s and Tk’s are pairwise different,
then yk = [L′

k, R′
k] are perfectly random. In that case, the cipher Ψ looks like a perfect cipher.

Without loss of generality, we may assume that all xk’s chosen by the distinguisher are distinct. In
that case, for any k 6= l:

• If Rk = Rl then Lk 6= Ll (since xk 6= xl), and thus Sk = Lk + F ∗
1 (Rk) 6= Ll + F ∗

1 (Rl) = Sl,
and Pr[Sk = Sl] = 0.

• If Rk 6= Rl then the probability that Sk = Sl is 1
|M1|

, since F ∗
1 (Rk) and F ∗

1 (Rl) are
independent and random.

Therefore, Pr[Sk = Sl] ≤ 1
|M1|

.

After the first round, the input into the second round is [Sk, Rk] and [Sl, Rl]. As shown, either
Rk 6= Rl, or when Rk = Rl then Sk 6= Sl. Thus, we may continue with the same technique as for
the first round, and get Pr[Tk = Tl] ≤ 1

|M2|
. Hence, from Theorem 2.2.3

AdvCACPA(d)(Ψ[F ∗
1 , F ∗

2 , F ∗
3]) ≤ 1 − Pr[∀ k 6= l : Sk 6= Sl ∧ Tk 6= Tl]

= Pr[∃ k 6= l : Sk = Sl ∨ Tk = Tl]

≤ Pr[∃ k 6= l : Sk = Sl] + Pr[∃ k 6= l : Tk = Tl]

≤
∑

1≤k<l≤d

Pr[Sk = Sl] +
∑

1≤k<l≤d

Pr[Tk = Tl]

=

(

d

2

)

1

|M1|
+

(

d

2

)

1

|M2|

≤ 2

(

d

2

)

1

min{|M1|, |M2|}
=

d2

min{|M1|, |M2|}

3.5. CHOSEN CIPHERTEXT ATTACK 35

Note that adding a new round with any round function (even a weak one) before the first round
cannot increase the advantage, because we only need the property of pairwise difference of Sk’s,
which is preserved.

Corollary 3.4.9 Let F ∗
1 , F ∗

2 , F ∗
3 be three independent perfect random functions, F ∗

1 and F ∗
3 from a set M2

to a set M1 and F ∗
2 from M1 to M2, Ψ[F ∗

1 , F ∗
2 , F ∗

3] a 3-round UFN, and d an integer. Then

DecCd
‖·‖

a
(Ψ[F ∗

1 , F ∗
2 , F ∗

3]) ≤ 2
d2

min{|M1|, |M2|}
Corollary 3.4.10 Let F1, . . . , Fr be r ≥ 3 independent random functions, Fi for all odd i from a set M2

to a set M1, and Fi for all even i from M1 to M2 such that AdvF ACPA(d)(Fi) ≤ ε, and d be an integer.
Then

AdvCACPA(d)(Ψ[F1, . . . , Fr]) ≤
1

2

[

2

(

3ε +
d2

min{|M1|, |M2|}

)]b r
3 c

Proof: Follows from Theorem 2.4.4 and 2.4.2, and from the note at the end of the proof of Theorem
3.4.8.

3.5 Chosen Ciphertext Attack

The chosen ciphertext attack is similar to the chosen plaintext attack with the difference that the attacker
may choose several ciphertexts, rather than plaintexts. A d-limited chosen-ciphertext-attack distinguisher
D between two independent random permutations C1 and C2 on a set M works as follows:

DISTINGUISHER 3.5 (CCA): d-limited chosen-plaintext-attack distinguisher

1. Choose ciphertext messages Y = (y1, . . . , yd).

2. Query the oracle with Y , and get X = (C−1
i (y1), . . . , C

−1
i (yd)), where i ∈ {1, 2}.

3. Depending on X and Y , output “accept” if you “think” the oracle implements C1 or “reject” other-
wise.

It is easy to see that each chosen ciphertext attack is actually a chosen plaintext attack distinguishing
C−1

1 and C−1
2 . Formally: Let A be the set of all pairs (X, Y), such that the distinguisher outputs “accept”.

Then the probability that it outputs “accept” when the oracle implements the function Ci (i = 1, 2) is

pi =
∑

Y

Pr[Y]
∑

X

1(X,Y)∈A [Ci]
d
X,Y =

∑

X

Pr[X]
∑

Y

1(Y,X)∈A [Ci]
d
Y,X

=
∑

X

Pr[X]
∑

Y

1(X,Y)∈A′

[

[Ci]
d
]T

X,Y

Lemma 2.3.3
=

∑

X

Pr[X]
∑

Y

1(X,Y)∈A′ [C−1
i]dX,Y

Thus, for each chosen-ciphertext-attack distinguisher D with the acceptance set A, there is a chosen-
plaintext-attack distinguisher D′ with the acceptance set A′ = {(X, Y)|(Y, X) ∈ A}, and with the same
advantage. Therefore,

AdvCCA(d)(C1, C2) = Adv
CPA(d)
D′ (C−1

1 , C−1
2) ≤ AdvCPA(d)(C−1

1 , C−1
2)

In the same way, any chosen-plaintext distinguishing attack for C−1
1 and C−1

2 can be transformed into a
chosen-ciphertext attack. Hence,

AdvCPA(d)(C−1
1 , C−1

2) ≤ AdvCCA(d)(C1, C2)

and consequently,

AdvCCA(d)(C1, C2) = AdvCPA(d)(C−1
1 , C−1

2).

Theorem 3.5.1 Let C1 and C2 be two independent ciphers on a set M, and d be an integer. Then

AdvCCA(d)(C1, C2) =
1

2

∣

∣

∣

∣

∣

∣C−1
1 , C−1

2

∣

∣

∣

∣

∣

∣

∞

Corollary 3.5.2 Let C be a cipher, and d be an integer. Then

AdvCCCA(d)(C) =
1

2
DecCd

|||·|||∞
(C−1)

36 CHAPTER 3. GENERAL ATTACKS

3.6 Adaptive Chosen Ciphertext Attack

The adaptive chosen ciphertext attack differs from the chosen ciphertext attack so that the attacker may
choose the ciphertexts adaptively depending on the previous responses of the oracle. A d-limited adaptive-
chosen-plaintext-attack distinguisher between two independent random permutations C1 and C2 on a set
M works as follows:

DISTINGUISHER 3.6 (ACCA): d-limited adaptive-chosen-plaintext-attack distinguisher

1. For k = 1 to d do

1.1 Choose a ciphertext message yk, depending on the previous plaintexts and ciphertexts.

1.2 Get xk = C−1
i (yk), where i ∈ {1, 2}.

2. Depending on X = (x1, . . . , xd) and Y = (y1, . . . , yd), output “accept” if you “think” the oracle
implements C1 or “reject” otherwise.

Similarly as for the chosen plaintext attack, the adaptive chosen plaintext attack is actually an adaptive
chosen plaintext attack distinguishing C−1

1 , and C−1
1 . Formally: Let A be the set of all pairs (X, Y)

such that the distinguisher outputs “accept”. Then the probability that it outputs “accept” when the oracle
implements the function Ci (i = 1, 2) is

pi =
∑

Y,X

1(X,Y)∈APr[y1] Pr[y2|y1, x1] . . . Pr[yd|y1, x1, . . . , yd−1, xd−1] [Ci]
d
X,Y

=
∑

X,Y

1(Y,X)∈APr[x1] Pr[x2|x1, y1] . . . Pr[xd|x1, y1, . . . , xd−1, yd−1] [Ci]
d
Y,X

=
∑

X,Y

1(X,Y)∈A′Pr[x1] Pr[x2|x1, y1] . . . Pr[xd|x1, y1, . . . , xd−1, yd−1]
[

[Ci]
d
]T

X,Y

=
∑

X,Y

1(X,Y)∈A′Pr[x1] Pr[x2|x1, y1] . . . Pr[xd|x1, y1, . . . , xd−1, yd−1] [C
−1
i]dX,Y

where A′ = {(X, Y)|(Y, X) ∈ A}. Thus, similarly as in the previous section,

AdvACCA(d)(C1, C2) = AdvACPA(d)(C−1
1 , C−1

2).

Theorem 3.6.1 Let C1 and C2 be two independent random permutations on a set M, and d an integer.
Then

AdvACCA(d)(C1, C2) =
1

2

∥

∥C−1
1 , C−1

2 .
∥

∥

a

Corollary 3.6.2 Let C be a cipher, and d an integer. Then

AdvCACCA(d)(C) =
1

2
DecCd

‖·‖a
(C−1).

(Adaptive) Chosen Ciphertext Attack Against Unbalanced Feistel Networks

The unbalanced Feistel network is a self-inverse structure, i.e. the encryption and decryption schemes are
identical, only the order of the round functions is reversed. Therefore, the unbalanced Feistel network
resists the (adaptive) chosen ciphertext attack if and only if it resists the (adaptive) chosen plaintext attack.
Thus, from Theorem 3.3.8 and Theorem 3.4.8 we have that the two round unbalanced Feistel networks do
not withstand the chosen ciphertext attack, and the three round unbalanced Feistel networks withstand the
adaptive chosen ciphertext attack.

Note that in the general case the resistance to the plaintext attacks does not automatically imply resis-
tance to the ciphertext attacks. For example see Section 7.2.3.

3.7. CHOSEN PLAINTEXT-CIPHERTEXT ATTACK 37

3.7 Chosen Plaintext-Ciphertext Attack

The chosen plaintext-ciphertext attack is the most powerful non-adaptive attack. A d-limited adaptive-
chosen-plaintext-ciphertext-attack distinguisher between two functions C1 and C2 on a set M works as
follows:

DISTINGUISHER 3.7 (CPCA): d-limited chosen-plaintext-ciphertext-attack distinguisher

1. Choose queries Q = (q1, . . . , qd) so that qk is either (0, xk), or (1, yk).

2. Query the oracle with Q, and get R = (r1, . . . , rd), where rk = yk = Ci(xk) if qk = (0, xk), or
rk = xk = C−1

i (yk) if qk = (1, yk), for i ∈ {1, 2}.

3. Depending on X = (x1, . . . , xd) and Y = (y1, . . . , yd), output “accept” if you “think” the oracle
implements C1, or “reject” otherwise.

Let A be the set of all (Q, R) such that the distinguisher outputs “accept”. We can define a set M′ =
{0, 1} × M, and for both ciphers Ci new functions Fi : M′ → M so that Fi(0, x) = Ci(x), and
Fi(1, x) = C−1

i (x). The probability that the distinguisher outputs “accept” when the oracle implements
the function Ci (i = 1, 2) is then

pi =
∑

Q

Pr[Q]
∑

R

1(Q,R)∈A [Ci]
d
X,Y =

∑

Q

Pr[Q]
∑

R

1(Q,R)∈A [Fi]
d
Q,R

Thus, we have transformed the chosen plaintext-ciphertext attack distinguishing between ciphers C1 and
C2 into a chosen plaintext attack distinguishing between functions F1 and F2. In the same way, we can
transform any chosen plaintext attack distinguishing between functions F1 and F2 into a chosen plaintext-
ciphertext attack distinguishing between ciphers C1 and C2. Therefore,

AdvCPCA(d)(C1, C2) = AdvCPA(d)(F1, F2)

Theorem 3.7.1 Let C1 and C2 be two independent ciphers on a set M, and d an integer. Let F1 and F2 be
constructed from C1 and C2 as described above. Then

AdvCPCA(d)(C1, C2) =
1

2

∣

∣

∣

∣

∣

∣[F1]
d − [F2]

d
∣

∣

∣

∣

∣

∣

∞

Corollary 3.7.2 Let C be a cipher, and d an integer. Let F and F ′ be created from C and C∗ as described
above. Then

AdvCCPCA(d)(C) =
1

2

∣

∣

∣

∣

∣

∣[F]d − [F ′]d
∣

∣

∣

∣

∣

∣

∞

3.8 Adaptive Chosen Plaintext-Ciphertext Attack

The adaptive chosen plaintext-ciphertext attack is the most powerful attack. A cipher C is called super-
pseudorandom [14] if there is no d-limited adaptive-chosen-plaintext-ciphertext-attack distinguisher be-
tween C and a perfect cipher for any d polynomial in log2 |M|. A d-limited adaptive-chosen-plaintext-
ciphertext-attack distinguisher between two functions C1 and C2 on a set M works as follows:

DISTINGUISHER 3.8 (ACPCA): d-limited adaptive-chosen-plaintext-ciphertext-attackdistinguisher [21]

1. For k = 1 to d do

1.1 Choose a query qk ∈ {(0, xk), (1, yk)} depending on the previous plaintexts and ciphertexts.

1.2 Query the oracle with qk and get the request rk = yk = Ci(xk) or rk = xk = C−1
i (yk), where

i ∈ {1, 2}.

2. Depending on X = (x1, . . . , xd) and Y = (y1, . . . , yd), output “accept” if you “think” the oracle
implements C1 or “reject” otherwise.

38 CHAPTER 3. GENERAL ATTACKS

Let τ = ((q1, r1), . . . , (qd, rd)) be the sequence of queries of the distinguisher and responses of the
oracle. Let M′ = {0, 1} ×M, and F1 and F2 be functions from M′ to M defined as Fi(0, x) = Ci(x)
and Fi(1, x) = C−1

i (x).

Let A be the set of all traces τ such that the distinguisher outputs “accept”. Then the probability that it
outputs “accept” when the oracle implements the function Ci (i = 1, 2) is

pi =
∑

τ=(Q,R)

1τ∈A Pr[q1] Pr[q2|q1, r1] . . . Pr[qd|q1, r1, . . . , qd−1, rd−1] [Ci]
d
Xτ ,Yτ

=
∑

τ=(Q,R)

1τ∈A Pr[q1] Pr[q2|q1, r1] . . . Pr[qd|q1, r1, . . . , qd−1, rd−1] [Fi]
d
Q,R

In this way, we have transformed the adaptive chosen plaintext-ciphertext attack distinguishing between
ciphers C1 and C2 into a adaptive chosen plaintext attack distinguishing between functions F1 and F2.
In the same way, we can transform any adaptive chosen plaintext attack distinguishing between functions
F1 and F2 into a adaptive chosen plaintext-ciphertext attack distinguishing between ciphers C1 and C2.
Therefore,

AdvACPCA(d)(C1, C2) = AdvACPA(d)(F1, F2)

Theorem 3.8.1 ([25]) Let C1 and C2 be two independent ciphers on a set M, and d an integer. Then

AdvACPCA(d)(C1, C2) =
1

2

∥

∥[C1]
d − [C2]

d
∥

∥

s

Proof: Let F1 and F2 be defined as above. Then

DecCd
‖·‖

s
(C1, C2) = DecF d

‖·‖
a
(F1, F2) = 2 AdvACPA(d)(F1, F2)

= 2 AdvACPCA(d)(C1, C2)

Corollary 3.8.2 ([25]) Let C be a cipher, and d an integer.

AdvCACPCA(d)(C) =
1

2
DecCd

‖·‖
s
(C)

Adaptive Chosen Plaintext-Ciphertext Attack Against Unbalanced Feistel Networks

In Section 3.4 we proved that in the random oracle model the three-round UFNs are secure against adaptive
chosen plaintext attacks with a reasonable number of queries. Here we show that the three-round UFNs are
not secure against adaptive chosen plaintext-ciphertext attacks.

Theorem 3.8.3 ([14]) Let F1, F2, F3 be any three independent random functions — F1 and F3 from a set
M2 to a set M1 and F2 from M1 to M2. Then Ψ[F1, F2, F3] is not secure against the adaptive chosen
plaintext-ciphertext attack.

Proof: There is a 3-limited adaptive-chosen-plaintext-ciphertext-attack distinguisher between the
function Ψ[F1, F2, F3] and a perfect cipher:

3.8. ADAPTIVE CHOSEN PLAINTEXT-CIPHERTEXT ATTACK 39

DISTINGUISHER 3.9 (D): 3-limited distinguisher for Ψ[F1, F2, F3]

1. Create a plaintext x1 = [L1, R] for any L1 and R, and get a ciphertext y1 = [L′
1, R

′
1].

2. Create a plaintext x2 = [L2, R] for any L2, and get a ciphertext y2 = [L′
2, R

′
2].

3. Create the ciphertext y3 = [L′
2 ⊕ L1 ⊕ L2, R

′
2], and get a plaintext x3 = [L3, R3].

4. If the oracle implements Ψ, then for all k = 1, 2, 3:

R′
k = Rk ⊕ F2(Lk ⊕ F1(Rk))

L′
k = Lk ⊕ F1(Rk) ⊕ F3(R

′
k)

with R1 = R2 = R. Therefore,

L′
3 = L3 ⊕ F1(R3) ⊕ F3(R

′
3) = L3 ⊕ F1(R3) ⊕ F3(R

′
2)

= L3 ⊕ F1(R3) ⊕ L2 ⊕ F1(R) ⊕ L′
2

(def.)
= L′

2 ⊕ L1 ⊕ L2

Hence, L3 ⊕ F1(R3) = L1 ⊕ F1(R). Furthermore,

R′
3 = R3 ⊕ F2(L3 ⊕ F1(R3)) = R3 ⊕ F2(L1 ⊕ F1(R))

= R3 ⊕ R′
1 ⊕ R

(def.)
= R′

2

Hence, R3 = R ⊕ R′
1 ⊕ R′

2.

5. If R3 = R ⊕ R′
1 ⊕ R′

2, output “accept”, otherwise output “reject”.

If the oracle implements Ψ, then the distinguisher always “accepts”, i.e. p = 1. If the oracle
implements a perfect cipher, then the probability the distinguisher “accepts” is the same as the
probability that for two random ciphertexts y1 = [L′

1, R
′
1] and y2 = [L′

2, R
′
2], and a random

plaintext x3 = [L3, R3], R3 = R + R′
1 + R′

2, i.e. p∗ = 1
|M2|

. The advantage of the distinguisher is

thus AdvC
ACPCA(d)
D (C) = 1 − 1

|M2|
.

By adding further plaintexts and ciphertexts, a 3d-limited distinguisher with advantage
AdvC

ACPCA(3d)
D (C) = 1 − 1

|M2|d
for any d ≥ 1 can be created.

Theorem 3.8.4 ([25]) Let F ∗
1 , F ∗

2 , F ∗
3 , F ∗

4 be four independent perfect random functions, F ∗
1 and F ∗

3 from
M2 to M1 and F ∗

2 and F ∗
3 from M1 to M2, Ψ[F ∗

1 , F ∗
2 , F ∗

3 , F ∗
4] a 4-round UFN on M = M1 ×M2, and

d an integer. Then

AdvCACPCA(d)(Ψ[F ∗
1 , F ∗

2 , F ∗
3 , F ∗

4]) ≤ d2

min{|M1|, |M2|}

Proof: The proof uses the technique introduced in [16].

Any d-limited known-plaintext-attack distinguisher has access to d plaintext/ciphertext pairs
(x1, y1), . . . , (xd, yd). When the oracle implements the unbalanced Feistel network, the ciphertexts
are calculated as depicted on the following figure.

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F

Lk Rk

L′
k R′

k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .

F ∗
1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

xk = [Lk, Rk]

yk = [Uk, Vk]

Sk = Lk ⊕ F ∗
1 (Rk)

Tk = Rk ⊕ F ∗
2 (Sk)

L′
k = Uk = Sk ⊕ F ∗

3 (Tk)

R′
k = Tk ⊕ F ∗

3 (Tk)

In the case that the distinguisher queries the oracle with a plaintext: If all Rk’s are pairwise distinct,
then Sk’s are perfectly random, since the function F ∗

1 is perfectly random. If all Sk’s are pairwise

40 CHAPTER 3. GENERAL ATTACKS

distinct, then the Tk’s are perfectly random, since the function F ∗
2 is perfectly random. If all Sk’s

and Tk’s are perfectly random, then yk’s are also perfectly random.

In the case that the distinguisher queries the oracle with a ciphertext: If all Uk’s are pairwise distinct,
then the Tk’s are perfectly random, since the function F ∗

4 is perfectly random. If all Tk’s are
pairwise distinct, then the Sk’s are perfectly random, since the function F ∗

3 is perfectly random. If
all Sk’s and Tk’s are perfectly random, then the xk’s are also perfectly random.

Without loss of generality, we may assume that queries are always distinct from all previous queries
as well as from obtained answers of the oracle. Since Ψ is a permutation, all xk’s as well as all yk’s
are pairwise different. In similar way as in proof of Theorem 3.4.8 we can obtain the following
probabilities:

Pr[Sk = Sl] =

0 Rk = Rl

1

|M1|
Rk 6= Rj

Pr[Tk = Tl] =

0 Uk = Ul

1

|M2|
Uk 6= Uj

Therefore, Pr[Sk = Sl] ≤ 1
|M1|

, Pr[Tk = Tl] ≤ 1
|M2|

, and from Theorem 2.2.3

AdvCACPCA(d)(Ψ[F ∗
1 , F ∗

2 , F ∗
3 , F ∗

4]) ≤ 1 − Pr[∀ k 6= l : Sk 6= Sl ∧ Tk 6= Tl]

= Pr[∃ k 6= l : Sk = Sl ∨ Tk = Tj]

≤ Pr[∃ k 6= l : Sk = Sj] + Pr[∃ k 6= l : Tk = Tl]

≤
(

d

2

)

1

|M1|
+

(

d

2

)

1

|M2|
=

d2

min{|M1|, |M2|}

Note that adding a new round (even a weak one) between the second and third round cannot increase
the advantage, because the proof does not depend on what happens between these two rounds.

Corollary 3.8.5 Let F ∗
1 , F ∗

2 , F ∗
3 , F ∗

4 be four independent perfect random functions, F ∗
1 and F ∗

3 from a set
M2 to a set M1 and F ∗

2 and F ∗
4 from M1 to M2, Ψ[F ∗

1 , F ∗
2 , F ∗

3 , F ∗
4] a 4-round UFN on M = M1×M2,

and d an integer. Then

DecCd
‖·‖

s
(Ψ[F ∗

1 , F ∗
2 , F ∗

3 , F ∗
4]) ≤ 2

d2

min{|M1|, |M2|}

Corollary 3.8.6 Let F1, . . . , Fr be r ≥ 4 independent random functions such that AdvF ACPCA(d)(Fi) ≤
ε, and d be an integer. Then

AdvCACPCA(d)(Ψ[F1, . . . , Fr]) ≤
1

2

[

2

(

4ε +
d2

min{|M1|, |M2|}

)]b r
4 c

Proof: Follows from Theorem 2.4.4 and 2.4.2, and from the note at the end of the proof of Theorem
3.8.4.

3.9 Summary

In this chapter, we studied general types of attacks. For each one we found an associated matrix norm ‖ · ‖,
and showed that the advantage between two functions (permutations) F1, F2 is

AdvATK(d)(F1, F2) =
1

2
‖[F1]

d − [F2]
d‖,

The norm ‖ · ‖ is:

• ‖·‖1 the for the known plaintext attack;

• |||·|||∞ for the chosen plaintext attack and chosen ciphertext attack;

• ‖·‖a for the adaptive chosen plaintext attack and adaptive chosen ciphertext attack;

• ‖·‖s for the adaptive chosen plaintext-ciphertext attack.

3.9. SUMMARY 41

From the definition of the norms, it follows that

AdvKPA(d)(F1, F2) ≤

AdvCPA(d)(F1, F2) ≤ AdvACPA(d(F1, F2)

≤ AdvCPCA(d)(F1, F2)

AdvCCA(d)(F1, F2) ≤ AdvACCA(d)(F1, F2)

≤ AdvACPCA(d)(F1, F2)

The relationship is depicted on the following picture so that the arrows direct from the weaker attacks to the
stronger ones, i.e. from attacks with the lower upper-bound on the advantage to the ones with the higher
upper-bound.

KPA
�

�
�

��
CPA - ACPA

@
@

@
@R

CCA - ACCA

- CPCA

@
@

@
@R

�
�

�
��

- ACPCA

@
@

@
@R

�
�

�
��

We further examined unbalanced Feistel networks Ψ[F1, . . . Fr] : M1 ×M2 → M1 ×M2 against the
attacks, and showed that

• The 2-round UFNs are secure against known plaintext attack in the random oracle model;

• There is no 2-round UFN secure against chosen plaintext attacks;

• The 3-round UFNs are secure against adaptive chosen plaintext attack in the random oracle model;

• There is no 3-round UFN secure against adaptive chosen plaintext-ciphertext attacks;

• The 4-round UFNs are secure against adaptive chosen plaintext-ciphertext attacks in the random
oracle model.

More formally: Let Dd = d2

min{|M1|,|M2|}
. Then for the d-limited known plaintext, adaptive chosen plain-

text, and adaptive chosen plaintext-ciphertext attacks,

• AdvCKPA(d)(Ψ[F ∗
1 , F ∗

2]) ≤ Dd

• AdvCACPA(d)(Ψ[F ∗
1 , F ∗

2 , F ∗
3]) ≤ Dd

• AdvCACPCA(d)(Ψ[F ∗
1 , F ∗

2 , F ∗
3 , F ∗4]) ≤ Dd

Note that the bounds are minimal for the balanced Feistel network. Further, the attacker must dispose
d �

√

min{|M1|, |M2|} plaintext/ciphertext pairs in order to ensure security against the particular at-
tack, and then the minimal number of rounds of a UFN is 3 for pseudorandomness, and 4 for super-
pseudorandomness. However, for design of a UFN cipher, we usually need to quantify how many rounds
it has to have in order to achieve a defined minimal security, or to find out what size of attack the cipher is
able to withstand.

Consider now a UFN defined on {0, 1}n = {0, 1}m × {0, 1}n−m, with m ≤ n
2 , and thus with

min{2m, 2n−m} = 2m. Corollary 3.4.10 implies that in the ideal case, when the primitive functions
are perfectly random,

AdvCACPA(d)(Ψ[F ∗
1 , . . . , F ∗

3k]) ≤ 1

2

(

2 · d2

2m

)k

Hence, in order to achieve the pseudorandomness with advantage less than 2−l, we need

k ≥ l − 1

m − 2 lg d − 1
,

42 CHAPTER 3. GENERAL ATTACKS

and thus at least 3d l−1
m−2 lg d−1e rounds, or we have to bound the size of the attack to

d ≤ 2
b r
3
c(m−1)−l+1

2k ,

for an r-round UFN.
Similarly, for the super-pseudorandomness, if we want to achieve advantage smaller than 2−l, we need

at least 4d l−1
m−2 lg d−1e rounds, or to bound the size of the attack to d ≤ 2

k(m−1)−l+1
2k for a 4k-round UFN.

Evaluating the minimal number of rounds involves two parameters: the maximal size of the attack (d),
and the upper-bound of the advantage.

The size of the attack may be surely limited by 2n because that is the number of plaintext/ciphertext
pairs, and thus with d = 2n the attacker already has all plaintext/ciphertext pairs and does not need to
attack the cipher at all. However, in the calculation of the advantage, we require d < 2

m−1
2 , but even

this upper-bound may be considered to be unrealistic, since an attacker is usually able to get only a few
plaintext/ciphertext pairs. Note that we require plaintext/ciphertext pairs encrypted with the right key, not
any pairs which can be easily obtained whenever the encryption algorithm is known, which is the accepted
rule known as Kerckhoffs’s principle. To obtain many plaintext/ciphertext pairs encrypted with the right
key would probably mean access to the encryption device together with the key for quite a long time, which
is a security problem beyond the framework of this work. Therefore, we can consider d to be small.

On the other hand, advantage expresses the probability that an attacker can distinguish a cipher from a
perfectly random output. It can be seen as amount of calculation necessary to distinguish between them.
Thus, whenever n is considered to be an appropriate block length, i.e. when the exhaustive search of size
2n is deemed to be infeasible, 2−n can be considered as an appropriate value of advantage for the cipher of
size n bits [17]. Applying this for UFNs, we get

k ≥ n − 1

m − 1 − 2 lg d
. (3.2)

Chapter 4

Composed Attacks

In the previous chapter we showed under which conditions a cipher may withstand different types of attacks.
It is natural to ask whether some combination of these attacks can lead to a more efficient attack against the
cipher. This chapter gives some answers to this question. First, we examine the case when an attacker has
a simple chosen plaintext attack and repeats it many times in order to get a better advantage. This kind of
attack is called iterated attack. The differential and linear cryptanalysis ([4], [15]) happen to be included
in this class of attacks, and because of their popularity, we focus on them separately. Then we examine
combined attacks which make use of several distinct attacks with the same goal to build a stronger attack,
and give upper bounds of their advantage. Here we consider the average advantage of the attacks. Although
the small average advantage does not exclude the possibility of weak keys in a particular cipher, it shows
that the attack does not work on average, which implies that the fraction of weak keys is negligible against
the average case.

4.1 Basic Differential Cryptanalysis

Although differential cryptanalysis was invented by Eli Biham and Adi Shamir [4] in order to recover the
encryption key of a cipher, we study here its distinguishing variant which exploits the underlying idea of the
differential cryptanalysis. In our notion, the basic differential cryptanalysis is the 2d-limited distinguisher
with a characteristic (a, b) ∈ M+ × M between a cipher C and a perfect cipher C∗ both defined on
M = {0, 1}m, working as follows:

DISTINGUISHER 4.1 (DCA): 2d-limited basic-differential-cryptanalysis distinguisher [21]

1. For k = 1 to d do

1.1 Choose a random plaintext message xk.
1.2 Query the oracle with xk and x′

k = xk + a, and get yk = C̃(xk) and y′
k = C̃(x′

k), where C̃ is
either C or C∗.

1.3 If C̃(xk + a) = C̃(xk) + b, stop and output “accept”.

2. Output “reject”.

Differential cryptanalysis depends on the following probability [21]:

DP C [a, b](x) = Pr[C(x + a) = C(x) + b]

where x has the uniform distribution over all plaintext messages. The probability of success in one round is

DP C [a, b] = E(DP C [a, b](x)) =
∑

x

Pr[x] · Pr[C(x + a) = C(x) + b]

=
1

|M|
∑

x

Pr[C(x + a) = C(x) + b]

=
1

|M|
∑

x

∑

y

Pr[C(x) = y ∧ C(x + a) = y + b]

=
1

|M|
∑

x

∑

y

[C]2(x,x+a)(y,y+b).

43

44 CHAPTER 4. COMPOSED ATTACKS

Since a 6= 0, for a perfect cipher:

DP C∗

[a, b] =
1

|M|
∑

x

∑

y

1

|M|2
=

1

|M| − 1
.

The probability that the distinguisher accepts when C is implemented is

p =
∑

X=(x1,...,xd)∈Md

Pr[X]

[

1 −
d
∏

i=1

(1 − DP C [a, b](xi))

]

=
1

|M|d
∑

X=(x1,...,xd)∈Md

[

1 −
d
∏

i=1

(1 − DP C [a, b](xi))

]

= 1 − 1

|M|d
∑

X=(x1,...,xd)∈Md

d
∏

i=1

(1 − DP C [a, b](xi))

= 1 − 1

|M|d

[

∑

x∈M

(1 − DP C [a, b](x))

]d

= 1 −
[

1

|M|
∑

x∈M

(1 − DP C [a, b](x))

]d

≤ d · DP C [a, b]

For a perfect cipher it gives,

p∗ ≤ d · DP C∗

[a, b] =
d

|M| − 1

Hence,

AdvC
DCA(2d)
D (C) = |p − p∗| ≤ max {p, p∗} (4.1)

= d · max

{

DP C [a, b],
1

|M| − 1

}

(4.2)

Theorem 4.1.1 ([21]) Let C be a cipher on M, and d an integer. Then

AdvCDCA(2d)(C) ≤ d

|M| − 1
+ d · DecC2

|||·|||∞
(C).

Proof:

∣

∣

∣DP C [a, b] − DP C∗

[a, b]
∣

∣

∣ =

∣

∣

∣

∣

∣

1

|M|
∑

x

∑

y

[C]2(x,x+a)(y,y+b) −
1

|M|
∑

x

∑

y

[C∗]2(x,x+a)(y,y+b)

∣

∣

∣

∣

∣

≤ 1

|M|
∑

x

∑

y

∣

∣

∣[C]2(x,x+a)(y,y+b) − [C∗]2(x,x+a)(y,y+b)

∣

∣

∣

≤ 1

|M|
∑

x

∑

y

∑

y′

∣

∣

∣[C]2(x,x+a)(y,y′) − [C∗]2(x,x+a)(y,y′)

∣

∣

∣

≤ 1

|M|
∑

x

max
x′

∑

y

∑

y′

∣

∣

∣[C]2(x,x′)(y,y′) − [C∗]2(x,x′)(y,y′)

∣

∣

∣

≤ max
x

max
x′

∑

y

∑

y′

∣

∣

∣[C]2(x,x′)(y,y′) − [C∗]2(x,x′)(y,y′)

∣

∣

∣

= DecC2
|||·|||∞

(C)

Therefore,

DP C [a, b] ≤ 1

|M| − 1
+ DecC2

|||·|||∞
(C),

and from 4.2

AdvCDCA(2d)(C) ≤ d ·
(

1

|M| − 1
+ DecC2

|||·|||∞
(C)

)

.

4.2. GENERAL ITERATED ATTACK 45

4.2 General Iterated Attack

In case of basic differential cryptanalysis, a simple 2-limited non-adaptive plaintext attack was repeated
several times. This approach can be generalized to any non-adaptive plaintext attack: An iterated attack
iterates n times an elementary d-limited plaintext-attack distinguisher D between a cipher C and a perfect
cipher on M. It is defined by

1. the underlying d-limited attack D;

2. the number of iterations n (complexity) of the underlying attack (the number of iterations n of the attack
is assumed to be large, the order of the underlying attack d small);

3. a plaintext distribution D on Md, which describes the distribution on queries of the underlying d-limited
distinguisher (if D is the uniform distribution, we will refer to known-plaintext iterated attack);

4. a test function T : Md×Md → {0, 1} that corresponds to the acceptance set of the underlying d-limited
distinguisher D — it returns 1 for all pairs (X, Y) for which D accepts; and

5. an acceptance set A ⊆ {0, 1}n, that contains all combinations of the test function outputs for which the
iterated distinguisher accepts;

and works as follows:

DISTINGUISHER 4.2 (IA): nd-limited iterated-attack distinguisher

1. For k = 1 to n do

1.1 Choose a random vector of plaintext messages Xk = (xk1, . . . , xkd) with distribution D.
1.2 Get Yk = (Ci(xk1), . . . , Ci(xkd)), where i ∈ {1, 2}, C1 = C, and C2 = C∗.
1.3 Get the answer of the underlying d-limited distinguisher: Tk = T (Xk, Yk).

2. If (T1, . . . Tn) ∈ A, output “accept”, otherwise output “reject”.

At the first glance, it is tempting to believe that a cipher resists this type of attack once it has a small
d-wise decorrelation bias. The following example shows that this is not true.

Example 4.2.1 ([21]) Let C be a cipher with a perfect d-wise decorrelation. Assume that each instance
(induced by a key) is totally defined by any d distinct plaintext-ciphertext pairs. [For example, the cipher
defined in Example 2.3.5 — C(x) = ax + b — has perfect 2-wise decorrelation, and each key (a, b) can
be reconstructed from any two distinct plaintext-ciphertext pairs.] Thus, there are |M|d different instances,
and they can be indexed by numbers from 1 to |M|d: c1, . . . , c|M|d . For each d-tuple of plaintexts X =

(x1, . . . , xd) and ciphertexts Y = (y1, . . . , yd) we can define an index function I : Md → {1, . . . , |M|d},
so that I(X, Y) is the unique index k such that ck(xi) = yi for all i = 1, . . . , d. Let now D be an 2d-limited
iterated-attack-distinguisher with the following properties:

1. D is uniform distribution;

2. T (X, Y) =

{

1 if I(X, Y) ≡ 0 (mod µ)
0 otherwise

with a given modulus µ = n
a for a constant a < n;

3. A = {0, 1}n \ {(0, . . . , 0)}.

If the oracle implements C then for each pair (X, Y), there is exactly one value k such that I(X, Y) = k,
and

T (X, Y) =

{

1 if k ≡ 0 (mod µ)
0 otherwise

Therefore,

p = Pr[k ≡ 0 mod µ] =
1

µ

If the oracle implements C∗ then the output is random, and thus any of k is equally possible. Therefore,

Pr[Ti = 1] =
1

µ
Pr[Ti = 0] = 1 − 1

µ

46 CHAPTER 4. COMPOSED ATTACKS

and

p∗ = Pr[∃i : Ti = 1] = 1 − Pr[∀i : Ti = 0]

= 1 −
n
∏

i=1

Pr[Ti = 0] = 1 −
(

1 − 1

µ

)n

Hence, if n ≥ 2

AdvCIA(nd)(C) = 1 −
(

1 − 1

µ

)n

− 1

µ
≥ 1 −

(

1 − 1

µ

)2

− 1

µ

=
1

µ

(

1 − 1

µ

)

which can be quite large although C is perfectly pairwise decorrelated. The idea behind this attack is that
the test T provides the same expected result for C and C∗, but a different standard deviation.

The previous example shows that decorrelation of order d is not sufficient to prove the security of a
cipher against iterated attacks of order d. The following theorem proves that the decorrelation of order 2d
is sufficient.

Theorem 4.2.2 Let C be a cipher on M such that AdvCCPA(2d)(C) ≤ ε for some integer d <
√

|M|. Let
n be an integer. Let D be a plaintext distribution, and δ the probability that for two independent random
plaintext vectors X = (x1, . . . , xd) and X ′ = (x′

1, . . . , x
′
d) with distribution D there is i and j such that

xi = x′
j . Then for iterated attacks of order d and complexity n with plaintext distribution D

AdvCIA(nd)(C) ≤ 3

[(

2δ +
2d2

|M| + 3ε

)

n2

]
1
3

+ nε.

Proof: [The proof is based on the technique introduced in [24].]

The proof is presented in several steps.

Let C1 := C, and C2 := C∗.

1. Let Zi be the probability (over the distribution of X) such that the test T accepts (X, Ci(X)),
i.e.

Zi =
∑

X

Pr[X]T (X, Ci(X)) = EX(T (X, Ci(X))).

Note that Zi depends on Ci.

2. Let X̃ denote a vector (X1, . . . , Xn), and Ỹ denote (Y1, . . . , Yn), where all Xk’s and Yk’s are
vectors from Md. The probability that the attack accepts when the oracle implements Ci is:

pi =
∑

X̃

Pr[X̃]
∑

Ỹ

Pr[Ci(X̃) = Ỹ]
∑

T1,...,Tn

1(T1,...,Tn)∈A Pr[∀k : T (Xk, Yk) = Tk]

=
∑

X̃

Pr[X̃]
∑

Ỹ

Pr[Ci(X̃) = Ỹ]
∑

T1,...,Tn

1(T1,...,Tn)∈A

n
∏

k=1

ZTk

i (1 − Zi)
1−Tk

=
∑

X̃

Pr[X̃]
∑

Ỹ

Pr[Ci(X̃) = Ỹ]
∑

T1,...,Tn

1(T1,...,Tn)∈A ZT1+...+Tn

i (1 − Zi)
n−T1−...−Tn

= ECi
(f(Zi))

where

f(z) =
∑

T1,...,Tn

1(T1,...,Tn)∈A zT1+...+Tn(1 − z)n−T1−...−Tn =

n
∑

k=0

akzk(1 − z)n−k

for some constants ak such that ak ≤
(

n
k

)

.1 Since f(z) is a polynomial of degree at most n,

f ′(z) =

n
∑

k=0

(

kakzk−1(1 − z)n−k − akzk(n − k)(1 − z)n−k−1
)

=

n
∑

k=1

kakzk−1(1 − z)n−k −
n−1
∑

k=0

akzk(n − k)(1 − z)n−k−1.

1a(k) =
(

n

k

)

if and only if A contains all vectors with exactly k ones.

4.2. GENERAL ITERATED ATTACK 47

For the first sum,

n
∑

k=1

kakzk−1(1 − z)n−k ≤
n
∑

k=1

k

(

n

k

)

zk−1(1 − z)n−k = n
n
∑

k=1

(

n − 1

k − 1

)

zk−1(1 − z)n−k

= n
n−1
∑

k=0

(

n − 1

k

)

zk(1 − z)n−1−k = n(z + 1 − z)n−1 = n

and for the second sum

n−1
∑

k=0

akzk(n − k)(1 − z)n−k−1 ≤
n−1
∑

k=0

(

n

k

)

zk(n − k)(1 − z)n−k−1

= n
n−1
∑

k=0

(

n − 1

k

)

zk(1 − z)n−1−k = n(z + 1 − z)n−1 = n

holds. Consequently,

|f ′(z)| ≤ max

{

n
∑

k=1

kakzk−1(1 − z)n−k,

n−1
∑

k=0

akzk(n − k)(1 − z)n−k−1

}

≤ n

Therefore,
|f(Z1) − f(Z2)| ≤ n|Z1 − Z2|.

3. The probability that one round is accepted, i.e. that T (Xk, Yk) = 1, is

proundk

i =
∑

X

Pr[X]
∑

Y

Pr[Ci(X) = Y] · Pr[T (X, Y) = 1]

=
∑

X

Pr[X]
∑

Y

Pr[Ci(X) = Y] · Zi = ECi
(Zi)

Since one round of the iterated attack is actually a chosen-plaintext attack,

|EC1(Z1) − EC2(Z2)| =
∣

∣

∣proundk

1 − proundk

2

∣

∣

∣ ≤ AdvCCPA(d)(C) ≤ AdvCCPA(2d)(C) ≤ ε

4. Since

Z2
i =

[

∑

X

Pr[X]T (X, Ci(X))

]2

=
∑

X1,X2

Pr[X1]Pr[X2]T (X1, Ci(X1))T (X2, Ci(X2))

and since Xk’s are chosen independently from each other,

Z2
i =

∑

X′=(x1,...,x2d)

Pr[X ′]T ′(X ′, Ci(X
′))]

corresponds to another test T ′ with 2d entries such that

T ′((X1, X2), (Ci(X1), Ci(X2)) = T (X1, Ci(X1)) · T (X2, Ci(X2)),

i.e. T ′((X1, X2), (Ci(X1), Ci(X2)) accepts if and only if both T (X1, Ci(X1)) and
T (X2, Ci(X2)) accept. Therefore from 3:

∣

∣EC1(Z
2
1) − EC2(Z

2
2)
∣

∣ ≤ AdvCCPA(2d)(C) ≤ ε

and

|VC1(Z1) − VC2(Z2)| =
∣

∣EC1(Z
2
1) − E2(Z1) − EC2(Z

2
2) + E2(Z2)

∣

∣

≤
∣

∣EC1(Z
2
1) − EC2(Z

2
2)
∣

∣

+ |(EC1(Z1) − EC2(Z2)) · (EC1(Z1) + EC2(Z2))|
≤ ε + ε · 2 = 3ε

Hence, VC1(Z1) ≤ VC2(Z2) + 3ε.

48 CHAPTER 4. COMPOSED ATTACKS

5. From the Chebyshev inequality, one finds:

Pr[|Zi − ECi
(Zi)| > λ] ≤ VCi

(Zi)

λ2

Hence using 3,

Pr[|Z1 − Z2| > 2λ + ε] ≤ Pr[|Z1 − EC1(Z1)| + |EC1(Z1) − EC2(Z2)|
+ |EC2(Z2) − Z2| > 2λ + ε]

≤ Pr[|Z1 − EC1(Z1)| > λ] + Pr[|Z2 − EC2(Z2)| > λ]

+ Pr[|EC1(Z1) − EC2(Z2)| > ε]

≤ VC1(Z1)

λ2
+

VC2(Z2)

λ2
≤ 2VC2(Z2) + 3ε

λ2

6. Using 2 and 5:

AdvCIA(nd)(C) = |p1 − p2|

=

∣

∣

∣

∣

∣

∣

∑

X̃

Pr[X̃]
∑

Ỹ

(

Pr[C1(X̃) = Ỹ] · f(Z1) − Pr[C2(X̃) = Ỹ] · f(Z2)
)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

X̃

Pr[X̃]
∑

Ỹ

∑

Ỹ ′

(

Pr[C1(X̃) = Ỹ] · Pr[C2(X̃) = Ỹ ′]f(Z1)

− Pr[C1(X̃) = Ỹ] · Pr[C2(X̃) = Ỹ ′]f(Z2)
)

∣

∣

∣

∣

∣

≤
∑

X̃

Pr[X̃]
∑

Ỹ

∑

Ỹ ′

Pr[C1(X̃) = Ỹ]Pr[C2(X̃) = Ỹ ′] |f(Z1) − f(Z2)|

= E(|f(Z1) − f(Z2)|) ≤ E(n|Z1 − Z2|)

≤ n (ε + 2λ) +
2VC2(Z2) + 3ε

λ2

7. Since

EC2(Z
2
2) =

∑

X,X′

∑

Y,Y ′

Pr[X]Pr[X ′]Pr[X
C2→ Y, X ′ C2→ Y ′]T (X, Y)T (X ′, Y ′)

E2
C2

(Z2) =
∑

X,X′

∑

Y,Y ′

Pr[X]Pr[X ′]Pr[X
C2→ Y]Pr[X ′ C2→ Y ′]T (X, Y)T (X ′, Y ′)

we have

VC2(Z2) = EC2(Z
2
2) − E2

C2
(Z2)

=
∑

X,X′

Y,Y ′

Pr[X]Pr[X ′]T (X, Y)T (X ′, Y ′)
(

Pr
[

X
C2→Y

X′C2
→Y ′

]

− Pr[X
C2→ Y]Pr[X ′ C2→ Y ′]

)

This sum is maximal when T (X, Y) and T (X ′, Y ′) are 1 for all terms with the same sign.
Since

∑

X,X′

Y,Y ′

Pr[X]Pr[X ′]
(

Pr[X
C2→ Y, X ′ C2→ Y ′] − Pr[X

C2→ Y]Pr[X ′ C2→ Y ′]
)

= 0

we get

max VC2(Z2) =
1

2

∑

X,X′

Y,Y ′

Pr[X]Pr[X ′]
∣

∣

∣Pr
[

X
C2→Y

X′C2
→Y ′

]

− Pr[X
C2→ Y]Pr[X ′ C2→ Y ′]

∣

∣

∣

4.2. GENERAL ITERATED ATTACK 49

a) Sum of all terms for X and X ′ with colliding entries (recall that there are collision only
between X and X ′, but no collisions inside X , and inside X ′, because we may assume
that the underlying distinguisher always chooses different queries):

1

2

∑

coll(X,X′)

∑

Y,Y ′

Pr[X]Pr[X ′]
∣

∣

∣Pr
[

X
C2→Y

X′C2
→Y ′

]

− Pr[X
C2→ Y]Pr[X ′ C2→ Y ′]

∣

∣

∣

≤ 1

2

∑

coll(X,X′)

Pr[X]Pr[X ′]
∑

Y,Y ′

Pr
[

X
C2→Y

X′C2→Y ′

]

+
1

2

∑

coll(X,X′)

Pr[X]Pr[X ′]
∑

Y,Y ′

Pr[X
C2→ Y]Pr[X ′ C2→ Y ′]

=
1

2

∑

coll(X,X′)

Pr[X]Pr[X ′] +
1

2

∑

coll(X,X′)

Pr[X]Pr[X ′]

= δ

b) Sum of all terms for X and X ′ without colliding entries, and Y and Y ′ with colliding
entries. Since C2 is a permutation, if a collision inside Y occurs, then Pr[C(X) = Y] = 0.
Similarly, if there is a collision in Y ′ then Pr[C(X) = Y] = 0, and if there is a collision in
Y ∪ Y ′ then Pr[C(X) = Y, C(X ′) = Y ′] = 0. Furthermore, there are

d2|M|
[

(|M| − 1)d−1
]2

possibilities to choose collisions between Y and Y ′. Thus,

1

2

∑

non-coll(X,X′)

∑

coll(Y,Y ′)

Pr[X]Pr[X ′]
∣

∣

∣Pr
[

X
C2→Y

X′C2→Y ′

]

− Pr[X
C2→ Y]Pr[X ′ C2→ Y ′]

∣

∣

∣

=
1

2

∑

non-coll(X,X′)

Pr[X]Pr[X ′]
∑

coll(Y,Y ′)
non-coll(Y)
non-coll(Y ′)

Pr[X
C2→ Y]Pr[X ′ C2→ Y ′]

≤ 1

2

∑

non-coll(X,X′)

Pr[X]Pr[X ′] d2|M|
[

(|M| − 1)d−1
]2 1

|M|d
1

|M|d

=
d2

2 |M|
∑

non-coll(X,X′)

Pr[X]Pr[X ′] ≤ d2

2|M|
∑

X,X′

Pr[X]Pr[X ′]

=
d2

2|M|

c) Sum of all terms for X and X ′ without colliding entries, and Y and Y ′ without colliding
entries. There are |M|2d possibilities to choose non-colliding Y and Y ′. Thus,

1

2

∑

non-coll(X,X′)

∑

non-coll(Y,Y ′)

Pr[X]Pr[X ′]
∣

∣

∣Pr
[

X
C2→Y

X′C2
→Y ′

]

− Pr[X
C2→ Y]Pr[X ′ C2→ Y ′]

∣

∣

∣

=
1

2

∑

non-coll(X,X′)

Pr[X]Pr[X ′] · |M|2d

1

|M|2d
− 1
(

|M|d
)2

=
1

2

1 − |M|2d

(

|M|d
)2

∑

non-coll(X,X′)

Pr[X]Pr[X ′]

≤ 1

2

1 − |M|2d

(

|M|d
)2

≤ d2

2|M|

Summing all three values gives

VC2(Z2) ≤ δ +
d2

|M| .

50 CHAPTER 4. COMPOSED ATTACKS

8. Let λ =
(

2VC2 (Z2)+3ε

n

)
1
3

. Then

AdvCIA(nd)(C)
6.
≤ n (ε + 2λ) +

2VC2(Z2) + 3ε

λ2

= nε + 2n

(

2VC2(Z2) + 3ε

n

)
1
3

+ (2VC2(Z2) + 3ε)

(

n

2VC2(Z2) + 3ε

)
2
3

= nε + 3n

(

2VC2(Z2) + 3ε

n

)
1
3

7.
≤ nε + 3

[

n2

(

2δ +
2d2

|M| + 3ε

)]
1
3

Corollary 4.2.3 ([24]) Let C be a cipher on M such that AdvCCPA(2d)(C) ≤ ε for some d <
√

|M|. Let
n be an integer. Then for an iterated attacks of order d and complexity n with uniform plaintext distribution

AdvCIA(nd)(C) ≤ 3

[(

4d2

|M| + 3ε

)

n2

]
1
3

+ nε

holds.

Proof: Since the plaintext distribution is uniform, the probability that for two independent random
X = (x1, . . . , xd) and X ′ = (x′

1, . . . , x
′
d) there is i and j such that xi = x′

j is:

δ = Pr[∃i, j : xi = x′
j] ≤

∑

i,j

Pr[xi = x′
j] =

∑

i,j

∑

x

Pr[xi = x ∧ x′
j = x]

= d2|M|
[

(|M| − 1)d−1
]2

[

|M|d
]2 =

d2

|M|

The inequality follows now directly from Theorem 4.2.2.

The result of the corollary says that with a small advantage ε against the 2d-limited chosen-plaintext-attack
distinguishers, one needs

n = Ω
(

min
{

1/
√

ε,
√

|M|
})

in order to get a significant advantage, unless the distribution D has some special property. Further, note
that the previous results are not tight because of the use of the Chebyshev inequality.

Note On The Basic Differential Cryptanalysis

From the definition of the basic differential cryptanalysis, it is easy to see, that it is an iterated attack of
order 2 with the following parameters:

1. Distribution D is distribution of (x, x + a) with uniformly distributed X ;

2. T ((x, x′), (y, y′)) = 1 if and only if y + b = y′.

3. A = {0, 1}n \ {(0, . . . , 0)}.
Corollary 4.2.4 Let C be a cipher on M such that AdvCCPA4(C) = 1

2DecC4
|||·|||∞

(C) ≤ ε, and n be an
integer. Then,

AdvCDCA(2n)(C) ≤ 3

[

n2

(

12

|M| + 3ε

)]
1
3

+ nε,

Proof: The probability that X = (x, x + a) and X ′ = (x′, x′ + a) have a colliding entry is

δ = Pr[x = x′ ∨ x + a = x′ + a ∨ x + a = x′ ∨ x = x′ + a]

≤ Pr[x = x′] + Pr[x + a = x′] + Pr[x = x′ + a] =
3

|M| .

Now, we can use Theorem 4.2.2 to get the result.

Since Corollary 4.2.3 requires decorrelation of order 4, this result is weaker than the result of Theorem
4.1.1.

4.3. LINEAR CRYPTANALYSIS 51

4.3 Linear Cryptanalysis

The linear cryptanalysis is another well-known iterated attack introduced by Mitsuru Matsui in [15]. A
d-limited linear-cryptanalysis distinguisher between a cipher C and a perfect cipher on M = {0, 1}m with
a characteristic (a, b) ∈ M+ ×M+ and acceptance set B ⊆ {0, 1, . . . , n} works as follows:

DISTINGUISHER 4.3 (LCA): n-limited linear-cryptanalysis distinguisher [21]

1. Initialize the counter u = 0.

2. For k = 1 to n do

2.1 Choose a random plaintext message xk.

2.2 Get yk = C̃(xk), where C̃ is either C or C∗.

2.3 If xk · a = C̃(xk) · b (the inner dot product is the parity of the bitwise AND of the operands),
then increment the counter u.

3. If u ∈ B, output “accept”, otherwise output “reject”

The linear cryptanalysis is an iterated attack of order 1 with the following parameters:

1. The distribution D is uniform over M;

2. d = 1;

3. T (X, Y) = 1 if and only if X · a = Y · b;

4. A(T1, . . . , Tn) = {v ∈ {0, 1}n|ω(v) ∈ B}, where ω(v) is number of ones in v.

Corollary 4.3.1 ([24]) Let C be a cipher on M such that AdvCCPA(2)(C) = 1
2DecC2

|||·|||∞
(C) ≤ ε, and

n be an integer. Then

AdvCLCA(n)(C) ≤ 3

[

n2

(

4

|M| + 3ε

)]
1
3

+ nε,

Proof: Directly follows from the Corollary 4.2.3 for d = 1.

Note that in [21], another result for the linear cryptanalysis is given:

lim
n→+∞

AdvCLCA(n)(C)

n
1
3

≤ 9.3

(

1

|M| − 1
+ 2DecC2

|||·|||∞
(C)

)

.

It is better than that of the previous Corollary, however, it also depends on DecC2
|||·|||∞

and it is only an
asymptotic result.

4.4 Combined Attacks

The iterated attacks take a chosen plaintext attack and repeat it many times in order to get a better advantage.
The combined attacks are similar, but they use different attacks in each round. In this section we examine
whether a combination of less efficient attacks can lead to a more efficient attack against the cipher. A
combined attack against a cipher C on M is defined by

1. a set of n distinguishers D1, . . . , Dk realizing different attacks, each of order dk — unlike the iterated
attacks a combined attack assumes a small number of iterations n (complexity) and large order dk of the
underlying attacks;

2. a set of test functions Tk : Mdk × Mdk → {0, 1} which correspond to the acceptance sets of the
underlying distinguishers Dk, i.e. it returns 1 for all pairs (X, Y) for which Dk accepts; and

3. an acceptance set A ⊆ {0, 1}n which contains all combinations of the outputs of the test functions for
which the combined distinguisher accepts;

and works as follows:

52 CHAPTER 4. COMPOSED ATTACKS

DISTINGUISHER 4.4 (CA): Combined-attack distinguisher of order d and complexity n

1. For k = 1 to n do

1.1 Choose a random plaintext vector Xk = (xk1, . . . , xkd).

1.2 Get Yk = (Ci(xk1), . . . , Ci(xkd)), where i ∈ {1, 2}, C1 = C, and C2 = C∗.

1.3 Get the answer of the distinguisher Dk: Tk = Tk(Xk, Yk).

2. If (T1, . . . Tn) ∈ A, output “accept”, otherwise output “reject”.

Theorem 4.4.1 Let C be a cipher on a set M. Let D1, . . . , Dn be n distinguishers realizing some attacks
on C with advantages AdvD1 , . . . , AdvDn

. Let dk denote the number of queries of Dk and let D2
k denote

the following distinguisher:

1. Run the distinguisher Dk and set a to the result.

2. Run the distinguisher Dk and set b to the result.

3. If a = b = 1, output “accept”, otherwise output “reject”.

Let AdvD2
k

denote its advantage, and δk denote the probability that two independent runs of the distin-
guisher Dk have queries with an input in common. Then

AdvCCA(d1,...,dn)(C) ≤
n
∑

k=1

[

AdvDk
+ 3

(

2δk +
2d2

k

|M| + 2AdvDk
+ AdvD2

k

)
1
3

]

Proof: [The proof is based on the technique introduced in [24].]

The proof follows the same steps as the proof of Theorem 4.2.2

Let C1 := C, and C2 := C∗.

1. Let Zi[k] be probability that the test Tk accepts (X, Ci(X)), i.e. Pr[Tk(X, Ci(X)) = 1]. Then

Zi[k] =
∑

X

Pr[X]Tk(X, Ci(X)) = EX(Tk(X, Ci(X))).

2. Let X̃ denote a vector (X1, . . . , Xn), and Ỹ denote (Y1, . . . , Yn), where all Xk’s and Yk’s are
vectors from Mdk . Then the probability that the combined attack accepts when the oracle
implements Ci is:

pi =
∑

X̃

Pr[X̃]
∑

Ỹ

Pr[Ci(X̃) = Ỹ]
∑

T1,...,Tn

1(T1,...,Tn)∈A Pr[∀k : Tk(Xk, Yk) = Tk]

=
∑

X̃

Pr[X̃]
∑

Ỹ

Pr[Ci(X̃) = Ỹ]
∑

T1,...,Tn

1(T1,...,Tn)∈A

n
∏

k=1

(Zi[k])Tk (1 − Zi[k])1−Tk

= ECi
(f(Zi[1] , Zi[2] , . . . , Zi[n]))

where

f(z1, . . . , zn) =
∑

T1,...,Tn

1(T1,...,Tn)∈A zT1
1 (1 − z1−T1

1) · · · zTn
n (z1−Tn

n)

=
∑

(k1,...,kn)∈{0,1}n

ak1k2...kn
zk1
1 (1 − z1−k1

1) · · · zkn
n (1 − z1−kn

n)

for some constants ak ∈ {0, 1}. Since f(z) is a polynomial of partial degrees at most 1,

∂f

∂z1
=

∑

k2,...,kn

(a1k2...kn
− a0k2...kn

)zk2
2 (1 − z1−k2

2) · · · zkn
n (1 − z1−kn

n)

4.4. COMBINED ATTACKS 53

Since

S1 :=
∑

k2,...,kn

a1k2...kn
zk2
2 (1 − z1−k2

2) · · · zkn
n (1 − z1−kn

n)

≤
∑

k2,...,kn

zk2
2 (1 − z1−k2

2) · · · zkn
n (1 − z1−kn

n)

=
∑

k2

zk2
2 (1 − z1−k2

2)
∑

k3,...,kn

zk3
3 (1 − z1−k3

3) · · · zkn
n (1 − z1−kn

n)

= (z2 + 1 − z2)
∑

k3,...,kn

zk3
3 (1 − z1−k3

3) · · · zkn
n (1 − z1−kn

n)

=
∑

k3,...,kn

zk3
3 (1 − z1−k3

3) · · · zkn
n (1 − z1−kn

n) = . . . = 1

and similarly,

S2 :=
∑

k2,...,kn

a0k2...kn
zk2
2 (1 − z1−k2

2) · · · zkn
n (1 − z1−kn

n) ≤ 1

Thus,

∂f

∂z1
≤ max {S1, S2} ≤ 1

In a similar way, we get for all partial derivatives: ∂f
∂zk

≤ 1. Therefore,

|f(Z1[1] , Z1[2] , . . . , Z1[n]) − f(Z2[1] , Z2[2] , . . . , Z2[n])| ≤
n
∑

k=1

|Z1[k] − Z2[k] |.

3. The probability that one round is accepted (i.e. Tk(X̃k, Ỹk) = 1) is

proundk

i = ECi
(Zi[k])

Therefore,
|EC1(Z1[k]) − EC2(Z2[k])| =

∣

∣

∣
proundk

1 − proundk

2

∣

∣

∣
≤ AdvDk

4. Since Z2
i[k] corresponds to the attack D2

k,
∣

∣EC1(Z
2
1[k]) − EC2(Z

2
2[k])

∣

∣ ≤ AdvD2
k

and

|VC1(Z1[k]) − VC2(Z2[k])| =
∣

∣EC1(Z
2
1[k]) − E2(Z1[k]) − EC2(Z

2
2[k]) + E2(Z2[k])

∣

∣

≤ AdvD2
k

+ 2AdvDk

Hence, VC1(Z1[k]) ≤ VC2(Z2[k]) + AdvD2
k

+ 2AdvDk
.

5. From the Chebyshev inequality, one can derive:

Pr[|Zi[k] − ECi
(Zi[k])| > λk] ≤ VCi

(Zi[k])

λ2
k

Hence,

Pr[|Z1[k] − Z2[k] | > 2λk + AdvDk
] ≤

2VC2(Z2[k]) + AdvD2
k

+ 2AdvDk

λ2
k

6. From 2. and 5.:

AdvCCA(d1,...,dn)(C) = |p1 − p2|
≤ E(|f(Z1[1] , . . . , Z1[n]) − f(Z2[1] , . . . , Z2[n])|)

≤ E

(

n
∑

k=0

|Z1[k] − Z2[k] |
)

≤
n
∑

k=1

(

2λk + AdvDk
+

2VC2(Z2[k]) + AdvD2
k

+ 2AdvDk

λ2
k

)

54 CHAPTER 4. COMPOSED ATTACKS

7. As proved in Theorem 4.2.2 (Step 7)

VC2(Z2[k]) ≤ 1

2

∑

X,X′

Y,Y ′

Pr[X]Pr[X ′]
∣

∣

∣Pr
[

X
C2→Y

X′C2
→Y ′

]

− Pr[X
C2→ Y]Pr[X ′ C2→ Y ′]

∣

∣

∣

≤ δk +
d2

k

|M| .

8. Let λk =
(

2VC2(Z2[k]) + AdvD2
k

+ 2AdvDk

)
1
3

. Then

AdvCCA(d1,...,dn)(C) ≤
n
∑

k=1

(

3
[

2VC2(Z2[k]) + AdvD2
k

+ 2AdvDk

]
1
3

+ AdvDk

)

≤
n
∑

k=1

(

3

[

2δk +
2d2

k

|M| + AdvD2
k

+ 2AdvDk

]
1
3

+ AdvDk

)

Similarly as for the generalized iterated attacks, the result of the previous theorem is not tight because of
the use of the Chebyshev inequality.

Corollary 4.4.2 ([24]) Let C be a cipher on a set M. Let D1, . . . , Dn be n attacks on C with advantages
AdvD1 , . . . , AdvDn

. Let dk, denote the number of queries of Dk. Let D2
k and AdvD2

k
have the same

meaning as in the previous theorem. If the underlying attacks have a uniform distribution on the plaintexts,
then

AdvCCA(d1,...,dn)(C) ≤
n
∑

k=1

[

AdvDk
+ 3

(

4d2
k

|M| + 2AdvDk
+ AdvD2

k

)
1
3

]

Proof: If the attacks have the uniform distribution of the plaintexts, δk ≤ d2
k

|M| . The result follows now
from Theorem 4.4.1.

4.5 Conclusions

In this chapter, we analyzed two attacks which use less efficient attacks against a cipher as building blocks
for a more efficient one: An iterated attack uses one chosen-plaintext attack with small size and repeat it
many times. In opposite, a combined attack takes a few distinct attacks with large size and each one is
executed once. In both types, to ensure security against the composed attacks using an attack of order d,
security against the underlying attack of order d is not sufficient; we need to ensure security against the
underlying attacks of order at least 2d.

In the previous chapter the advantage of different types of attack against unbalanced Feistel networks
was evaluated. We can use these results to determine the advantage of a composed attack against UFNs.
Consider for example a differential cryptanalysis against an r-round unbalanced Feistel network with per-
fectly random round functions Ψ[F ∗

1 , . . . , F ∗
r] on {0, 1}n = {0, 1}m×{0, 1}n−m. It depends on the chosen

plaintext attack with the following advantage (Corollary 3.4.10):

AdvCCPA(d)(Ψ[F ∗
1 , . . . , F ∗

r]) ≤ AdvCACPA(d)(Ψ[F ∗
1 , . . . , F ∗

r])

≤ 1

2

(

2
d2

min{|M1|, |M2|}

)k

where k = b r
3c. Let min{2m, 2n−m} = 2m. Assume that we want to upper-bound the advantage by some

value a. Then from Theorem 4.1.1

AdvCDCA(2d)(C) ≤ d

(

1

2n − 1
+

1

2

(

d2

2m

)k
)

≤ a

(

d2

2m

)k

≤ 2

(

a

d
− 1

2n − 1

)

=: b

k ≥ lg b

2 lg d − m

and thus we need at least 3 lg b
2 lg d−m rounds to achieve resistance to the basic differential cryptanalysis. Similar

formulas can be derived for other attacks and their combinations.

Chapter 5

Modes of Operation

The block size of the block ciphers is usually rather small (modern ciphers use 128 bit blocks), much smaller
than the usual length of messages. Thus, it is necessary to extend the encryption of one block to encryption
of the whole message with as little overhead as possible. Modes of operation handle this problem. They
were first specified by the FIPS 81 standard [18] for DES, however, they are independent of the actual
block cipher being used. In this chapter we describe individual modes, discuss their properties, namely
security, fault-tolerance, and efficiency, and evaluate their advantage in the random oracle model, i.e. with
the assumption that the underlying block cipher is perfect.

Notation: Most of the modes use an initialization vector (IV) to randomize the plaintext mes-
sage which is prepended to the ciphertext as the zeroth block. It makes it possible to encrypt
two equal messages into distinct ciphertexts. To handle this feature, we will consider a modified
notion of the perfect cipher C∗ for these modes: It will be a function from M∗ to M∗ that for
any input message x1x2 . . . xn consisting of n elements of M returns perfectly random output
y0y1 . . . yn of n + 1 elements of M. Further, the advantage of the best distinguisher between
a cipher used in a particular mode Mode and a perfect cipher querying an oracle with up to q
messages containing together up to d blocks will be denoted by AdvCATK(d|q)(Mode[C]).

5.1 ECB Mode

The electronic codebook (ECB) mode is the simplest way of using a block cipher: the message is split into
blocks which are independently encrypted using the same key. Formally, let X = x1x2 . . . be a plaintext
message. The ciphertext message Y = y1y2 . . . is calculated by yi = C(xi), and the ciphertext is decrypted
by xi = C−1(yi) (see Figure 5.1).

PSfrag replacements

xi

xi

xi+1

xi+1

xi−1

xi−1 yi

yi

yi+1

yi+1

yi−1

yi−1

CCC C−1C−1C−1

>
...

a) b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 5.1: Electronic codebook mode: a) encryption, b) decryption

Security: The main problem of the ECB mode is that the same plaintext blocks are always encrypted
into the same ciphertext blocks. Thus an attacker can start to compile the codebook without knowing the
key (and cipher) - if he finds out the plaintext block corresponding to a ciphertext block, he is able to decrypt
this ciphertext block whenever the block occurs again. It is also possible to mount statistical attacks on the
underlying plaintext, irrespective of the strength of the block cipher. Furthermore, an attacker can modify
ciphertext messages without knowing the key - he can insert, remove, interchange, or replay blocks (replay
attack) without being detected, thus some authentication should be included into the plaintext.

55

56 CHAPTER 5. MODES OF OPERATION

Fault-tolerance: Alternation of a plaintext/ciphertext block only causes alternation of the correspond-
ing ciphertext/plaintext block. If a part of the ciphertext whose size is not a multiple of the block size is
inserted or lost, then all subsequent blocks are decrypted incorrectly.

Efficiency: Encryption as well as decryption may be done in parallel — any block can be encrypted or
decrypted regardless of the other blocks.

Theorem 5.1.1 Let C be a cipher on M, ATK a class of attacks, and d and q integers (q ≤ d). Then,

AdvCATK(d|q)(ECB[C]) = AdvCATK(d)(C).

Proof: From any attack on a cipher in the ECB mode, it is possible to create an attack on the underlying
cipher by ignoring the division to the individual messages, and similarly from an attack on the
cipher, an attack on ECB[C] can be created by grouping the blocks into messages.

5.2 CBC Mode

In the cipher block chaining (CBC) mode, each plaintext block is XOR-ed with the previous ciphertext
block before it is encrypted, and thus each ciphertext block dependents on all the previous plaintext blocks.
Since there is no previous ciphertext block at the beginning of the encryption, an initialization vector is
chosen at random. Formally, for a plaintext X = x1x2 . . ., the corresponding ciphertext Y = y0y1y2 is
computed as follows: y0 = IV, and yi = C(xi ⊕ yi−1) for all i ≥ 1; the ciphertext is decrypted by
xi = yi−1 ⊕ C−1(yi) (see Figure 5.2).

PSfrag replacements

xi

xi

xi+1

xi+1

xi−1

xi−1 yi

yi

yi+1

yi+1

yi−1

yi−1

CCC

C−1C−1C−1

>
...

a) b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 5.2: Cipher block chaining mode: a) encryption, b) decryption

Security: Some blocks can be inserted or removed from the beginning or end of an encrypted message
without being detected, thus the message should have some indicator of the beginning and end. Plaintext
patterns are concealed. The initialization vector should be unique; otherwise ciphertexts of two messages
are equal until the first difference in their plaintexts.

Fault-tolerance: Alternation of a plaintext block xi causes alternation of the corresponding ciphertext
block yi and of all subsequent blocks. However, it is not significant for decryption, because decryption
reverses this effect, and the decrypted plaintext has the same error as the original one. On the other hand
this feature may be used for creating of a message authentication code. Similarly, alternation of a ciphertext
block yi fully damages the corresponding plaintext block and causes alternation of the following plaintext
block in the same bits; all following blocks are decrypted correctly. If a part of the ciphertext whose size
is not a multiple of the block size is inserted or lost, then all subsequent blocks are decrypted incorrectly.
Synchronization errors of full block sizes are recoverable with one garbled block.

Efficiency: Encryption cannot be done in parallel. Decryption may be done in parallel and enables
random access to plaintext data. No preprocessing is possible.

In order to be able to decrypt the message, C has to be a cipher. However, for simplicity of the proof, we
first consider the case where the underlying primitive is a perfect random function. Since attacks querying
the oracle with ciphertexts need to calculate the inverse of the underlying primitive, with this substitution
we are limited to plaintext attacks.

Lemma 5.2.1 Let F ∗ be a perfect random function on M, ATK ∈ {CPA, ACPA} a class of attacks, and
d and q be integers (q ≤ d). Then

AdvCATK(d|q)(CBC[F ∗]) ≤ d2

2 |M| .

5.2. CBC MODE 57

Proof: [The proof is based on the technique introduced in [2].]

Let C1 := CBC[F ∗], and C2 = C∗. Assume that the attacker obtains the following plaintexts:
Xj = xj1xj2, . . . , xjnj

, and ciphertexts: Yj = yj0yj1yj2, . . . , yjnj
, where 1 ≤ j ≤ q, and nj are

the number of blocks in the individual messages. Thus, n1 + n2 + · · · + nq = d.

Let all yjl, for 1 ≤ j ≤ q, and 0 ≤ l < nk, be ordered in one sequence, so that yk denotes the k-th
element of the sequence (0 ≤ k < d), i.e.

yk = yab,

where a is the greatest integer such that
∑a−1

j=1 nj ≤ k, and b = k −∑a
j=1 nj . Let xk denote the

plaintext block encrypted in yk (i.e. xab) if b 6= 0, or xana
if b = 0.

Let Dk denote the following event:

∀u, v ≤ k, u 6= v : yu ⊕ xu+1 6= yv ⊕ xv+1,

(i.e. there is no collision in inputs to the function F ∗). Let D−1 = 1, and D = Dd−1.

If D occurs, then the sequence of all ciphertext blocks yab is perfectly random because the elements
are either initialization vectors generated at random, or outputs of F ∗, but in that case the function
was evaluated only for non-colliding (pairwise different) inputs, and thus they are perfectly random.
Consequently, if D occurs, the distinguisher cannot distinguish between CBC[F ∗] and C∗.

Let Pr[¬Dk|Dk−1] be the probability that a collision occurs the first time in the k-th element
provided that the oracle implements the CBC mode with perfect cipher. If yk is yab for some a, and
b > 0 then since yk−1 did not have a collision, the cipher is evaluated for a new value, and

Pr[¬Dk|Dk−1] = Pr[∃u < k : yk = yu ⊕ xu+1 ⊕ xk+1|Dk−1]

= Pr[∃u < k : F ∗(yk−1 ⊕ xk) = yu ⊕ xu+1 ⊕ xk+1|Dk−1] =
k

|M| .

If yk is ya0 for some a, then it is a random IV, and

Pr[¬Dk|Dk−1] = Pr[∃u < k : ya0 = yu ⊕ xu+1 ⊕ xk+1|Dk−1] =
k

|M| .

Now, using Theorem 2.2.3

AdvCATK(d|q)(CBC[F ∗]) = Pr[¬D] = Pr[¬Dd−1] ≤
d−1
∑

k=0

Pr[¬Dk|Dk−1] =

d−1
∑

k=0

k

|M| =
d2

2 |M|

Theorem 5.2.2 Let C∗ be a perfect cipher on M, ATK ∈ {CPA, ACPA} a class of attacks, and d and q
integers (q ≤ d). Then

AdvCATK(d|q)(CBC[C∗]) ≤ d2

|M| .

Proof: Follows from Theorems 2.4.2 (ATK+ = ATK) and 5.2.2, and Corollaries 3.3.7 or Corollary
3.4.7.

Corollary 5.2.3 Let C be a cipher on M, ATK ∈ {CPA, ACPA} a class of attacks, and d and q integers
(q ≤ d). Then

AdvCATK(d|q)(CBC[C]) ≤ AdvCATK(d)(C) +
d2

|M| .

Proof: Follows from Theorem 2.4.2 (ATK+ = ATK), and Theorem 5.2.2.

We showed that the CBC mode is secure against the (adaptive) chosen plaintext attack, i.e. it is pseudo-
random. In the rest of this section we discuss the lower bound on the advantage of the CBC mode.

58 CHAPTER 5. MODES OF OPERATION

Theorem 5.2.4 Let F ∗ be a perfect random function on M, and d <
√

2M and q be integers (q ≤ d).
Then,

AdvCCPA(d|q)(CBC[F ∗]) ≥
(

1 − 1

e
− 1

|M|

)

· d2

2 |M| .

Proof: [The proof is based on the technique introduced in [2].]

Consider the following distinguisher:

DISTINGUISHER 5.1 (CBC): d-limited distinguisher for CBC

1. Create q messages Xk = xk1 . . . xknq
(1 ≤ k ≤ q,

∑q
k=1 nk = d), having the same

value in all blocks, i.e. ∃v ∈ M : ∀k, a : xka = v.

2. For k = 1 to q do

2.1 Get Yk = yk0yk1 . . . yknq
= C(Xk), where C is either CBC[F ∗] or C∗.

3. If ∃u, v ≤ q, a < nu, b < nv, (u, a) 6= (v, b) : yua = yvb

3.1 Then if yu(a+1) = yv(b+1) then output “accept”.

4. Output “reject”.

Note that unlike the attacks against the underlying ciphers, when a mode of operation using the
initialization vector to randomize input is attacked, it makes sense to query the oracle with equal
content.

Let Dk and D have the same meaning as in the proof of Theorem 5.2.2. When the oracle
implements the CBC mode, the distinguisher accepts whenever a collision occurs. When the oracle
implements a perfect cipher, the distinguisher accepts if there are two equal subblocks of length 2 in
the ciphertext. Thus,

p0 = Pr[¬D]

p1 ≤
(

d

2

)

1

|M|2

|p0 − p1| ≥ Pr[¬D] − d2

2 |M|2
.

Since

Pr[D] = Pr[Dd−1] =

d−1
∏

k=0

Pr[Dk|Dk−1] =

d−1
∏

k=0

(1 − Pr[¬Dk|Dk−1])

=
d−1
∏

k=0

(

1 − k

|M|

)

≤
d−1
∏

k=0

e−
k

|M| = e−
∑d−1

k=0 − k
|M| = e−

d2

2 |M|

we get

Pr[¬D] = 1 − Pr[Dd−1] ≥ 1 − e−
d2

2 |M| ≥
(

1 − 1

e

)

d2

2 |M| .

Therefore,

AdvCCPA(d|q)(CBC[F ∗]) ≥
(

1 − 1

e
− 1

|M|

)

· d2

2 |M| .

The distinguisher from the previous proof has a chance to distinguish CBC[F ∗] from C∗ only if a
collision occurs. The probability that a collision occurs is higher when the number of chosen plaintexts
d is higher. However, the higher the probability of collision, the higher the probability that it occurs also
when C∗ is implemented (d2

2 |M| 1). Consequently, the distinguisher has the greatest lower bound

5.3. CFB MODE 59

on the advantage when
(

d2

2 |M|

)2

is maximal, thus when d2 = |M|, i.e. d ≈
√

|M|. In that case,

AdvCCPA(d|q)(CBC[F ∗]) ≥ 1
4

(

1 − 1
e

)

.
The lower bound indicates that even if the CBC mode uses a perfect random function for the underlying

primitive, it always leaks some information. However, the upper bound from Theorem 5.2.2 implies that
the attack described in the proof of Theorem 5.2.4 is essentially the best one, up to a constant factor.

5.3 CFB Mode

The cipher feedback (CFB) mode is actually a self-synchronizing stream cipher. As defined in [18], the
feedback structure is more complex than the one we present here. We discuss the original form at the end
of this section.

The key stream in the CFB mode is produced by encrypting the previous ciphertext block yi−1, which
is XOR-ed with the plaintext block. As in the ECB mode, an initialization vector (IV) has to be chosen
before the encryption, i.e. y0 = IV, and yi = xi ⊕Ki where Ki = C(yi−1), or shortly yi = xi ⊕C(yi−1),
for all i ≥ 1; the decryption works in the same way xi = yi ⊕ C(yi−1) (see Figure 5.3).

PSfrag replacements

xi

xi

xi+1

xi+1

xi−1

xi−1 yi

yi

yi+1

yi+1

yi−1

yi−1

CCCC

C−1

>
...

a) b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 5.3: Cipher feedback mode: a) encryption, b) decryption

Security: Some blocks can be inserted or removed from the beginning or the end of an encrypted
message without being detected, thus the message should have some indicator of the beginning and end
of the message. Plaintext patterns are concealed. The initialization vector should be unique; otherwise
ciphertexts of two messages are equal until the first difference in their plaintexts.

Fault-tolerance: Alternation of a plaintext block xi causes alternation of the corresponding ciphertext
block yi and of all subsequent blocks. However, it is not significant for the decryption, because the decryp-
tion reverses this effect, and the recovered plaintext has the same error. On the other hand this feature may
be used for creating a message authentication code. Similarly, alternation of a ciphertext block yi causes
alternation of the corresponding plaintext block in the same bits and fully damages the following plaintext
block. Loss or addition of a full block is recoverable with one garbled block; synchronization errors of
other sizes are unrecoverable.

Efficiency: Encryption cannot be done in parallel. Decryption can be done in parallel and enables
random access to plaintext data. No preprocessing is possible.

Since the underlying cipher is never used for decryption, it does not need to be a cipher (does not need
to be invertible). We will further consider a perfect random function as the underlying primitive. The
advantage of the CFB mode with a cipher we discuss in the summary section of this chapter.

Theorem 5.3.1 Let F ∗ be a perfect random function on M, ATK a class of attacks, and d and q integers
(q ≤ d). Then

AdvCATK(d|q)(CFB[F ∗]) ≤ d2

2 |M| .

Proof: Assume that the attacker obtains the following plaintexts: Xj = xj1xj2, . . . , xjnj
, and

ciphertexts: Yj = yj0yj1yj2, . . . , yjnj
, where 1 ≤ j ≤ q, and nj are the number of blocks in the

individual messages. Thus, n1 + n2 + · · · + nq = d.

Let all yjl, for 1 ≤ j ≤ q, and 0 ≤ l < nk, be ordered in one sequence, and let the yk denote the
k-th element of the sequence (0 ≤ k < d), i.e.

yk = yab,

60 CHAPTER 5. MODES OF OPERATION

where a is the greatest integer such that
∑a−1

j=1 nj ≤ k, and b = k −
∑a

j=1 nj . Let xk denote the
plaintext block encrypted in yk (i.e yk = xk ⊕ F ∗(yk−1) if b > 0).

Let Dk denote the following event:

∀u, v ≤ k, u 6= v : yu 6= yv.

Let D−1 = 1, and D = Dd−1.

If D occurs, then the sequence of all ciphertext blocks yab is perfectly random because the elements
are either initialization vectors generated at random or yk = F ∗(yk−1) ⊕ xk , but in that case the
function was evaluated only for non-colliding inputs, and thus they are perfectly random.
Consequently, if C occurs, the distinguisher cannot distinguish between CBC[F ∗] and C∗.

Let Pr[¬Dk|Dk−1] be the probability, that a collision occurs in the k-th element provided that the
oracle implements the CBC mode with perfect random cipher. If yk is yab for some a, and b > 0
then since yk−1 did not have a collision, F ∗is evaluated for a new value, and

Pr[¬Dk|Dk−1] = Pr[∃u < k : yk = yu|Dk−1]

= Pr[∃u < k : F ∗(yk−1) = yu ⊕ xk|Dk−1] ≤
k

|M| .

If yk is equal to ya0 for some a then it is a random IV, and

Pr[¬Dk|Dk−1] = Pr[∃u < k : ya0 = yu|Dk−1] ≤
k

|M| .

Now, as in the proof of Theorem 5.2.2,

AdvCATK(d|q)(CBC[F ∗]) = Pr[¬D] ≤ d2

2 |M|

Corollary 5.3.2 Let F be a random function on M, ATK a class of general attacks from Chapter 3, and d
and q integers (q ≤ d). Then

AdvCATK(d|q)(CFB[F]) ≤ AdvF ATK+(d)(F) +
d2

2 |M| .

Proof: Follows from Theorems 2.4.2 and 5.3.1.

Theorem 5.3.3 Let F ∗ be a perfect random function on M, and d and q be integers (q ≤ d). Then

AdvCCPA(d|q)(CFB[F ∗]) ≥
(

1 − 1

e
− 1

|M|

)

· d2

2 |M| .

Proof: The proof is similar to the one of Theorem 5.2.4 and is omitted.

The feedback structure defined in [18] allows one to divide the plaintext message into smaller units
than the block length of the underlying cipher. In that case, the output of the cipher must be reduced into
a smaller block which is then XORed with the plaintext unit. The input to the cipher consist of several
previous ciphertext blocks, and not only of the last one as in the simplified version, and is stored in a shift
register, which shifts after each encryption and adds the last key-stream block (see Figure 5.4).

Assume that the plaintext message is divided into blocks from a set M. From the construction of the
input into the cipher, it follows that the cipher has to be defined on ML, where L is the size of the feedback
(the number of the last ciphertext blocks stored in the shift register). Output of the cipher is after encryption
reduced from an element of ML to an element of M. Actually, we do not need to concern the structure of
the function reducing the output of the cipher to the appropriate size; we can consider the composition of
the cipher and the reduction function to be a random function from ML to M.

As in the simplified OFB mode, the shift register has to be initialized by a random initial vector at the
beginning of encryption. This is, however, much longer comparing with the plaintext blocks than it was
in the simplified version. The plaintext X = x1x2 . . . is encrypted into Y = y−L+1 . . . y0y1y2 . . ., where
y−L+1 . . . y0 is the initial vector.

The advantage of the original CFB mode may be evaluated in the same way as of the simplified version.

5.4. OFB MODE 61

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C

C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F

Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 5.4: Generalized ciphertext feedback mode

Theorem 5.3.4 Let F ∗ be a perfect random function from ML to M, ATK a class of attacks, and d and q
integers (q ≤ d). Then

AdvCATK(d|q)(CFB[F ∗]) ≤ d2

2 |M|L
.

Proof: The proof is similar to the one of Theorem 5.3.1, but the sequence Y0, Y1, . . . , Yd is created from
the big inputs to the function F ∗, i.e.

Yk = ya(b−L)yab−L+1 . . . yab

where a is the greatest integer such that
∑a−1

j=1 nj ≤ k, and b = k −
∑a

j=1 nj . Let Y i
k denote

ya(b−L+i) for all 0 ≤ i < L. Let xk be the plaintext block encrypted in Y L−1
k .

Let Dk again denote the event:
∀u, v ≤ k, u 6= v : Yu 6= Yv.

Let D−1 = 1, and D = Dd−1.

If D occurs then the sequence of all ciphertext blocks yab is perfectly random.

Pr[¬Dk|Dk−1] = Pr[∃u < k : Yk = Yu|Dk−1]

= Pr[∃u < k ∀i : Y i
k = Y i

u |Dk−1].

For a fixed u, and i, If Pr[Y i
k = Y i

u |Dk−1] = 1
|M| , since Y i

k is either a random IV block, or

Y i
k = xk ⊕ F ∗(Yk−L+1+i) which are all evaluated for distinct inputs. Therefore,

Pr[¬Dk|Dk−1] ≤
k

|M |L
.

Now, similarly as in the proof of Theorem 5.2.2,

AdvCATK(d|q)(CBC[F ∗]) = Pr[¬D] ≤ d2

2 |M|L

Thus, if we consider both the simplified and the original CFB mode with inputs to the underlying
function from ML, they have the same advantage. The only disadvantage of using the original CFB mode
is the bigger size of the initialization vector.

5.4 OFB Mode

The output feedback (OFB) mode is very similar to the CFB mode, but the input to the underlying cipher
is the output of the previous encryption, rather than the ciphertext unit. It is actually a synchronous stream
cipher. Also the OFB mode was defined in [18] in more complex structure. Similarly as in the previous
section, we first simplify it, and at the end of the section we discuss the original scheme.

The key stream in the OFB mode is produced by repeated encryption of an initialization vector (IV),
and is XOR-ed with the plaintext blocks, e.g. K0 = IV, Ki = C(Ki−1) for i ≥ 1. The ciphertext consists
of the initial vector, and all encrypted blocks, i.e. y0 = K0, and yi = xi ⊕ Ki; and xi = yi ⊕ Ki, (see

62 CHAPTER 5. MODES OF OPERATION

PSfrag replacements

xi

xi

xi+1

xi+1

xi−1

xi−1 yi

yiyi

yi+1yi−1

yi−1

CCCCCC

C−1

>
...

a) b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 5.5: Output feedback mode: a) encryption, b) decryption

Figure 5.5). This mode is sometimes called internal feedback mode, because the feedback mechanism is
independent of both the plaintext and ciphertext.

Security: Plaintexts are very easy to manipulate — any alternation of the ciphertext directly affects
the same bits of the plaintext. Plaintext patterns are concealed. The initialization vector should be unique;
otherwise the same key streams are generated.

Fault-tolerance: A plaintext (ciphertext) alternation affects only the corresponding block of the cipher-
text (plaintext). Addition or loss of a part of the ciphertext is unrecoverable.

Efficiency: OFB processing cannot be done in parallel, unless the key sequence Ki is precomputed.
Similarly as for the CFB mode we may use any random function, not only a cipher, for the underlying

primitive.

Theorem 5.4.1 Let F ∗ be a perfect random function on M, ATK a class of attacks, and d and q integers
(q ≤ d). Then

AdvCATK(d|q)(OFB[F ∗]) ≤ d2

2 |M| .

Proof: Assume that the attacker obtains the following plaintexts: Xj = xj1xj2, . . . , xjnj
, and

ciphertexts: Yj = yj0yj1yj2, . . . , yjnj
, where 1 ≤ j ≤ q, and nj are number of blocks in the

individual messages. Thus, n1 + n2 + · · · + nq = d.

Let all yjl, for 1 ≤ j ≤ q, and 1 ≤ l ≤ nk, be ordered in one sequence, and let the yk denote the
k-th element of the sequence (0 ≤ k < d), i.e.

yk = yab,

where a is the biggest integer such that
∑a−1

j=1 nj ≤ k + 1, and b = k + 1 −∑a
j=1 nj . Let xk

denotes the plaintext block encrypted in yk.

Let Dk denote the following event:

∀u, v ≤ k, u 6= v : yu ⊕ xu 6= yv ⊕ xv .

Let D−1 = 1, and D = Dd−1.

If D occurs then the sequence of all ciphertext blocks yab is perfectly random because the elements
are either initialization vectors generated at random or F ∗(Kk) ⊕ xk evaluated for non-colliding
inputs. Consequently, if D occurs the distinguisher cannot distinguish between CBC[F ∗] and C∗.

Let Pr[¬Dk|Dk−1] be the probability, that a collision occurs in the k-th element provided that the
oracle implements the CBC mode with a perfect cipher. Then

Pr1[¬Dk|Dk−1] = Pr[∃u < k : yk = yu ⊕ xu ⊕ xk |Dk−1]

= Pr[∃u < k : F ∗(Kk−1) = yu ⊕ xu|Dk−1]

= Pr[∃u < k : F ∗(yk−1 ⊕ xk−1) = yu ⊕ xu|Dk−1] ≤
k

|M| .

Similarly as in the proof of Theorem 5.2.2,

AdvCATK(d|q)(OFB[F ∗]) = Pr[¬D] ≤ d2

2 |M|

5.5. COUNTER MODE 63

Corollary 5.4.2 Let F be a random function on M, ATK a class of general attacks from Chapter 3, and d
and q integers (q ≤ d). Then

AdvCATK(d|q)(OFB[F]) ≤ AdvF ATK+(d)(F) +
d2

2 |M| .

Proof: Follows from Theorems 2.4.2 and 5.4.1.

Theorem 5.4.3 Let F ∗ be a perfect random function on M, and d and q integers (q ≤ d). Then

AdvCCPA(d|q)(OFB[F ∗]) ≥
(

1 − 1

e
− 1

|M|

)

· d2

2 |M| .

Proof: The proof is similar to the one of Theorem 5.2.4 and is omitted.

The feedback structure defined in [18] is very similar to the generalized structure of the CFB mode,
with the difference that the shift register is filled with the key-stream block, rather than ciphertext block
(see Figure 5.6). The plaintext message is again divided into blocks from a set M, and the cipher is defined

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C

C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F

Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 5.6: Generalized output feedback mode

on ML, where L is the size of feedback. As in the previous section, we can consider the composition of
the cipher and the reduction function as a random function from ML to M. The length of the initialization
vector is L blocks as well.

Theorem 5.4.4 Let F ∗ be a perfect random function from ML to M, ATK a class of attacks, and d and q
integers (q ≤ d). Then

AdvCATK(d|q)(CFB[F ∗]) ≤ d2

2 |M| .

Proof: The proof is similar of that of Theorem 5.3.4 and is omitted.

5.5 Counter Mode

An alternative mode to the OFB mode was suggested by Diffie [5]. It is called counter mode, and differs
from the OFB mode only in the way the input for the next encryption is determined; instead of the previous
ciphertext, the content of a counter is taken, i.e. Ki = C(counter(i)). The counter is initialized by a
random value, and the plaintext X = x1x2 . . . is encrypted into a ciphertext Y = y0y1y2 . . . as y0 = K0

and yi = xi ⊕ Ki, and decrypted as xi = yi ⊕ Ki (see Figure 5.7).
Since the counter mode is a modified version of the OFB mode, they have the same properties (for

details see the previous section).
The counter on the set M is a function which orders the elements of the set. In other words, it is a

bijection c : {0, . . . |M|} → M. For example, if M = {0, 1}m, the counter is a bijection from {0, . . . 2m}
to M, and can be implemented for example as the binary string representation of the input integer.

Notation: The i-th successor of an element y ∈ M with respect to the counter c, i.e.
c(c−1(y) + i), will be denoted by y + i.

Theorem 5.5.1 Let F ∗ be a perfect random function on M, ATK a class of attacks, and d and q integers
(q ≤ d). Then

AdvCATK(d|q)(CRT[F ∗]) ≤ qd

|M| .

64 CHAPTER 5. MODES OF OPERATION

PSfrag replacements

xi

xi

xi+1

xi+1

xi−1

xi−1 yi

yi

yi+1

yi+1

yi−1

yi−1

CCCCCC

C−1

>
...

a) b)

a − 1a − 1 a + 1 a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a a

b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 5.7: Counter mode: a) encryption, b) decryption

Proof: Let C1 := CRT[F ∗], and C2 = C∗ be ciphers on M. Assume that the attacker obtains the
following plaintexts: Xj = xj1xj2, . . . , xjnj

, and ciphertexts: Yj = yj0yj1yj2, . . . , yjnj
, where

1 ≤ j ≤ q, and nj are number of blocks in the individual messages. Thus, n1 + n2 + · · · + nq = d

Let Dk denote the following event:

∀(u, a) 6= (v, b), 1 ≤ u, v ≤ k, 1 ≤ a ≤ nu, 1 ≤ b ≤ v : yu,0 + a 6= yv,0 + b,

(i.e. there is no collision in the outputs of the counter). Let D0 = 1, and D = Dq.

If D occurs and the oracle implements CRT[F ∗], all evaluation of F ∗ are for distinct inputs.
Consequently, if D occurs, all yka = F ∗(yk0 + a) ⊕ xka are random, and the distinguisher cannot
distinguish between CRT[F ∗] and C∗.

The plaintexts Yk and Yl cause a collision for some l < k if and only if there is at least one pair
(a, b) such that yk0 + a = yl0 + b. Thus, a collision with Yl is possible if and only if yk0 > yl0 − nk,
and yk0 < yl0 + nl, i.e. there are nl + nk − 1 possibilities for yk0 to get a collision with Yl.
Therefore, the probability that an element of Yk has a collision with any of the previous blocks is:

Pr[¬Dk|Dk−1] ≤
∑k−1

l=1 (nk + nl − 1)

|M| =
(k − 1)(nk − 1) +

∑k−1
l=1 nl

|M|

Now, using Theorem 2.2.3

AdvCATK(d|q)(CRT[F ∗]) = Pr[¬D] = Pr[¬Dq] ≤
q
∑

k=1

Pr[¬Dk|Dk−1]

≤
q
∑

k=1

(k − 1)(nk − 1) +
∑k−1

l=1 nl

|M| ≤
q
∑

k=1

knk

|M| +

q
∑

k=1

k−1
∑

l=1

nl

|M|

=

q
∑

k=1

knk

|M| +

q
∑

l=1

q−l
∑

k=1

nl

|M| =

q
∑

k=1

knk

|M| +

q
∑

k=1

(q − k)nk

|M|

=

q
∑

k=1

qnk

|M| =
(q − 1)

|M|

q
∑

k=1

nk =
qd

|M|

Corollary 5.5.2 Let F be a random function from M1 to M2, ATK a class of attacks from Chapter 3, and
d and q integers (q ≤ d). Then

AdvCATK(d|q)(CRT[F]) ≤ AdvF ATK+(d)(F) +
dq

|M| .

Proof: Follows from Theorems 2.4.2 and 5.5.1.

5.5. COUNTER MODE 65

Theorem 5.5.3 Let F ∗ be a perfect random function on M, ATK a class of attacks, ATK a class of
attacks, and d and q integers (q ≤ d). Then

AdvCATK(d|q)(CRT[F ∗]) ≥
(

1 − 1

e

)(

1 − 1

|M|

)

qd

|M| .

Proof: The proof is similar to the one of Theorem 5.2.4.

DISTINGUISHER 5.2 (CRT): d-limited distinguisher for CRT

1. Create q messages Xk = xk1 . . . xknq
(1 ≤ k ≤ q,

∑q
k=1 nk = d), having the same

value in all blocks, i.e. ∃v ∈ M : ∀k, a : xka = v.

2. For k = 1 to q do

2.1 Get Yk = yk0yk1 . . . yknq
= C(Xk), where C is either CRT[F ∗] or C∗.

3. If ∃u, v ≤ q, a < nu, b < nv, (u, a) 6= (v, b) : yu0 + a = yv0 + b

3.1 Then if yua = yvb then output “accept”.

4. Output “reject”.

Let Dk and D have the same meaning as in the proof of Theorem 5.2.2. When the oracle
implements the CRT mode, the distinguisher accepts whenever a collision occurs. If the oracle
implements a perfect cipher, the distinguisher accepts if the collision occurs and the outputs for the
blocks with the equal counter are equal. Since in both cases the initialization vector for the counter
is chosen randomly, the probability of the collision is for both the same. Therefore,

p0 = Pr[¬D]

p1 = Pr[¬D]
1

|M|

|p0 − p1| = Pr[¬D]

(

1 − 1

|M|

)

If Dk−1 holds, then Dk can hold only if the initialization vector of Yk does not overlap with any of
the previous messages, i.e.

Pr[Dk|Dk−1] ≤
|M| −

∑k−1
l=1 nl

|M| = 1 −
∑k−1

l=1 nl

|M|

Hence,

Pr[D] = Pr[Dq] =

q
∏

k=1

Pr[Dk|Dk−1] =

q
∏

k=1

(

1 −
∑k−1

l=1 nl

|M|

)

≤
q
∏

k=1

e−
∑k−1

l=1
nl

|M|

= e−
∑q

k=1

∑k−1
l=1

nl
|M| = e−

∑q
l=1

∑q−l
k=1

nl
|M| = e−

∑q
l=1

(q−l)nl
|M|

≤ e−
∑q

l=1
qnl

|M| = e−
qd

|M|

and

Pr[¬D] = 1 − Pr[D] ≥ 1 − e−
qd

|M| ≥
(

1 − 1

e

)

qd

|M|

Therefore,

AdvCCPA(d|q)(CBC[C∗]) ≥
(

1 − 1

e

)(

1 − 1

|M|

)

qd

|M|

66 CHAPTER 5. MODES OF OPERATION

When the counter mode is modified (denote it CRT’) so that the counter for encryption of the next
message is set to the value the previous one finished with, there is no overlap between encrypted messages.
Therefore:

Theorem 5.5.4 Let F ∗ be a perfect random function on M, ATK a class of attacks, and d < |M| and q
integers (q ≤ d). Then

AdvCATK(d|q)(CRT′[F ∗]) = 0.

Proof: The proof is similar to the one of Theorem 5.5.1, with the difference that Pr[¬Dk] = 0.

Corollary 5.5.5 Let F be a random function on M, ATK a class of attacks, and d and q integers (q ≤ d).

AdvCATK(d|q)(CRT′[F]) ≤ AdvFATK+(d)(F).

Proof: Follows from Theorems 2.4.2 and 5.5.3.

5.6 Summary

Since messages are usually longer than the block size, it was necessary to extend encryption to long mes-
sages of unspecified length. The simplest method is to split the message into units of the block length
and encrypt them independently. This does not increase advantage comparing to advantage of the cipher.
However, this method has other disadvantages discussed in Section 5.1. For other methods,

• AdvCATK(d|q)(CBC[C]) ≤ AdvCATK(d)(C) + d2

|M| ,

• AdvCATK(d|q)(CFB[F]) ≤ AdvF ATK+(d)(F) + d2

2 |M| ,

• AdvCATK(d|q)(OFB[F]) ≤ AdvF ATK+(d)(F) + d2

2 |M| ,

• AdvCATK(d|q)(CRT[F]) ≤ AdvF ATK+(d)(F) + dq
|M| ,

• AdvCATK(d|q)(CRT′[F]) ≤ AdvFATK+(d)(F),

where ATK ∈ {CPA, ACPA} for CBC, or any of the attacks defined in Chapter 3 for the other modes.
All the modes except of CBC do not use inversion of the underlying primitive in both encryption and
decryption, thus the primitive may be any random function (not only a cipher as in the CBC mode).

When a cipher C is used in the modes other than CBC,

AdvFATK+(d)(C) =
1

2
‖C − F ∗‖ ≤ 1

2
(‖C − C∗‖ + ‖C∗ − F ∗‖) ≤ AdvCATK+(d)(C) +

d2

2 |M| ,

for the norm ‖ · ‖ associated with the particular attack. Therefore, using a cipher in the CFB or OFB mode
gives the same upper-bound for advantage as for the CBC mode.

Advantage of the counter mode depends on the number of messages, and gives a lower upper-bound
than the previous modes for any q ≤ d−1

2 . (However, for q > d−1
2 there are some plaintext messages of

length 1, which cause inefficiency in encryption due to the expansion of the ciphertext — if the plaintext
contains only one block, the length is doubled. Thus, it may be expected that the plaintext messages are
larger than one block.) Furthermore, using the modified counter mode, initializing its counter with the value
the previous encryption finished with, does not increase the resulting advantage at all.

Part II

Provable Secure Scalable Block Ciphers

67

Chapter 6

Scalability of Block Ciphers

Security properties of a block cipher depend on two of its parameters — the block and key size. While
in theory bigger block and key sizes contribute to security against the brute force attack on the cipher, in
practice increasing these parameters also means greater computational complexity of their implementation.
Thus, they must be carefully selected so that the cipher ensures both the adequate level of security with
respect to current as well as predicted advances in technologies, and also an acceptable performance.

In the first modern ciphers, like DES or IDEA, the key and block sizes were fixed by design so that
they fitted requirements of the time they were designed. They had some lifetime expectation after which the
cipher needed to be reviewed. In case of DES, the American encryption standard introduced in 1977 by the
National Institute of Standards and Technology (NIST) for securing unconfidential data, it was stipulated to
be reviewed every five years, the first time in 1982. Indeed, NIST renewed the DES standard three times,
in 1983, 1988, and in 1993; the last time with hesitation and controversy. In 1999, DES was, after all,
admitted to be no more appropriate and recommended to be used only in legacy systems. Despite approval
of the DES standard, in the beginning of 90’s the process of replacement of the DES with its variant —
Triple-DES (which was standardized by NIST in 1999) — started. Only in September 1997 the selection
process for the new encryption standard was initiated. It finished in October 2000 by selecting Rijndael as
the new AES.

The history of the American encryption standard and of its updates shows how difficult a design of a
generally accepted standard and the migration process from one algorithm to another (first from the DES
to Triple-DES [9], nowadays to AES) is. The natural scalability of an encryption algorithm extends its life
span, because demands on higher security may be solved simply by changing (increasing) parameters of the
algorithm. The AES candidates were already required to support key/block size combinations of 128/128,
192/128, and 256/128 bits. Thus, all the AES candidates were required to be partially scalable, although
the required scalability is not very flexible. Submitted algorithms were allowed to support other key/block
size combinations. For example, the winning candidate Rijndael supports key and block sizes of 128, 192,
and 256 bit in any combination, with possibility to extend any of these parameters to any multiple of 32
bits. In general, the scalability property of symmetric ciphers may be classified as follows:

1. unscalable — the key and block size are fixed by design to one value;

2. partially scalable — only a small finite set of key/block size combinations is provided;

3. strongly scalable — the key and block sizes are restricted but unlimited (e.g. the block size must be
multiple of 32);

4. fully scalable — the key and block sizes are unrestricted (generally, it may not be secure to use large
blocks with short keys, but for this classification the possibility of any combination is essential, not its
security).

With reference to this classification, the traditional symmetric ciphers like DES or IDEA are unscalable,
the AES candidates were required to be scalable, and the winning candidate Rijndael is strongly scalable.
There is to date no commonly used fully scalable cipher.

6.1 Key Size Scalability

Block ciphers are usually schemes built on other key-dependent cryptographic primitives. In order to ensure
higher level of security of the scheme, the primitives use different keys, so that the total length of the sub-
keys may be very large. This problem is solved by introducing a main key to the scheme, from which the
sub-keys are generated by a key expansion algorithm. This algorithm must satisfy all requirements on a

69

70 CHAPTER 6. SCALABILITY OF BLOCK CIPHERS

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

FFFF

Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k

a) b) c)

d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 6.1: Scaling approaches: a) original scheme, b) scaling through primitives, c) scaling through struc-
ture

cryptographically strong random sequence generator. However, it may be separated from the encryption
scheme and provided as an independent plug-in module. Since security of the random sequence generators
is an extensive topic, we will not address it in the thesis, and assume that the sub-keys for the primitives are
perfectly random. Further, since there are random sequence generators expanding a short seed of a variable
length into a sequence of any length, we will consider the full scalability with respect to the key size.

6.2 Block Size Scalability

In general, there are two approaches how the block size of a cipher may be increased: either by scaling
the cryptographic primitives of the cipher, or by scaling its structure. In the first case, the structure of the
scheme is preserved, and the cryptographic primitives of the original cipher are substituted by new ones
with larger inputs and outputs (see Figure 6.1 b). The disadvantage of this approach is that the requirement
of scalability is transferred to the primitives of the scheme, and there are currently only few primitives (hash
functions and random sequence generators) which may be used in this design.

When the scheme is scaled through the structure, the original scheme is modified in order to be able
to deal with larger blocks, usually by dividing the input blocks into sub-blocks of the original block size,
and the original cryptographic primitives are used (see Figure 6.1 c). In any case, security of the original
scheme does not imply security of the enlarged one. As indicated by Theorem 2.4.1, in the first case it is
necessary to prove security of the new primitives, in the other case security of the modified scheme.

A Feistel-like scheme which is scalable through primitives was investigated in [8], and led to a design
of a practical scalable cipher TST. Up to now security of the TST algorithm has been assessed more from
an empirical view (on the base of statistical properties) [7], and more detailed analytical investigation is still
lacking. In the next chapter we examine TST using the analytical, rather than empirical approach.

The Chapter 8 examines security of the IDEA scheme and its scalability through the structure. It also
shortly discusses its scalability through primitives.

Chapter 7

TST

TST is an iterative block cipher based on a scheme similar to an unbalanced Feistel network. It was
designed by Valér Čanda and Tran van Trung, and analyzed in [7] using statistical methods. In this chapter
we analyze it in the random oracle model.

The underlying scheme of the TST cipher introduces some changes to the unbalanced Feistel network;
however, we show that we can use the security proofs provided in Chapter 3 for the unbalanced Feistel
network just with minor changes. Therefore, we will focus more on the analysis of the primitives of the
scheme, with the special attention to one of them: We show that a hash function used in the TST scheme is
weak and even addition of another primitive to the unbalanced Feistel scheme does not provide sufficient
compensation for the weakness. Then we investigate other hash functions and their use in the scheme, and
show how one can select the best one with respect to security of the overall scheme. Finally, we calculate
number of rounds which ensures pseudorandomness and super-pseudorandomness of the scheme.

7.1 Unbalanced Feistel Networks and TST

A Feistel Network is a general iterative method of transforming functions into block ciphers. It was invented
by Horst Feistel in the late 1960s during his work at IBM Thomas J Watson Research Labs on the Lucifer
cipher, and later named after him. There are many ciphers, including the former US encryption standard
DES, built on this method. It is based on repeated execution of a round transformation consisting of the
following steps:

1. the input message X is divided into two halves X = [L, R];

2. the right half R is transformed by a function, called round function or F-function [19], and XOR-ed to
the left part L (i.e. L ⊕ F (R));

The round function usually depends on a key, called round key. For a fixed function F and a round key,
the round transformation (denoted by rF) is a permutation, and has the very practical property of being
self-invertible, i.e. for all input messages X , rF (rF (X)) = X . The Feistel network (also called Feistel
cipher) Ψ consists of several round transformations followed by a block exchange operation (see Figure
7.1):

Ψ[F1, F2, . . . Fn] = rFn
◦ σ ◦ · · · ◦ σ ◦ rF2 ◦ σ ◦ rF1 ,

where σ([L, R]) = [R, L]. Note that the last block exchange is omitted. Computation of a Feistel network
on a plaintext message X = [L, R] may be described by the following sequence of round transformations:

• [L0, R0] = [L, R] is the initial pair;

• [Li, Ri] = rFi
([Li−1, Ri−1]) ◦ σ = [Ri−1, Li−1 ⊕ Fi(Ri−1)], for i = 1, . . . n − 1;

• [Ln, Rn] = rFn
([Ln−1, Rn−1]) = [Ln−1 ⊕ Fn(Rn−1), Rn−1].

The round functions F1, . . . , Fn may be the same function with different round keys, but also possibly
different functions.

Since each round of the Feistel network is self-invertible, the whole scheme may be easily inverted using
the same round transformations in the reverse order. Hence, Ψ−1[F1, F2, . . . Fn] = rF1◦σ◦rF2◦σ◦· · ·◦rFn

.
In general, inputs of round transformations may be divided into two parts of different lengths. Such

schemes are called unbalanced Feistel networks (UFN) [19]. There are two types of UFN, depending
on the input division: If the input of the F-function is larger than the output, the UFN is called source

71

72 CHAPTER 7. TST

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>

...
...

...
...

a)
b)

a − 1
a + 1

L0 R0

Li Ri

Li−1 Ri−1

Ln Rn

F1

Fi Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 7.1: Feistel Network

heavy (see Figure 7.2 a), in the other case, it is called target heavy (see Figure 7.2 b) [19]. It is possible
to combine both types into a mixed UFN (see Figure 7.2 c). We will call the round consisting of both
unbalanced structures a double-round. Note that a mixed UFN does not necessarily have to consist of even
number of transformations, it may finish with a single unbalanced round (in the middle of a double-round).

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

LL LRR R

L′L′ L′R′R′ R′

FF F

Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G

k

a) b) c)

d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 7.2: Unbalanced Feistel networks

The TST cipher as proposed in [8] is based on the structure of the unbalanced Feistel network, but
brings some modifications to it (see Figure 7.3 a):

• It changes the XOR operation to any invertible operations on binary strings (�, �, and ⊗);

• uses un-keyed round functions (H , S) with addition of a round key to the right part before each
(double-)round;

• adds a new permutation (P) to the left part; and

• applies string rotation after each (double-)round.

In general, the function H is a hash function, and S a random sequence generator.
The scheme of TST (Figure 7.3 a) involves three primitive cryptographic functions. Assuming the

block size of (n + 1)m bit, they are:

1. a hash function H : {0, 1}nm → {0, 1}m;

2. a substitution box S : {0, 1}m → {0, 1}nm; and

3. a permutation substitution box P : {0, 1}m → {0, 1}m.

7.1. UNBALANCED FEISTEL NETWORKS AND TST 73

Both S and P are represented by a table of respectively 2m × nm and 2m ×m bits generated by a random
bit or number generator (see Algorithm 7.1, and Algorithm 7.2). For the hash function H , the authors of
[8] suggest two basic structures depicted in Figures 7.5, and 7.8 using a simple key-independent function
from {0, 1}m to {0, 1}m as the underlying function (see Section 7.6).

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

LLL RRR

L′L′L′ R′R′R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

HH

SS

PPP

rotRrotRrotR

H ′

G

k

kk

a) b) c)

d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

LLL RRR

L′L′L′ R′R′R′

F

Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S

P

P

rotRrotRrotR

H ′H ′

GGG

k
a)
b)
c)

d) e) f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 7.3: TST (a) and its simplification (b–f)

Since the function H does not depend on the key (it is not a real primitive of the scheme), we are not
able to use the ROM directly. For this reason we make some changes to the scheme which, however, do
not weaken its security. First, the addition of the key k (�) may be attached to both functions H , and S:
H ′(X) = H(X � k), G(X) = k � S(X), so that both sub-rounds in a double-round have the same key,
and the ⊗ is substituted by another operation �, where � and � are such that (a � b) ⊗ c = a � (c � b)
for all entries (see Figure 7.3 b). Even if such a pair of functions does not exist, one may use � = � and
� = ⊗. This scheme is not equivalent to the original scheme (in the sense it may give different outputs),
but we buy flexibility in choice of the functions H ′ and G which actually introduce randomness into the
scheme.

For compatibility with the UFN, we will first consider only the XOR function for � and �. However,
in general, � and� could be any randomness-preserving operation (in the sense that if one of the operands
is random, the result of the operation remains random) because, as mentioned before, the functions H ′ and
G introduce the randomness, and the operations � and � just transfer the randomness to the data blocks,
thus we may do this substitution without loss of generality.

Using these substitutions, one gets a modified form of TST — further called basic TST — which
actually is a mixed UFN with two additional operations — the permutation P , and the final rotation rotR

(see Figure 7.3 c). Note that the simplification we made is only in its form. In fact, functions H ′ and G
may be any key-dependent functions with the appropriate input and output sizes, thus the scheme is actually
more general than the original one, and is easier to optimize.

The basic TST scheme may be further simplified. The permutation P was introduced to the scheme
in order to improve its confusion property [8]. For the same reason, it is advantageous to put it before the
second sub-round (see Figure 7.3 d), bringing more randomness to the input of the function G. Further,
we move the permutation P before the ⊕ operation (see Figure 7.3 e), and put together with H ′ into one
stronger substitution F = H ′ ⊕ P (see Figure 7.3 f). As we show in the next section, this step weakens the

74 CHAPTER 7. TST

security of the scheme against the chosen plaintext attack, but has an implementation advantage discussed
in Section 7.7. The scheme depicted in Figure 7.3 f) will be further called simplified TST.

7.2 Security of the TST Scheme

In this section we examine the security of both the basic and the simplified TST scheme. The similarity of
both of them with the unbalanced Feistel network will allow us to use the proof for the UFNs from Chapter
3 with slight modifications.

Notation: Further we will consider the TST schemes with block size of (n+1)m bits divided
into an m-bit and an nm-bit parts, i.e. using the notation used in chapter 3, M1 = {0, 1}m,
and M2 = {0, 1}nm. The basic TST scheme will be denoted by Φ, the simplified TST by Θ.

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F

Lk

Lk

Rk

Rk

L′
kL′

k R′
kR′

k

Sk

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR

H ′

G
k

a) b)

c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 7.4: One- and two-round TST

7.2.1 Known Plaintext Attack

First, consider the one-round TST (see Figure 7.4a without the permutation P). Since the rotation function
is omitted after the last round, the one-round simplified TST is actually a UFN with the m-bit left part and
nm-bit right part, and thus, Theorem 3.2.5 may be applied.

Theorem 7.2.1 Let H∗ : M2 → M1 and S∗ : M1 → M2 two independent perfect random function, and
d be an integer. Then

AdvCKPA(d)(Θ[H∗, S∗]) ≤ d2

|M1|
.

Proof: See proof of Theorem 3.2.5.

In the basic TST the permutation P is added. However, if the output of the one-round simplified TST
is undistinguishable from a perfectly random output, the application of a perfect random function will not
affect this property.

Theorem 7.2.2 Let H∗ : M2 → M1, S∗ : M1 → M2, and P ∗ : M1 → M1 be three independent
perfect random functions, and d an integer. Then

AdvCKPA(d)(Φ[H∗, S∗, P ∗]) ≤ d2

|M1|
.

Proof: The proof of security of the 2-round UFN (see Theorem 3.2.5, page 24) depends on the fact that:

7.2. SECURITY OF THE TST SCHEME 75

If all Rk’s are pairwise distinct, then the sequence of all Sk’s (and thus also of all L′
k’s) is

perfectly random, because the function F ∗
1 [here H∗] is perfectly random. If all Sk’s are

pairwise distinct, then the sequence of R′
k’s is also perfectly random, because the

function F ∗
2 [here S∗] is perfectly random. If both sequences (of L′

k’s and of R′
k’s) are

perfectly random, then the sequence of Yk = [L′
k, R′

k] is also perfectly random. In this
case, output of the cipher Ψ looks like a perfect cipher.

Since the output of a perfect random function on a set of perfectly random inputs (L′
k of the UFN) is

also perfectly random, security of the one-round basic TST may be proved in the same way as
Theorem 3.2.5.

Hence, both the basic and the simplified TST can withstand the known plaintext attack.

7.2.2 Adaptive Chosen Plaintext Attack

Since the one-round simplified TST is equivalent to a two-round UFN, it is not secure against the chosen
plaintext attack — Distinguisher 3.3 may be applied. However, two-round simplified TST also resists the
chosen plaintext attack:

Theorem 7.2.3 Let H∗ : M2 → M1, S∗ : M1 → M2, and P ∗ : M1 → M1 be three independent
perfect random functions, and d an integer. Then

AdvCACPA(d)(Φ[H∗, S∗, P ∗]) ≤ d2

|M1|
.

Proof: We may assume that all queries to the oracle are pairwise different. Let
Y = {Y = (y1, y2, . . . , yd)|∀k 6= l : L′

k 6= L′
l}. Consider any fixed value of Y ∈ Y . The output of

the cipher is Y if and only if L′
k = P ∗(Sk) and R′

k = Rk ⊕ S∗(Sk). Let Ek be the following event:

Ek = [P ∗(Sk) = L′
k ∧ S∗(Sk) = Rk ⊕ R′

k]

If all values Sk are pairwise different, then (since all L′
k’s are pairwise different):

Pr[∀k : P ∗(Sk) = L′
k] =

1

|M1|d
≥ 1

|M1|d

Pr[∀k : S∗(Sk) = Rk ⊕ R′
k] =

1

|M2|d

Thus, in that case

[Φ[H∗, S∗, P ∗]]
d
X,Y ≥ 1

|M1|d|M2|d
=

|M1 ×M2|d

|M1 ×M2|d
· [C∗]dX,Y

≥
(

1 − d2

2 |M1 ×M2|

)

[C∗]dX,Y

Now, we can use Corollary 3.1.4 with the following parameters:

1. ε1 = d2

2|M1|
(since Pr[∃ k 6= l : yL

k = yL
l] ≤ d2

2|M1|
),

2. ε2 = d2

2 |M1×M2|
, and

3. ε3 = d2

2 |M1|
(since Pr[∃k 6= l : Sk = Sl] ≤ d2

2M1
),

and we get

AdvCACPA(d)(Φ[H∗, S∗, P ∗]) ≤ d2

2|M1|
+

d2

2 |M1 ×M2|
+

d2

2 |M1|
≤ d2 − d + 1 + d2 − d

2 |M1|

≤ d2

|M1|

76 CHAPTER 7. TST

7.2.3 Adaptive Chosen Plaintext-Ciphertext attack

The one-round basic TST withstands the adaptive chosen plaintext attack, but it is distinguishable using a
simple 2-limited chosen ciphertext attack.

Theorem 7.2.4 Let H : M2 → M1, S : M1 → M2, and P : M1 → M1 are three random functions,
and d an integer. Then

AdvCCCA(2)(Φ[H, S, P]) ≥ 1 − 1

|M2|
.

Proof: Consider the following distinguisher:

DISTINGUISHER 7.1 (D1): 2-limited CCA distinguisher for the basic TST

1. Create Y1 = [L′, R′
1] and Y2 = [L′, R′

2]. at random.

2. Query the oracle with Y1 and Y2, and get X1 = [L1, R1] and X2 = [L2, R2].

If the oracle implements the basic TST, then

Ri = R′
i ⊕ S(P−1(L′))

and thus R1 ⊕ R2 = R′
1 ⊕ R′

2.

3. If R1 ⊕ R2 = R′
1 ⊕ R′

2 then output “accept”.

4. Output “reject”.

When the oracle implements the basic TST, the Distinguisher D1 always answers correctly, i.e.
p0 = 1. When the oracle implements a perfect random function, the probability that the
distinguisher answers incorrectly is p1 = 1

|M2|
. Therefore, advantage of this distinguisher is

AdvCCCA(2)(Φ[H, S, P]) = |p0 − p1| = 1 − 1

|M2|
.

Adding one round, we get both the basic as well as the simplified TST schemes resistant to the adaptive
chosen plaintext-ciphertext attack.

Theorem 7.2.5 Let H∗
1 , H∗

2 : M2 → M1 and S∗
1 , S∗

2 : M1 → M2 be four independent perfect random
functions, and d an integer. Then

AdvCACPCA(d)(Θ[H∗
1 , S∗

1 , H∗
2 , S∗

2]) ≤ d2

|M1|
.

Proof: The only difference between the 2-round simplified TST (see Figure 7.4 b) and the 4-round UFN
is the rotation function in the middle. Since the proof of Theorem 3.8.4 does not depend on what
happens between calculation of Sk, and Tk (where the rotation is located), the proof of security of
the 2-round simplified TST is the same as the proof of Theorem 3.8.4.

Theorem 7.2.6 Let H∗
1 , H∗

2 : M2 → M1, S∗
1 , S∗

2 : M1 → M2, and P ∗
1 , P ∗

2 : M1 → M1 be six
independent perfect random functions, and d an integer. Then

AdvCACPCA(d)(Φ[H∗
1 , S∗

1 , P ∗
1 , H∗

2 , S∗
2 , P ∗

2]) ≤ d2

|M1|
.

Proof: The 2-round basic TST is again enhanced by the permutation P — this time twice. The first time
between Sk and Tk, where also the rotation is located, and thus they (the first permutation and
rotation) are, for the same reason as the rotation in the proof of the previous theorem, uninteresting.
The second permutation is placed just before the output, and with the same argument as in the proof
of Theorem 7.2.2, the proof of Theorem 3.8.4 may be applied.

7.3. CONCLUSIONS ABOUT THE SECURITY OF THE TST SCHEMES 77

7.3 Conclusions about the Security of the TST Schemes

Summarizing the results of the previous sections, we have for any d � 2
m
2 :

• The 1-round TST schemes are secure against the known plaintext attacks
(AdvCKPA(d)(Θ[H∗, S∗]) ≤ d2

|M1|
, and AdvCKPA(d)(Φ[H∗, S∗, P ∗]) ≤ d2

|M1|
).

• The 1-round simplified TST schemes are not secure against the chosen plaintext attack, but the 1-
round basic TST schemes are secure against the chosen plaintext attack
(AdvCCPA(d)(Φ[H∗, S∗, P ∗]) ≤ d2

|M1|
).

• The 1-round TST schemes are not secure against the chosen plaintext-ciphertext attack;

• The 2-round TST schemes are secure against the adaptive chosen plaintext-ciphertext attack
(AdvCACPCA(d)(Θ[H∗

1 , S∗
1 , H∗

2 , S∗
2]) ≤ d2

|M1|
, and AdvCACPCA(d)(Φ[H∗

1 , S∗
1 , P ∗

1 , H∗
2 , S∗

2 , P ∗
2])

≤ d2

|M1|
).

Similarly as for the unbalanced Feistel networks, Theorem 2.4.4 implies that for security against an at-
tacker with access to more plaintext/ciphertext pairs, the number of rounds has to be increased to at least
a l−1

m−1−2 lg d , where 2−l is the requested upper-bound for advantage, and a = 1 for the known plaintext at-
tack against both schemes and the adaptive chosen plaintext attack against the basic TST, or a = 2 for the
adaptive chosen ciphertext against the simplified TST and the adaptive chosen plaintext-ciphertext attack
against both of them. (For more about the value l see section 3.9.)

Thus we showed that the basic TST is stronger against the adaptive chosen plaintext attack than the
simplified TST. However, if we want to achieve security against the adaptive chosen plaintext-ciphertext
attack, they must have both at least 2 rounds, and thus for implementation using a sufficient number of
rounds, the simplified TST is more advantageous without loss of security.

To complete the analysis of the TST cipher, we have to examine its primitives. The rest of this chapter
deals with this task.

7.4 S-Box S

The S-box S is a random expansion function which takes a short input of length m and returns a long output
of length nm. It is generated at random from a key using a pseudorandom bit generator as follows:

ALGORITHM 7.1 Generation of the S-box S [7]

INPUT: key K
OUTPUT: random S-box S

1. For i = 0 to 2m − 1 do

1.1 For j = 0 to mn − 1 do

1.1.1 Sij = Random({0, 1}, K)

2. Return S

The following theorem shows that the S-box is a perfect random function provided that the underlying
generator is a perfect random bit generator (i.e. it generates independent perfectly random bits).

Theorem 7.4.1 Let S∗ be a function from {0, 1}m to {0, 1}mn represented by a table generated by a perfect
random bit generator, which generates independent random bits, according to the Algorithm 7.1. Then for
any integer d and any class of attack ATK,

AdvFATK(d)(S∗) = 0.

Proof: Since the bits generated by the generator are independent and random, then for any
X = (x1, . . . , xd), and Y = (y1, . . . , yd):

• If ∃i, j such that xi = xj , and yi 6= yj , then Pr[S∗(X) = Y] = 0 = Pr[F ∗(X) = Y]

78 CHAPTER 7. TST

• Assume that ∀i, j : xi = xj ⇒ yi = yj , and there are c different values among xi’s (we may
without loss of generality assume that they are x1, . . . , xc). Let s[j] denote the j-th bit of a
string s, and Sij are the bits generated according to Algorithm 7.1. Then

Pr[S∗(X) = Y] =

c
∏

i=1

Pr[S∗(xi) = yi] =

c
∏

i=1

Pr

mn
∧

j=1

S∗(xi)[j] = yi[j]

=
c
∏

i=1

Pr

k
∧

j=1

Sij = yi[j]

 =
c
∏

i=1

mn
∏

j=1

Pr [Sij = yi[j]]

=
c
∏

i=1

mn
∏

j=1

1

2
=

(

1

2mn

)c

= Pr[F ∗(X) = Y]

7.5 S-Box P

As defined in [7], the permutation S-box P is generated from a key using a pseudorandom number generator.
It is generated with the following algorithm:

ALGORITHM 7.2 Generation of the S-box P [7]

INPUT: key K
OUTPUT: random S-box P

1. For i = 0 to 2m − 1 do

1.1 Pi = i

2. For i = 0 to 2m − 1 do

2.1 j = Random({i, . . . , 2m − 1}, K)

2.2 Pi ↔ Pj

3. Return P

We can again prove that having a perfect random number generator, which generates independent per-
fectly random numbers, the permutation generated by Algorithm 7.2 is perfectly random.

Theorem 7.5.1 Let P ∗ be a permutation on {0, 1}m represented by a table generated by a perfect random
generator according to the algorithm 7.2. Then for any integer d and any class of attacks ATK,

AdvCATK(d)(P ∗) = 0.

Proof: For each permutation p on {0, 1}m, there is a sequence of exchanges (numbers) ξp generated by
the Algorithm 7.2 which cause its occurrence. There are 2m! possible permutations generated by the
algorithm, which is also the number of all possible permutations. Thus each permutation is
generated by exactly one sequence of exchanges. If the random number generator is perfect, each of
the exchange sequences (and thus also each of the permutation) occurs with the same probability.

Let pξ be a permutation induced by an exchange sequence ξ. Consider an input X = (x1, . . . , xd),
and output Y = (y1, . . . , yd):

• If ∃i, j such that xi = xj , and yi 6= yj , or xi 6= xj , and yi = yj then there is no such
permutation, and Pr[P ∗(X) = Y] = 0 = Pr[C∗(X) = Y].

• If ∀i, j : xi = xj ⇒ yi = yj , and there are c different values among xi’s (we may without loss
of generality assume that they are x1, . . . , xc), then Pr[P ∗(X) = Y] = Pr[

∧c
i=1 P ∗(xi) =

yi] = Pr[∃ξ : pξ(xi) = yi] = (2m−d)!
2m! = 1

(2m)d = Pr[C∗(X) = Y].

7.6. HASH FUNCTION H 79

7.6 Hash Function H

In this section we examine different implementation of the hash function. In [7] two basic structures de-
picted in Figures 7.5, and 7.8 are proposed. For the underlying function T , the following functions are
proposed:

• f(x) = rotc(x) where c is relatively prime to m.

• f(x) = c · x mod 2m where c is an m-bit prime.

• f(x) = x(2x + 1) mod 2m

• or another simple non-linear function.

We will discuss security of the proposed schemes, and suggest some improvements.

7.6.1 Weak Structure

First, consider the hierarchical structure H1 depicted in Figure 7.5.

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 7.5: Weak Hierarchical Structure

Since the function Ti is executed only after the first XOR function, any two inputs with two blocks
leading to the same execution of Ti with equal XOR cause equal outputs of the hash function. This feature
is exploited in the following theorem.

Theorem 7.6.1 Let H∗
1 be a function from Mn

1 to M2 defined for any X = (x1, . . . , xn) ∈ Mn
1 as

H∗
1 (xi) = xi,

H∗
1 (x1, . . . , xn) = T ∗

(

H∗
1 (x1, . . . , xdn

2 e) ⊕ H∗
1 (xd n

2 e+1, . . . , xn)
)

,

where T ∗ is a perfect random function from M1 to M2. Then

AdvFCPA(2)(H∗
1) ≥ 1 − 1

|M2|
.

Proof: Consider the following distinguisher between H∗
1 and a perfect cipher:

DISTINGUISHER 7.2 (D1): 2-limited CPA distinguisher for H1

1. Create X1 = (x1, x2, x3, . . . , xn) at random.

2. Create X2 = (x1 ⊕ c, x2 ⊕ c, x3, . . . , xn) for a non-zero constant c.

3. Query the oracle with X1 and X2, and get Y1 and Y2, where Yi is either H1(Xi) or
F ∗(Xi).

If Yi = H1(Xi) then XORing the first two blocks in both of the plaintext messages
eliminates the constant c (i.e. x1 ⊕ x2 = x1 ⊕ c ⊕ x2 ⊕ c) and all Ti’s are executed
with the same arguments for both X1 and X2. Therefore Y1 = Y2.

4. If Y1 = Y2 then output “accept”.

5. Output “reject”.

80 CHAPTER 7. TST

When the oracle implements H1, the distinguisher D1 always answers correctly, i.e. p0 = 1. When
the oracle implements a perfect random function, the probability that two random strings of length
m are equal is p1 = 1

|M2|
. Therefore the advantage of this 2-limited distinguisher is

AdvF
CPA(2)
D1

(H∗
1) = |p0 − p1| = 1− 1

|M2|
.

The advantage may be increased by adding further chosen plaintexts in a similar way as X2, so that
AdvFCPA(d)(H∗

1) ≥ 1− 1
|M2|

d−1 . Thus, the hierarchical structure H1 is not secure against chosen plaintext
attacks. In the following we show in more detail how this attack can be extended to the whole TST scheme
and that the additional S-box P cannot stop the attack.

Consider the difference between two inputs of a TST round (consisting of one m-bit block for the
left part and one nm-bit blocks for the right part) X1 and X2. If the attacker creates two messages
X1 = (x0, x1, x2, x3, . . . , xn), and X2 = (x0, x1 ⊕ c, x2 ⊕ c, x3, . . . , xn), their differential characteris-
tic is (0, c, c, 0, . . . , 0). The right parts (without x0) are fed into the function H∗

1 . Let hi be the output of the
function H∗

1 for Xi. As shown in the previous distinguisher, h1 = h2, and thus also x0 ⊕ hi, P ∗(x0 ⊕ hi),
as well as S∗(x0 ⊕ hi) give the same values for both inputs. Therefore, the outputs of the TST round have
the same difference as the inputs, i.e. (0, c, c, 0, . . . 0) — see also Figure 7.6. If the rotation were not in the
scheme, the characteristic would propagate through the whole cipher.

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a b ⊕ ∆ c ⊕ ∆ d e

h

p b ⊕ s1 ⊕ ∆ c ⊕ s2 ⊕ ∆ d ⊕ s3 e ⊕ s4

(s1, s2, s3, s4)
S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 7.6: Characteristic Propagation

In the design of TST, a round key is added to the right part of the plaintext, and only then it is hashed
(Figure 7.3 a). If the key is XORed with the plaintext, the changes in the second message are eliminated as
described in the previous proof. The author of [7] suggests to use a modular addition operation to combine
round keys with messages in order to make an attack more difficult. Consider the following distinguisher
between H∗

1 and a perfect cipher used on a plaintext with the added key:

DISTINGUISHER 7.3 (D2): 2-limited CPA distinguisher for H1

1. Create X1 = ((00 . . . 0)2, (00 . . . 0)2, x3, . . . , xn) at random.

2. Create X2 = ((10 . . . 0)2, (10 . . . 0)2, x3, . . . , xn).

3. Query the oracle with X1 and X2 and get Y1 and Y2, where Yi is either H1(Xi) or
F ∗(Xi).

If Yi = H1(Xi), and the added key is k = (k1, k2, . . . , kn), then for the first plaintext
the first XOR is (0 + k1)⊕ (0 + k2). For the second plaintext, we have (2m−1 + k1)⊕
(2m−1 + k2). The only bits changed in 2m−1 + ki (i ∈ {1, 2}) are the most significant
ones, and since one-bit addition is actually XOR function, they are for both plaintexts
equal. Therefore, k1 ⊕ k2 = (2m−1 + k1) ⊕ (2m−1 + k2), and Y1 = Y2.

4. If Y1 = Y2 then output “accept”.

5. Output “reject”.

When the oracle implements H1, the distinguisher D2 always answers correctly, i.e. p0 = 1. When
the oracle implements a perfect random function, the probability that the distinguisher accepts is p1 = 1

2m .
Therefore,

AdvCPA(2)(H1) ≥ Adv
CPA(2)
D2

(H1) = |p0 − p1| = 1 − 1

2m
.

7.6. HASH FUNCTION H 81

It means that the introduction of the addition operation, as suggested in [8], does not improve the scheme
in the ROM.

7.6.2 Weak Underlying Primitive

Now we take a look at the second structure of the hash function suggested in [7]. It is the scheme depicted
in Figure 7.8, using a weak function f (a simple key-independent function) for T . This is actually the hash
function which was implemented and tested by the author of [7]. Here we can apply the following attack:

Theorem 7.6.2 Let H2 be a function from Mn
1 to M2 defined for any X = (x1, . . . , xn) ∈ Mn

1 as

H2(x1, . . . , xn) = f(f(. . . f(x1) ⊕ x2 . . .) ⊕ xn),

where f is a simple key-independent function from M1 to M2 Then

AdvFCPA(2)(H2) ≥ 1 − 1

|M2|
.

Proof: Consider the following distinguisher between H∗
1 and a perfect cipher:

DISTINGUISHER 7.4 (D3): 2-limited CPA distinguisher for H2

1. Create X1 = (x1, x2, x3, . . . , xn) at random.

2. Create X2 = (x1 ⊕ a, x2 ⊕ c, x3, . . . , xn) for any two constants a and c such that
f(x1 ⊕ a) = f(x1) ⊕ c, and at least one of them is nonzero.

3. Query the oracle with X1 and X2 and get Y1 and Y2, where Yi is either H2(Xi) or
F ∗(Xi).

If Yi = H2(Xi) then the calculation for the message X1 follows this calculation se-
quence:

r1 = f(x1)

ri = f(ri−1 ⊕ xi) for all i = 2, . . . , n

The second calculation sequence starts with:

r′1 = f(x1 ⊕ a) = f(x1) ⊕ c = r1 ⊕ c

r′2 = f(r1 ⊕ c ⊕ x2 ⊕ c) = f(r1 ⊕ x2) = r2

and thus in all further steps they both have the same values. Therefore, Y1 = Y2.

4. If Y1 = Y2 then output “accept”.

5. Output “reject”.

When the oracle implements H2, the distinguisher D3 always answers correctly, i.e. p0 = 1, and
therefore the advantage of this 2-limited distinguisher is again

AdvFCPA(2)(H2) ≥ AdvF
CPA(2)
D (H2) = |p0 − p1| = 1 − 1

|M2|
.

The advantage may be increased by adding further chosen plaintexts in a similar way as X2, so that
AdvFCPA(d)(H2) ≥ 1 − 1

|M2|
d−1 .

In order to increase the security of the hash function, the author of [7] suggested a doubled scheme
consisting of two executions of the hash function H2 — once as described above, and once with a shifted
message — and finally XORing their outputs, i.e. H = H2(x1, . . . , xn)⊕H2(xn, x1, . . . , xn−1) (see Fig-
ure 7.7). However, when the messages are constructed as in Distinguisher 7.4, the difference is eliminated
when the modified blocks are in any place in the message provided they follow each other as described.
Thus, the double structure does not bring any improvement against this distinguishing attack.

Since we are able to create two distinct messages with the same output of H2, the remark in the previous
section about spreading the characteristic through the round holds also for this hash scheme.

82 CHAPTER 7. TST

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 7.7: Double Hash Function

7.6.3 Strong Structure And Strong Primitive

The results described above do not imply that there is no appropriate hash scheme for TST. In what follows
we show how careful analysis of various candidates and subsequent modifications allows us to find schemes
with a small advantage and choose the best one.

Serial Hash Function

Consider the same structure as H2, but with perfect random function T ∗ as the primitive (let’s denote it by
H∗

2).

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>

...
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗

T ∗

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 7.8: Serial Structure

Theorem 7.6.3 ([22]) Let H∗
2 be a function from Mn

1 to M2 defined for any X = (x1, . . . , xn) ∈ Mn
1 as

H∗
2 (x1, . . . , xn) = T ∗(T ∗(. . . T ∗(x1) ⊕ x2 . . .) ⊕ xn),

where T ∗ is a perfect random function from M1 to M2. Then for any integer d,

AdvFACPA(d)(H∗
2) ≤ (dn)2

2 |M2|
.

Proof: Assume that the attacker disposes of d plaintext/ciphertext pairs (Xi, Yi) such that
Xi = (xi1, . . . , xin), Yi = (yi1, . . . , yin), and 1 ≤ i ≤ d. Without loss of generality we may assume
that all Xi’s are pairwise different. For each input Xi, the computation of the function H∗

2 follows
these steps:

1. yi1 = T ∗(xi1),

2. yia = T ∗(yi(a−1) ⊕ xia), for all 1 < a ≤ n,

and Yi = yin

Inputs to the individual executions of T ∗ can be collected in a d × n matrix I , so that
Iia = yia−1 ⊕ xia, and yi0 = 0, for all i. Thus, the rows contain the computational sequences, and
the columns inputs to the same instance of the function T ∗.

If inputs into the last instance of T ∗, i.e. Iin are all pairwise distinct then all outputs Yi are perfectly
random, since T ∗ is perfectly random, and the attacker cannot distinguish them from perfectly
random outputs.

7.6. HASH FUNCTION H 83

In the following we look at the probability that Iin are all distinct.

Let ColFree be an event that for all pairs of inputs Iia and Ijb such that 1 ≤ i, j ≤ d, and
1 ≤ a, b < n, if Iia 6= Ijb then yia 6= yjb, i.e. that T ∗ returns different outputs for different inputs.
The probability that there is a collision is

Pr[ColFree] ≤
(

d(n − 1)

2

)

1

|M2|

When ColFree occurs,

Pr[Iin = Ijn] = Pr[yi(n−1) ⊕ xin = yj(n−1) ⊕ xjn]

=

{

Pr[yi(n−1) = yj(n−1)]
ColFree

= Pr[Ii(n−1) = Ij(n−1)] if xin = xjn

Pr[yi(n−1) = yj(n−1) ⊕ xin ⊕ xjn] if xin 6= xjn

Let r be the smallest integer such that xin−r 6= xjn−r . Note that r ≥ 1, because Xi 6= Xj . Then

Pr[Iin = Ijn] = Pr[Ii(n−1) = Ij(n−1)] = . . . = Pr[Ii(n−r) = Ij(n−r)]

= Pr[yi(n−r−1) = yj(n−r−1) ⊕ xi(n−r) ⊕ xj(n−r)]

=

0 if Ii(n−r−1) = Ij(n−r−1)

1

|M2|
if Ii(n−r−1) 6= Ij(n−r−1)

≤ 1

|M2|

Note that the ColFree condition is that strong even if we require the non-collision condition only
within one column — if there were a collision between two different columns, the same pair of
inputs, causing this collision, could occur also in some column, which would force the collision.

From Theorem 2.2.3

AdvFACPA(d)(H∗
2) = 1 − Pr[∀i, j : Iin 6= Ijn] = Pr[∃i, j : Iin = Ijn]

= Pr
[

∃i, j : (Iin = Ijn ∧ ColFree) ∨ (Iin = Ijn ∧ ColFree)
]

≤ Pr [ColFree ∧ ∃i, j : Iin = Ijn] + Pr[ColFree ∧ ∃i, j : Iin = Ijn]

≤ Pr [∃i, j : Iin = Ijn ∧ ColFree] + Pr[ColFree]

≤
(

d

2

)

1

|M2|
+

(

d(n − 1)

2

)

1

|M2|

=
d(d − 1) + d(n − 1)(d(n − 1) − 1)

2 |M2|

=
(dn)2 − dn − 2d2n − 2d + 2d2

2 |M2|

≤ dn(dn − 1)

2 |M2|

The non-collision condition in the previous proof has to be rather strong, and causes a quite high ad-
vantage. This can be improved by using different random functions T ∗

1 , . . . , T ∗
n for each input block (let’s

denote the scheme by H∗
3). In this case, a collision between two different columns cannot cause a collision

inside a column, and, as the following theorem shows, the upper-bound of the advantage decreases.

Theorem 7.6.4 Let H∗
3 be a function from Mn

1 to M2 defined for any X = (x1, . . . , xn) ∈ Mn
1 as

H∗
3 (x1, . . . , xn) = T ∗

n(T ∗
n−1(. . . T

∗
1 (x1) ⊕ x2 . . .) ⊕ xn),

where T ∗
i ’s are independent perfect random functions from M1 to M2. Then for any integer d,

AdvFACPA(d)(H∗
3) ≤ nd2

2 |M2|
.

84 CHAPTER 7. TST

Proof: The proof is similar to the previous one with the difference that ColFree is defined as the event
that for all pairs of inputs in the same column Iia and Ija such that 1 ≤ i, j ≤ d, and 1 ≤ a < n, if
Iia 6= Ija, then yia 6= yja. (Since T ∗

i are independent, there is no intercolumnar dependency). Thus,

Pr[ColFree] ≤ (n − 1)

(

d

2

)

1

|M2|
and

AdvFACPA(d)(H∗
3) ≤ Pr [∃i, j : Iin = Ijn ∧ ColFree] + Pr[ColFree]

≤
(

d

2

)

1

|M2|
+

(

d

2

)

n − 1

|M2|

≤ nd2

2 |M2|

Parallel Hash Function

In section 7.6.1 we have shown that the message blocks in the hierarchical structure H1 should not be
XORed before the execution of functions T ∗

i . The simplest way to avoid this is to apply the functions on
the message blocks first, and then simply XOR the results together (see Figure 7.9).

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>

...
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 7.9: Parallel Structure (1)

The following theorem shows that this scheme is perfect as long as an attacker cannot obtain more than
three plaintext/ciphertext pairs.

Theorem 7.6.5 Let H∗
4 be a function from Mn

1 to M2 defined for any X = (x1, . . . , xn) ∈ Mn
1 as

H∗
4 (x1, . . . , xn) =

n
⊕

a=1

T ∗
a (xa),

where T ∗
i are independent perfect random functions from M1 to M2. Then for all d ≤ 3 and any class of

attacks ATK,
AdvFATK(d)(H∗

4) = 0.

Proof: Without loss of generality assume that all queries to the oracle are pairwise different. Let Xi

consist of n blocks, i.e. Xi = xi1, . . . xin. Let zik = T ∗
k (xik).

If d = 1:

Pr [H∗
4 (x1) = y1] =

∑

z11,...,z1n
⊕

n
a=1 z1a=y1

Pr

[

n
∧

a=1

T ∗
a (x1a) = z1a

]

=
∑

z11,...,z1n
⊕

n
a=1 z1a=y1

n
∏

a=1

Pr [T ∗
a (x1a) = z1a]

= |M2|n−1 · 1

|M2|n
=

1

|M2|
= Pr[F ∗(x1) = y1]

7.6. HASH FUNCTION H 85

If d = 2, 3:

Assume that for the a-th block, there are ka ∈ {0, . . . , d} different values among x1a, x2a, . . . , xda.
Since all Ta’s are independent, for any z1a, z2a, . . . , zda

Pr[∀i ≤ d : T ∗
a (xia) = zia] =

{

0 ∃i, j : xia = xja ∧ zia 6= zja
1

|M2|
ka

otherwise

Consider first the case that d = 3. We can choose a random zia without having a collision (thus
having the non-zero probability) in the following way: There must be i and b such that for xib 6= xjb

both j ∈ {1, 2, 3} \ {i}, otherwise all three inputs were equal. Without loss of generality we may
assume that i = 3. For all z11, . . . , z1(d−1) we may set any value from M. The last one is calculated
from the previous ones and

⊕n
a=1 z1a = y1. All equations x1a = x2a induce z2a := z1a. However,

there must be at least one the free x2a, which can be calculated from
⊕n

a=1 z2a = y2 after setting
other free positions at random. For i = 3, first all equations with j = 1, 2 are set, all free positions
except of x3b are chosen at random, and x3b is calculated from

⊕n
a=1 z3a = y3. Since in each block,

there are ka different values among x1a, x2a, . . . , xda, there are altogether
∑n

a=1(3 − ka) + d fixed
values. In a similar way we get that if d = 2, there are

∑n
a=1(2 − ka) + d values. Therefore,

Pr

[

d
∧

i=1

H∗
4 (xi) = yi

]

=
∑

i=2,3:zi1,...,zin
⊕n

a=1 zia=yi

Pr

[

d
∧

i=1

n
∧

a=1

T ∗
a (xia) = zia

]

=
∑

i=2,3:zi1,...,zin
⊕n

a=1 zia=yi

n
∏

a=1

Pr

[

d
∧

i=1

T ∗
a (xia) = zia

]

=
∑

i=2,3:zi1,...,zin

i:
⊕

n
a=1 zia=yi

a(d−kaequations):zia=zja

n
∏

a=1

1

|M2|ka

= |M2|(n−1)·d−
∑n

a=1(d−ka) · |M2|−
∑n

a=1 ka =
1

|M2|d

Therefore, H∗
4 has perfect 3-wise decorrelation, and it is not possible to distinguish it from a perfect

random function seeing up to three plaintext/ciphertext pairs.

However, when the attacker may choose four plaintext messages, it is possible to distinguish this scheme
from a perfect random one.

Theorem 7.6.6 Let H∗
4 be a function from Mn

1 to M2 defined as in the previous theorem. Then

AdvFCPA(4)(H∗
4) ≥ 1 − 1

|M2|
.

Proof: Consider the following distinguisher between H∗
4 and a perfect cipher.

86 CHAPTER 7. TST

DISTINGUISHER 7.5 (D4): 4-limited CPA distinguisher for H5

1. Create X1 = (s, u, x3, . . . , xn) at random.

2. Create X2 = (s, v, x3, . . . , xn) so that u 6= v.

3. Create X3 = (t, u, x3, . . . , xn) so that s 6= t.

4. Create X4 = (t, v, x3, . . . , xn).

5. Query the oracle with X1, X2, X3 and X4, and get Y1, Y2, Y3 and Y4, where Yi is
either H5(Xi) or F ∗(Xi).

If Yi = H5(Xi) then

T ∗
1 (s) ⊕ T ∗

2 (u) ⊕ T ∗
3 (x3) . . . ⊕ T ∗

n(xn) = Y1

T ∗
1 (s) ⊕ T ∗

2 (v) ⊕ T ∗
3 (x3) . . . ⊕ T ∗

n(xn) = Y2

T ∗
1 (t) ⊕ T ∗

2 (u) ⊕ T ∗
3 (x3) . . . ⊕ T ∗

n(xn) = Y3

T ∗
1 (t) ⊕ T ∗

2 (v) ⊕ T ∗
3 (x3) . . . ⊕ T ∗

n(xn) = Y4

Therefore, 0 = Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4.

6. If Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4 = 0 then output “accept”.

7. Output “reject”.

When the oracle implements H∗
4 , the distinguisher D4 always answers correctly, i.e. p0 = 1. When

the oracle implements a perfect random function, probability that XOR of four random values from
M gives 0 is p1 = 1

|M2|
. Therefore the advantage of this 4-limited distinguisher is

AdvFCPA(4)(H∗
4) ≥ AdvF

CPA(4)
D (H∗

4) = |p0 − p1| = 1 − 1

|M2|
.

The advantage may be increased by adding further pairs of chosen plaintexts in a similar way as X3 and
X4, so that AdvF CPA(2d)(H∗

4) ≥ 1 − 1
|M2|

d−1 .

Thus this scheme is not secure when the attacker can obtain more than three plaintext/ciphertext pairs.
However, by adding another random function to the output of the scheme (see Figure 7.10), we can achieve
small advantage also for bigger d, while retaining the zero advantage for d ≤ 3.

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>

...
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 7.10: Parallel Structure (2)

Theorem 7.6.7 Let H∗
5 be a function from Mn

1 to M2 defined for any X = (x1, . . . , xn) ∈ Mn
1 as

H∗
5 (x1, . . . , xn) = T ∗

n+1

(

n
⊕

a=1

T ∗
a (xa)

)

,

7.6. HASH FUNCTION H 87

where T ∗
1 , . . . , T ∗

n are independent perfect random functions from M1 to a set M, and T ∗
n+1 is a perfect

random function from M to M2. Then for any integer d,

AdvFACPA(d)(H∗
5) ≤ d2

2 |M2|
.

Proof: If all inputs to T ∗
n+1 are pairwise distinct, then the outputs Yi’s are perfectly random, since the

function T ∗
n+1 is perfectly random. Let Zi denote input into T ∗

n+1 for i-th message. Since Xi 6= Xj ,
there must be an r such that xir 6= xjr . Therefore,

Pr[Zi = Zj] = Pr

[

n
⊕

a=1

T ∗
a (Xia) =

n
⊕

a=1

T ∗
a (Xja)

]

= Pr

T ∗
r (xir) = T ∗

r (xjr) ⊕
⊕

1≤a<n
a6=r

T ∗
a (xia) ⊕

⊕

1≤a<n
a6=r

T ∗
a (xja)

=
1

|M2|

Hence,

AdvFACPA(d)(H∗
5) = 1− Pr[∀i, j : Zi 6= Zj] = Pr[∃i, j : Zi = Zj] ≤

d2

2 |M2|

This scheme has a small advantage for d �
√

2 |M|. Theorem 7.6.5 implies that for d ≤ 3 the sequence
of inputs to the function T ∗

n+1 is perfectly random. Since T ∗
n+1 is a perfect random function, the sequence

of its outputs is in this case also perfectly random. It means that the function H∗
5 is perfectly random for

d ≤ 3 as well.
This scheme has a disadvantage comparing to all previous hash schemes — it is less efficient due to

the additional random function. The following scheme shows that one of the first-level functions may be
omitted without increasing the upper bound of its advantage (see Figure 7.11).

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>

...
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 7.11: Parallel Structure (3)

Theorem 7.6.8 Let H∗
6 be a function from Mn

1 to M2 defined for any X = (x1, . . . , xn) ∈ Mn
1 as

H∗
6 (x1, . . . , xn) = T ∗

n

(

xn ⊕
n−1
⊕

a=1

T ∗
a (xa)

)

,

where T ∗
1 , . . . T ∗

n−1 are independent perfect random functions from M1 to M1, and T ∗
n is a perfect random

function from M1 to M2. Then for any integer d,

AdvFACPA(d)(H∗
6) ≤ d2

2 |M2|
.

88 CHAPTER 7. TST

Proof: If all inputs to T ∗
n are pairwise distinct, then the outputs are perfectly random, since the function

T ∗
n is perfectly random.

Assume that all inputs are pairwise distinct. Consider two cases: First, when in a pair of plaintexts
Xi, Xj all blocks up to the last one are equal, i.e. when for all 1 ≤ a < n, xia = xja. Then
xin 6= xjn. Let A :=

⊕n−1
a=1 T ∗

a (xia) =
⊕n−1

a=1 T ∗
a (xja).

Pr[Zi = Zj] = Pr [xin ⊕ A = xjn ⊕ A] = 0

If there is r < n such that xir 6= xjr then

Pr[Zi = Zj] = Pr

T ∗
r (xir) = T ∗

r (xjr) ⊕ xin ⊕ xjn ⊕
⊕

1≤a<n
a6=r

T ∗
a (xia) ⊕

⊕

1≤a<n
a6=r

T ∗
a (xja)

=
1

|M2|

Hence,

AdvFATK(d)(H∗
6) = 1 − Pr[∀i, j : Zi 6= Zj] = Pr[∃i, j : Zi = Zj] ≤

d2

2 |M2|

Consider again the case that d ≤ 3: Skipping the last block of each message, the XOR of the outputs of
T ∗

1 , . . . , T ∗
n−1 is perfectly random, adding the last block, the sequence still remains perfectly random, and

thus applying the last function T ∗
n we get again a perfectly random sequence. Therefore, the function H∗

6 is
perfectly random for d ≤ 3 as well.

7.7 Conclusions

Analysis of the basic and simplified TST showed that already the one-round basic TST is resistant to the
chosen plaintext attack. The simplified TST needs two rounds to withstand it. However, they both need
two rounds to resist the adaptive chosen plaintext-ciphertext attack. Thus, assuming that one implements
the scheme in the securer way, the simplified TST is more advantageous, because it saves execution of one
random permutation per round.

In the TST cipher as proposed in [8], both S-boxes S and P are perfectly random if they are generated
by a perfect random bit, or number generator, respectively. If we consider a weak hash function H and a
modified scheme without the rotation, the perfect pseudorandomness of the S-box P does not compensate
for the weakness of the hash function. However, we showed that the rotation at the end of each round stops
propagation of the characteristic of the chosen plaintexts, and thus it improves the security of the scheme in
this case — if the hash function is strong, the rotation is not significant for the security of the scheme. (see
Sections 7.6.1 and 7.6.2).

Both hash schemes H1 and H2 suggested in [7] are weak. Although we have not shown how its weak-
ness can be exploited1, by a sequence of carefully analyzed improvements we have found another hash
scheme (H∗

6) which is provable secure — it is perfectly random when the attacker can obtain up to 3
plaintext/ciphertext pairs, and for attacks of larger sizes the probability of distinguishing it from a perfect
random function is still small if the size of the attack d �

√

2 |M1| (for TST splitting plaintext messages
into m and nm bits d � 2

m
2). Therefore, we suggest using hash function H∗

6 instead of the proposed weak
functions.

The primitive functions of the hash function H∗
6 , T ∗

1 , . . . , T ∗
n , can be generated using a random bit

generator in the same way as the S-box S∗, and stored in tables of size 2m × m. Since the S-box S∗ is
represented by a 2m × nm table, if memory space is important, the table of S∗ can be divided into n parts,
so that each function T ∗

i is defined by (i − 1)m-th . . . (im − 1)-th columns of the table, as depicted in the
Figure 7.12.

For d ≤ 3, both the S-box S∗ and hash function H∗
6 are perfectly random, thus from Theorems 7.2.1–

7.2.6 using the same method as in Section 3.9, we get that in order to make the basic scheme pseudorandom

1Even if we were able to find a distinguisher which distinguishes the output of TST from a perfect random one, it would not tell
us how to construct an attack which reconstructs a key, or at least which encrypts or decrypts another message.

7.7. CONCLUSIONS 89

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H

S

P
rotR

H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1 T2 Tn

m

2m . . .

F ∗
1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 7.12: Table representation of the primitive functions of the hash functions H ∗
6

one needs at least k rounds, and to make it super-pseudorandom at least 2k rounds with

k ≥ (n + 1)m − 1

m − 1 − 2 lg d
.

For the simplified TST one needs 2k rounds for both pseudorandomness and pseudorandomness, with the
same parameter k. For d = 2 and for a nowadays common block length of 128 bits, it gives

k ≥ 127

m − 3
.

The closer the size of the left part is to one half of the block size (to the balanced scheme), the fewer
rounds are necessary to obtain sufficient randomness. However, since the table of the S-box grows expo-
nentially with the size of the left part (it is a 2m × nm-bit table), it cannot be very large in order to get
an efficient implementation. The following table shows the number of rounds for pseudorandomness and
super-pseudorandomness for m = 8, 12, and 16.

pseudorandomness super-pseudorandomness
m k basic TST simple TST basic and simple TST

8 26 26 52 52
12 15 15 30 30
16 10 10 20 20

For comparison with another schemes discussed in this thesis, see Chapter 9. Evaluation of AES in the
random oracle model was done in [17]. Using the parameters mentioned above, it requires 384 rounds for
pseudorandomness and 640 rounds for super-pseudorandomness.

Note that the bound for k is calculated from Theorem 2.4.4 which does not provide tight bounds. This
causes rather big difference between the calculated number of rounds and the number of rounds which is
necessary to obtain pseudorandomness of the simplified TST scheme. The reason is following: A 2r-round
simplified TST is equivalent to an r-round unbalanced Feistel network. Using the parameters mentioned
above we get, that the lower-bound for the number of rounds of the Feistel network is 3k for pseudorandom-
ness (see Section 3.9). Thus, for the considered values of m we get that 78, 45, and 30 rounds respectively,
ensure pseudorandomness of the Feistel network. It follows that for those values of m, already 39, 22.5,
and 15 rounds respectively ensure pseudorandomness of the simplified TST. This is significantly less then
what we obtained by the direct calculation using the theorem (52, 30, 10). This disproportion is caused by
the fact, that we cannot stop the calculation in the middle of a round. From Theorem 7.2.3 we know that
the threshold number of rounds for obtaining pseudorandomness is two for the simplified TST. This is
equivalent to 4 rounds of an unbalanced Feistel network; however, the Feistel network needs only 3 rounds
for pseudorandomness. Thus, the last half-round of the simplified TST is redundant. With the increas-
ing number of rounds the redundant half-rounds cumulate. (Note that this disproportion does not occur in
calculation of super-pseudorandomness, since the 4 rounds of an UFN are equivalent to 2 rounds of the
simplified TST.)

If d > 3 the advantage of the TST schemes changes only slightly:

AdvCACPCA(d)(Φ[H∗
61, S

∗
1 , P ∗

1 , H∗
62, S

∗
2 , P ∗

2) = AdvCACPCA(d)(Φ[F ∗
1 , F ∗

2 , F ∗
3 , F ∗

4 , F ∗
5 , F ∗

6])

+ 2 AdvCACPA(d)(H∗
6) + 2 AdvCACPA(d)(S∗)

+ 2 AdvCACPA(d)(P ∗)

≤ d2

2m
+ 2

d2

2 · 2m
+ 2 · 0 + 2 · 0 =

d2

2m−1

90 CHAPTER 7. TST

for the basic TST, and

AdvCACPCA(d)(Θ[H∗
61, S

∗
1 , H∗

62, S
∗
2) = AdvCACPCA(d)(Θ[F ∗

1 , F ∗
2 , F ∗

3 , F ∗
4])

+ 2 AdvCACPA(d)(H∗
6) + 2 AdvCACPA(d)(S∗)

≤ d2

2m
+ 2

d2

2 · 2m
+ 2 · 0 =

d2

2m−1

for the simplified one. Thus, in order to obtain super-pseudorandomness, we need at least 2 (n+1)m−1
m−2−2 lg d

rounds for both schemes.

Chapter 8

IDEA

IDEA (International Data Encryption Algorithm) is an iterated block cipher, first presented in 1990 as PES
(Proposed Encryption Standard) [13] by Xuejia Lai and James L. Massey. It is based on a scheme similar
to the Feistel network, and its round transformation works as follows [23] (see also Figure 8.1 a):

1. the input message X is divided into two halves X = [L, R];

2. the difference of the two input parts ∆ = L − R is calculated and provided as the input to the round
function F ;

3. the output of the round function is added to both parts forming the output of the round [L′, R′] =
[L + F (∆), R + F (∆)].

The + and − operations are modular addition and subtraction — assuming a block size of 2m bits, the parts
are m bits long and the operations are calculated modulo 2m.

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L LR R

L′ L′R′ R′

F

F

Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k

a) b)

c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ

a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 8.1: IDEA: a) original scheme, b) modified scheme

Considering the original scheme, it is easy to distinguish it from a perfect cipher using the following
1-limited KPA distinguisher:

DISTINGUISHER 8.1 (D1): 1-limited KPA distinguisher for 1-round IDEA

1. Get X = [L, R].

2. Get Y = [L′, R′] = C̃(X) where C̃ is either IDEA or a perfect cipher.

If the oracle implements IDEA, L′ − R′ = L + F (∆) − R − F (∆) = L − R.

3. If L − R = L′ − R′, then output “accept”.

4. Output “reject”.

This attack can be extended to any number of rounds, since the exploited characteristic passes through all
the rounds of the cipher. To avoid this attack, we add a permutation to the left part of the round output
(see Figure 8.1 b). In general, σ may be any α-almost orthomorphism for a small α [23]; however, we will
further consider only the 1-bit left-rotation for σ. Since the bit rotation is a simple permutation independent
from the key, it is easily invertible, and may be omitted in the last round.

91

92 CHAPTER 8. IDEA

Notation: The name IDEA will be further used not only for the original cipher, but also for the
underlying scheme and its modifications. The scheme of IDEA enhanced by the permutation
σ will be denoted by Λσ . The parts of a block X will be denoted by XL for the left part
and XR for the right part, their difference XL − XR by ∆X . For the bit-rotation σ, the
individual parts are represented as m-bit integers, i.e. XL, XR ∈ M = {0, 1, . . . , 2m − 1},
and Λσ : M×M → M×M.

In the rest of this chapter, we first discuss properties of the bit rotation σ, and security of the modified
IDEA as described above and depicted in Figure 8.1 b). In the next two chapters we address the scalability
of the scheme of IDEA. We define two scalable schemes based on IDEA — one using the underlying
scheme in the greatest possible extent, the other one simplified, using just one per round. We evaluate
security of both the scalable schemes.

8.1 Properties of the Rotation Permutation

By introducing the bit rotation, the output difference of one-round changes to

L′ − R′ = σ(L + F (∆)) − R − F (∆) = σ′(L + F (∆)) + ∆

where σ′(x) = σ(x) − x. Unfortunately, the function σ′ is not a permutation: The 1-bit left-rotation is
calculated as σ(x) = 2x + msb(x), and thus σ′(x) = x + msb(x). Let y = σ′(x). If msb(y) = 0, then
either x = y, or x = y−1 under the condition that msb(y − 1) = 1. The second case occurs only for y = 0,
and thus σ′−1

(0) has two solutions: 0, and 2m − 1 (00 . . .0, and 11 . . .1). Similarly, if msb(y) = 1, then
x = y − 1 under the condition that msb(y − 1) = 1. The condition is satisfied by all y with msb(y) = 1
except of 2m−1 (10 . . .0). Summarizing,

∣

∣

∣σ′−1
(y)
∣

∣

∣ =

0 if y = 2m−1

2 if y = 0

1 otherwise

In the following lemma we analyze some properties of the bit-rotation σ, that we need in the following
proofs of security of the schemes based on IDEA.

Lemma 8.1.1 Let σ be a 1-bit left-rotation on M = {0, . . . , 2m − 1} and σ′(x) = σ(x) − x for any
x ∈ M. Then

∀δ ∈ M \ {0} : Pr[∃a ∈ M : σ′(a) = σ′(a + δ)] ≤ 1

|M| (8.1)

∀δ ∈ M \ {0} : Pr[∃a, b ∈ M : σ′(a) − σ′(b) = δ] ≤ 1

|M| (8.2)

∀δ ∈ M : Pr[∃a ∈ M : δ ± σ′(a) /∈ σ′(M)] ≤ 2

|M| (8.3)

Proof:

1. σ′(a) = σ′(a + δ) if and only if a = 0 and δ = 2m − 1, or a = 2m − 1 and δ = 1. Therefore,

Pr[∃a : σ′(a) = σ′(a + δ)] =

1

|M| δ = 1 ∨ δ = 2m − 1

0 otherwise.

2.

Pr[∃a, b : σ′(a) = σ′(b) + δ] =
1

|M|2
∑

b∈M

∣

∣

∣σ′−1
(σ′(b) + δ)

∣

∣

∣

Since
∣

∣

∣σ′−1
(σ′(b) + δ)

∣

∣

∣ = 2 ⇔ σ′(b) + δ = 0 ⇔ σ′(b) = −δ[6= 0]

this may occur at most once (for b = σ′−1(−δ)). On the other hand,
∣

∣

∣σ′−1
(σ′(b) + δ)

∣

∣

∣ = 0 ⇔ σ′(b) + δ = 2m−1 ⇔ σ′(b) = 2m−1 − δ[6= 2m−1]

8.2. SECURITY OF THE IDEA SCHEME 93

i.e. it must occur at least once. Therefore,

Pr[∃a, b : σ′(a) = σ′(b) + δ] ≤

1

|M|2
[1 · 2 + (|M| − 2) · 1] if

∣

∣

∣σ′−1
(−δ)

∣

∣

∣ > 0

1

|M|2
[(|M| − 1) · 1] otherwise

≤ 1

|M|
3.

Pr[∃a ∈ M : δ ± σ′(a) /∈ σ′(M)] =
1

|M| |{a|δ ± σ′(a) /∈ σ′(M)}|

=
1

|M|
∣

∣{a|σ′(a) = ±(2m−1 − δ)}
∣

∣

=

0 if δ = 0

2

|M| if δ = 2m−1

1

|M| otherwise

8.2 Security of the IDEA Scheme

In this section we study the security of the basic IDEA scheme with addition of the 1-bit left rotation. We
discuss known plaintext, adaptive chosen plaintext, and adaptive chosen plaintext-ciphertext attack, and
show how many rounds resist these attacks.

8.2.1 Known Plaintext Attack

Since the one-round IDEA does not contain the left-rotation, we may apply the same attack against it as
described in Distinguisher 8.1.

Theorem 8.2.1 Let F be a random function on a group M. Then a one-round IDEA Λσ[F] is not secure
against the known plaintext attack.

Proof: Consider Distinguisher 8.1. When the oracle implements IDEA, the distinguisher D1 always
answers correctly, i.e. p0 = 1. When the oracle implements a perfect random function, the
probability that the condition holds is p1 = 1

|M| . Therefore the advantage of this distinguisher is

AdvCKPA(1)(Λσ [F]) ≥ AdvC
KPA(1)
D1

(Λσ [F]) = |p0 − p1| ≥ 1 − 1

|M| .

The one-round IDEA is thus not secure against the known plaintext attack. However, adding one round
makes IDEA resistent to this type of attack.

Theorem 8.2.2 Let F ∗
1 , F ∗

2 be two independent perfect random functions on a group M, and let d be an
integer. Then

AdvCKPA(d)(Λσ [F ∗
1 , F ∗

2]) ≤ d2 + d + 1

|M| .

Proof: A d-limited known-plaintext attack distinguisher has access to d plaintexts x1, x2, . . . , xd and
corresponding ciphertexts y1, y2, . . . , yd. When the oracle implements the IDEA scheme, the
ciphertexts are calculated as depicted in Figure 8.2.

We may assume that all inputs in X to the oracle are pairwise different. Let
Y = {Y = (y1, y2, . . . , yd)|∀k 6= l : ∆yk 6= ∆yl}. Consider any fixed value of Y ∈ Y . Then
Tk = yk if and only if ∆Sk = ∆yk and T L

k = L′
k, i.e.

∆Sk = σ′(Lk + F ∗
1 (∆xk)) + ∆xk = ∆yk

T L
k = SL

k + F ∗
2 (∆Sk) = SL

k + F ∗
2 (∆yk) = L′

k

94 CHAPTER 8. IDEA

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F

Lk Rk

L′
k R′

k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .

F ∗
1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ

a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

xk = [Lk, Rk]

yk = [L′
k, R′

k]

∆xk = Lk − Rk

Sk = [σ(Lk + F ∗
1 (∆xk)), Rk + F ∗

1 (∆xk)]

∆Sk = SL
k − SR

k

Tk = yk = [SL
k + F ∗

2 (∆Sk), SR
k + F ∗

2 (∆Sk)]

Figure 8.2: The 2-round IDEA scheme

Let Ek be the following event:

Ek =
[

F ∗
1 (∆xk) ∈ σ′−1

(∆yk − ∆xk) − Lk ∧ F ∗
2 (∆yk) = L′

k − SL
k

]

.

Since all values ∆yk are pairwise different, we have

Pr[∀k : F ∗
2 (∆yk) = L′

k − SL
k] =

1

|M|d
.

Let C1 and C2 be the following conditions:

C1 = [∀k 6= l : ∆xk 6= ∆xl]

C2 = [∀k : ∆yk − ∆xk ∈ σ′(M)]

If both the conditions are satisfied,

Pr[∀k : F ∗
1 (∆xk) ∈ σ′−1

(∆yk − ∆xk) − Lk] =
d
∏

k=1

∣

∣

∣σ′−1
(∆yk − ∆xk) − Lk

∣

∣

∣

|M| ≥ 1

|M|d
.

Therefore, in that case

[Λσ[F ∗
1 , F ∗

2]]
d
X,Y ≥ 1

|M|2d
=

(

|M|2
)d

|M|2d
[C∗]dX,Y ≥

(

1 − d2

2 |M|2

)

[C∗]dX,Y .

Since the values of xk are chosen randomly,
Pr[¬C1] = Pr[∆xk = ∆xl] = Pr[Lk − Rk = Ll − Rl] = 1

|M| . Further,

Pr[¬C2] = Pr[∆yk − ∆xk /∈ σ′(M)]
(8.3)

≤ 2
|M| . Therefore, the probability that the conditions are

not satisfied is

Pr [∃ k 6= l : ∆xk = ∆xl ∨ ∃ k : ∆yk − ∆xk /∈ σ′(M)] ≤ d2

2 |M| +
2d

|M| =
d2 + 4d

2 |M| .

Now we can use Corollary 3.1.4 with the following parameters:

1. ε1 = d2

2|M| (since Pr[∃ k 6= l : ∆yk = ∆yl] ≤ d2

2|M|),

2. ε2 = d2

2 |M|2
, and

3. ε3 = d2+4d
2 |M| ,

8.2. SECURITY OF THE IDEA SCHEME 95

and we get

AdvCKPA(d)(Λσ [F ∗
1 , F ∗

2]) ≤ d2

2|M| +
d2

2 |M|2
+

d2 + 4d

2 |M| ≤ d2 − d + 1 + d2 − d + 4d

2 |M|

≤ d2 + d + 1

|M|

8.2.2 Adaptive Chosen Plaintext Attack

Similarly as in the previous subsection, we first show that 2-round IDEA is not secure against the chosen
plaintext attacks, and then we prove the resistance of the 3-round IDEA to the adaptive form of this type of
attack, i.e. that it is pseudorandom.

Theorem 8.2.3 Let F1, and F2 be two functions on a group M. Then Λσ [F1, F2] is not secure against the
chosen plaintext attack.

Proof: Consider the following distinguisher:

DISTINGUISHER 8.2 (D2): 2-limited CPA distinguisher for the 2-round IDEA

1. Choose two plaintexts x1 = [L1, R1] and x2 = [L2, R2] so that ∆ = L1 − R1 =
L2 − R2.

2. Query the oracle with x1 and x2, and get y1 = [L′
1, R

′
1] and y2 = [L′

2, R
′
2] .

If the oracle implements Λσ [F1, F2], then

yk = Λσ [F1, F2](xk) = [σ(Lk + F1(∆)) + F2(∆k), Rk + F1(∆) + F2(∆k)],

where ∆k = σ(Lk + F1(∆)) − Rk − F1(∆) = σ′(Lk + F1(∆)) + ∆.

Therefore,
∆yk = L′

k − R′
k = ∆k = σ′(Lk + F1(∆)) + ∆,

and
F1(∆) = σ′−1

(∆yk − ∆) − Lk

Hence,
σ′−1

(∆y1 − ∆) − L1 = σ′−1
(∆y2 − ∆) − L2

3. If ∆y1 − ∆ /∈ σ(M), or ∆y2 − ∆ /∈ σ(M) then output “reject”.

4. If σ′−1
(∆y1 − ∆) − L1 = σ′−1

(∆y2 − ∆) − L2 then output “accept”.

5. Output “reject”.

When the oracle implements Λσ [F1, F2], then ∆yk − ∆ ∈ σ(M) for both k = 1, 2, and the
distinguisher always answers correctly, i.e. p0 = 1.

When the oracle implements a perfect random function, there are two cases:

• ∆yk − ∆ /∈ σ(M) for at least one of the responses. In this case, the probability that the
distinguisher answers incorrectly is 0.

• If both ∆yk − ∆ (k = 1, 2) have a preimage in M, the probability that the distinguisher
answers incorrectly is

Pr
[

σ′−1
(∆y1 − ∆) − L1 = σ′−1

(∆y2 − ∆) − L2

]

=
1

|M| .

Therefore, p1 ≤ 1
|M| , and the overall advantage of this distinguisher is

AdvCCPA(2)(Λσ [F1, F2]) ≥ AdvC
CPA(2)
D2

(Λσ[F1, F2]) = |p0 − p1| ≥ 1 − 1

|M| .

96 CHAPTER 8. IDEA

Theorem 8.2.4 Let F ∗
1 , F ∗

2 , F ∗
3 be three independent perfect random functions on a group M, and d an

integer. Then

AdvCACPA(d)(Λσ [F ∗
1 , F ∗

2 , F ∗
3]) ≤ d2 + d + 1

|M| .

Proof: The proof is similar to the one of Theorem 8.2.2. A d-limited known-plaintext attack
distinguisher has access to d plaintexts x1, x2, . . . , xd and corresponding ciphertexts y1, y2, . . . , yd.
When the oracle implements the IDEA scheme, the ciphertexts are calculated as depicted in Figure
8.3.

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F

Lk Rk

L′
k R′

k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .

F ∗
1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ

σ

a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

xk = [Lk, Rk]

yk = [L′
k, R′

k]

∆xk = Lk − Rk

Sk = [σ(Lk + F ∗
1 (∆xk)), Rk + F ∗

1 (∆xk)]

∆Sk = SL
k − SR

k

Tk = [σ(SL
k + F ∗

2 (∆Sk)), SR
k + F ∗

2 (∆Sk)]

∆Tk = T L
k − T R

k

Uk = yk = [T L
k + F ∗

3 (∆Tk), T R
k + F ∗

3 (∆Tk)]

Figure 8.3: The 3-round IDEA scheme

We may assume that all inputs in X to the oracle are pairwise different. Let
Y = {Y = (y1, y2, . . . , yd)|∀k 6= l : ∆yk 6= ∆yl}. Consider any fixed value of Y ∈ Y . Then
Uk = yk if and only if ∆Tk = ∆yk and UL

k = L′
k, i.e.

∆Tk = σ′(SL
k + F ∗

2 (∆Sk)) + ∆Sk = ∆yk

UL
k = T L

k + F ∗
3 (∆Tk) = T L

k + F ∗
3 (∆yk) = L′

k

Let Ek be the following event:

Ek =
[

F ∗
2 (∆Sk) ∈ σ′−1

(∆yk − ∆Sk) − SL
k ∧ F ∗

3 (∆yk) = L′
k − T L

k

]

.

Since all values ∆yk are pairwise different

Pr[∀k : F ∗
3 (∆y) = L′

k − T L
k] =

1

|M|d
.

Let C1 and C2 be the following conditions:

C1 = [∀k 6= l : ∆Sk 6= Sl]

C2 = [∀k : ∆yk − ∆Sk ∈ σ′(M)]

If both the conditions are satisfied,

Pr[∀k : F ∗
2 (∆Sk) ∈ σ′−1

(∆yk − ∆Sk) − Lk] =

d
∏

k=1

∣

∣

∣σ′−1
(∆yk − ∆Sk) − Lk

∣

∣

∣

|M| ≥ 1

|M|d
.

8.2. SECURITY OF THE IDEA SCHEME 97

Therefore, in that case

[Λσ [F ∗
1 , F ∗

2 , F ∗
3]]dX,Y ≥ 1

|M|2d
=

(

|M|2
)d

|M|2d
[C∗]dX,Y ≥

(

1 − d2

2 |M|2

)

[C∗]dX,Y

Now we evaluate the probability that the conditions are not satisfied. Since

∆Sk = σ′(Lk + F ∗
1 (∆xk)) + ∆xk ,

we get the following cases:

• If ∆xk = ∆xl:
Since xL

k − xR
k = ∆xk = ∆xl = xL

l − xR
l and xk 6= xl then xL

k 6= xL
l . Thus

xL
k + F ∗

1 (∆xk) 6= xL
l + F ∗

1 (∆xl), and a collision occurs if
σ′(xL

k + F ∗
1 (∆xk)) = σ′(xL

l + F ∗
1 (∆xl)). Therefore,

Pr[∆Sk = ∆Sl] = Pr[σ′(xL
k + F ∗

1 (∆xk)) = σ′(xL
l + F ∗

1 (∆xl))]

= Pr[∃a ∈ M : σ′(a) = σ′(a + δ)]

for a constant δ = xL
k − xL

l ∈ M \ {0}. From (8.1) we get that Pr[∆Sk = ∆Sl] ≤ 1
|M| .

• If ∆xk 6= ∆xl ∧ xL
k + F ∗

1 (∆xk) = xL
l + F ∗

1 (∆xl):
Then σ′(xL

k + F ∗
1 (∆xk)) + ∆xk 6= σ′(xL

l + F ∗
1 (∆xl)) + ∆xl, and Pr[∆Sk = ∆Sl] = 0.

• If ∆xk 6= ∆xl ∧ xL
k + F ∗

1 (∆xk) 6= xL
l + F ∗

1 (∆xl):
Then Pr[∆Sk = ∆Sl] = Pr[∃a, b ∈ M : σ′(a) = σ′(b) + δ], for a constant
δ = ∆xl − ∆xk ∈ M \ {0}. From (8.2) we get that Pr[∆Sk = ∆Sl] ≤ 1

|M| .

Summarizing all three cases, Pr[∆Sk = ∆Sl] ≤ 1
|M| .

Further, Pr[∆yk − ∆Sk /∈ σ′(M)] = Pr[∆yk − σ′(xL
k + F ∗

1 (∆xk)) − ∆xk /∈ σ′(M)] = Pr[∃a ∈

M : δ − σ′(a) /∈ σ′(M)]
(8.3)

≤ 2
|M| for a constant δ = ∆yk − ∆xk.

Therefore,

Pr [∃ k 6= l : ∆Sk = ∆Sl ∨ ∃ k : ∆yk − ∆Sk /∈ σ′(M)] ≤ d2

2 |M| +
2d

|M| =
d2 + 4d

2 |M| ,

and using Corollary 3.1.4 with the following parameters:

1. ε1 = d2

2|M| (since Pr[∃ k 6= l : ∆yk = ∆yl] ≤ d2

2|M|),

2. ε2 = d2

2 |M|2
, and

3. ε3 = d2+4d
2 |M| ,

we get the upper-bound on the advantage:

AdvCACPA(d)(Λσ [F ∗
1 , F ∗

2 , F ∗
3]) ≤ d2

2|M| +
d2

2 |M|2
+

d2 + 4d

2 |M| ≤ d2 + d + 1

|M|

8.2.3 Adaptive Chosen Plaintext-Ciphertext Attack

Adaptive chosen plaintext-ciphertext attack is the strongest attack and resistance to it ensures super-pseudo-
randomness of the scheme. We have not found any attack against the 3-round IDEA, however, we can prove
that the 4-round IDEA resists the adaptive chosen-plaintext attack, and thus that it is super-pseudorandom.
Super-pseudorandomness of 3-round IDEA is still an open problem.

Theorem 8.2.5 Let F ∗
1 , F ∗

2 , F ∗
3 , F ∗

4 be four independent perfect random functions on a group M, and d an
integer. Then

AdvCACPCA(d)(Λσ [F ∗
1 , F ∗

2 , F ∗
3 , F ∗

4]) ≤ d2 + d + 1

|M| .

98 CHAPTER 8. IDEA

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F

Lk Rk

L′
k R′

k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .

F ∗
1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ

σ

σ

a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

xk = [Lk, Rk]

yk = [L′
k, R′

k]

∆xk = Lk − Rk

Sk = [σ(Lk + F ∗
1 (∆xk)), Rk + F ∗

1 (∆xk)]

∆Sk = SL
k − SR

k

Tk = [σ(SL
k + F ∗

2 (∆Sk)), SR
k + F ∗

2 (∆Sk)]

∆Tk = ∆Uk

Uk = [T L
k + F ∗

3 (∆Tk), T R
k + F ∗

3 (∆Tk)]

∆yk = L′
k − R′

k

Uk = [σ−1(L′
k − F ∗

4 (∆yk)), R′
k − F ∗

4 (∆yk)]

Figure 8.4: The 4-round IDEA scheme

Proof: The proof is similar to the one of Theorem 8.2.2. Any d-limited known-plaintext attack
distinguisher has access to d plaintexts x1, x2, . . . , xd and corresponding ciphertexts y1, y2, . . . , yd.
When the oracle implements the IDEA scheme, the ciphertexts are calculated as depicted in Figure
8.4. We may assume that all inputs in X to the oracle are pairwise different. Let
λk = (Λσ)

−1
[F ∗

4](yk). Consider any fixed value of Y . Then Vk = yk if and only if

Uk = (Λσ)
−1

[F ∗
4](yk) = [σ−1(yL

k − F ∗
4 (∆yk)), yR

k − F ∗
4 (∆yk)],

i.e.

∆Tk = σ′(SL
k + F ∗

2 (∆Sk)) + ∆Sk = ∆Uk = ∆λk

UL
k = T L

k + F ∗
3 (∆Tk) = T L

k + F ∗
3 (∆λk) = λL

k

As in the proof of Theorem 8.2.4, we can define an event Ek:

Ek =
[

F ∗
2 (∆Sk) ∈ σ′−1

(∆λk − ∆Sk) − SL
k ∧ F ∗

3 (∆λk) = λL
k − T L

k

]

.

Let C1, C2, and C3 be the following conditions:

• C1 = [∀k 6= l : ∆Sk 6= ∆Sl]

• C2 = [∀k : ∆λk − ∆Sk ∈ σ′(M)]

• C3 = [∀k 6= l : ∆λk 6= ∆λl]

Probabilities that conditions C1 and C2 are satisfied are evaluated in the proof of Theorem 8.2.4, and
are as follows:

• Pr[¬C1] ≤ d2

2 |M|

8.3. SCALABLE SCHEME BASED ON IDEA 99

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .

. . .F ∗
1 F ∗

2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ

a1 a2 a3 a4

a5

a6

a2n−1 a2n

an

b1 b2 b3

b4

b5

b6

b2n−2 b2n−1 b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 8.5: Scalable IDEA scheme

• Pr[¬C2] ≤ 2d
|M|

Since ∆λk = σ−1(yL
k − F ∗

4 (∆yk)) − yL
k + F ∗

4 (∆yk) + ∆yk =
σ−1(yL

k − F ∗
4 (∆yk)) − σ(σ−1(yL

k − F ∗
4 (∆yk)) + ∆yk = −σ′(σ−1(yL

k − F ∗
4 (∆yk)) + ∆yk, and

since σ is a permutation, the probability Pr[∆λk = ∆λl] for a particular k and l can be analyzed in
the same way as Pr[∆Sk 6= ∆Sl] with the same result

Pr[¬C3] ≤
d2

2 |M| ,

The parameters for Corollary 3.1.6 are now:

1. ε1 = d2

2 |M|2
, and

2. ε2 = 2d2+4d
2 |M| = d2+2d

|M| .

Therefore,

AdvCACPCA(d)(Λσ [F ∗
1 , F ∗

2 , F ∗
3 , F ∗

4]) ≤ d2

2 |M|2
+

d2 + 2d

|M| ≤ 1 + d2 − d + 2d

|M|

≤ d2 + d + 1

|M|

8.3 Scalable Scheme Based on IDEA

The straightforward way to scale the original IDEA scheme is to divide the large input into sub-blocks
of the length of the original IDEA block size, and apply the original scheme to each sub-block. In order
to achieve dependency of the output sub-blocks on all the input sub-blocks, we need to employ the block
rotation as depicted in Figure 8.5. Note that the dependency on all the input blocks is necessary. Otherwise
we could apply the attack described in the proof of the following theorem.

Theorem 8.3.1 Let C be a scalable encryption scheme, which divides the plaintext into n sub-blocks
x = (a1, a2, . . . , an), and which calculates the ciphertext y = (b1, b2, . . . , bn) so that bi = aji

�

Fi(a1, a2, . . . , an) (without any restriction on the functions Fi), where j1, j2, . . . , jn is a permutation on
{1, 2, . . . , n}. If there are i and k such that the output of Fi(a1, a2, . . . , an) does not depend on ak, then
the scheme C is not secure against the chosen plaintext attack.

Proof: Consider the following distinguisher:

100 CHAPTER 8. IDEA

DISTINGUISHER 8.3 (D3): 2-limited CPA distinguisher for C

1. Choose two plaintexts x1 = (a11, a12, . . . , a1n), and x2 = (a21, a22, . . . , a2n) so that
a1k 6= a2k, and for all l 6= k, a1l = a2l.

2. Query the oracle with x1 and x2, and get y1 = (b11, b12, . . . , b1n) and y2 =
(b21, b22, . . . , b2n).

If the oracle implements C then the function Fi does not depend on ak, and thus b1i �

b2i = a1ji
� Fi(a11, a12, . . . , a1n)� a2ji

� Fi(a21, a22, . . . , a2n) = a1ji
� a2ji

.

3. If b1i � b2i = a1ji
� a2ji

, output “accept”.

4. Output “reject”.

If the oracle implements C, the probability that the distinguisher D3 accepts is p0 = 1; if the oracle
implements a perfect random permutation, p1 = 1

|M| , where M is the set of possible values for bi.
Therefore,

AdvCCPA(2)(C) ≥ AdvC
CPA(2)
D3

(C) ≥ 1− 1

|M| .

The rotation of the sub-blocks ensures a good diffusion property of the cipher. However, it does not
prevent an attack, similar to that one against the original scheme, exploiting the input-output differential
characteristic.

Notation: The input block of scalable IDEA is divided into n sub-blocks, each consisting of
two parts, i.e. altogether into 2n parts. The inputs to the round functions (the differences) are
calculated for each sub-block separately. The difference between two subsequent parts ai and
ai+1 (i.e. ai − ai+1) of a block x = (a1, a2, . . . , a2n) will be further denoted ∆ai.

Consider now the following 1-limited known plaintext attack distinguisher:

DISTINGUISHER 8.4 (D4): 1-limited KPA distinguisher for IDEA

1. Get a plaintext x = (a1, a2, . . . , a2n).

2. Get a ciphertext y = (b1, b2, . . . , b2n).

If the oracle implements a scalable IDEA with the round functions F1, F2, . . . , Fn,
then for all 1 ≤ i ≤ n:

b2i−1 = a2i + Fi(∆a2i−1)

b2i = a2i+1 + Fi+1(∆a2i+1).

Therefore,

n
∑

i=1

∆b2i−1 =

n
∑

i=1

a2i + Fi(∆a2i−1) −
n
∑

i=1

a2i+1 + Fi+1(∆a2i+1)

= −
n
∑

i=1

∆a2i−1.

3. If
∑n

i=1 ∆b2i−1 = −∑n
i=1 ∆a2i−1, then output “accept”.

4. Output “reject”.

When the oracle implements IDEA, the distinguisher D4 always answers correctly, i.e. p0 = 1. When the
oracle implements a perfect random function, the probability that the condition in Step 3 holds is p1 = 1

|M| .

Therefore, the advantage of this distinguisher is |p0 − p1| = 1− 1
|M| . The distinguisher may be extended to

more rounds so that for an r-round IDEA it answer “accept” when
∑n

i=1 ∆b2i−1 = (−1)r
∑n

i=1 ∆a2i−1.
The extended distinguisher has the same advantage as D4.

8.3. SCALABLE SCHEME BASED ON IDEA 101

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .

. . .F ∗
1 F ∗

2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ

a1 a2 a3 a4

a5

a6

a2n−1 a2n

an

b1 b2 b3

b4

b5

b6

b2n−2 b2n−1 b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 8.6: Modified scalable IDEA scheme

To avoid this attack we again need to add the permutation σ to the scheme. However, it is not necessary
to use it in each sub-block, we may apply it just in one of them as depicted in Figure 8.6. After the last
round, the permutation may be again omitted.

Notation: The scalable scheme of IDEA enhanced by the permutation σ will be further de-
noted by Πσ

n, i.e. Πσ
n : M2n → M2n for a set M = {0, 1, . . . , 2m − 1}.

In the following example we observe how the dependency of the output parts on the input parts spreads.

Example 8.3.2 Consider a scalable scheme of IDEA with three sub-blocks (six parts). Let the input be
(a1, a2, a3, a4, a5, a6) and denote the i-th part of the output block after the first r-th rounds by ari

+
Fri(a1, a2, a3, a4, a5, a6). The following table shows which part of the plaintext is on which position after
the r-th round, and on which input parts the function Fri depends.

after 1 2 3 4 5 6
the round r i1 Fr1 i2 Fr2 i3 Fr3 i4 Fr4 i5 Fr5 i6 Fr6

1 2 1, 2 3 3, 4 4 3, 4 5 5, 6 6 5, 6 1 1, 2
2 3 1–4 4 3–6 5 3–6 6 1, 2, 5, 6 1 1, 2, 5, 6 2 1–4
3 4 1–6 5 1–6 6 1–6 1 1–6 2 1–6 3 1–6

Hence, the table indicates that we need at least 3 rounds to get all output parts dependent on all input parts.

This example may be generalized into the following theorem.

Theorem 8.3.3 Let the scalable IDEA scheme divide the input into 2n parts. Then it requires at least n
rounds to get all output parts dependent on all input parts.

Proof: After the first round, each output part depends on two input parts. Then the parts are shifted to
the left, and the input of each round function of the next round depends on all input parts contained
in a particular sub-block. Considering the sub-block forming the input to the i-th round function
(1 ≤ i ≤ n):

1. The left part is the right part of the i-th output sub-block of the previous round. It depends on
the same input parts as the input to the i-th round function of the previous round.

2. The right part is the left part of the (i + 1)-th output sub-block of the previous round. It
depends on the same input parts as the input to the (i + 1)-th round function of the previous
round. It contributes two input parts not contained in the left part.

Thus, after each round, each output part depends on two more input parts, and after the n-th round
all 2n output parts depend on all 2n input parts.

102 CHAPTER 8. IDEA

8.3.1 Adaptive Chosen Plaintext Attack

Consider a chosen plaintext attack against a scalable scheme of IDEA where an attacker may obtain up to d
plaintext/ciphertext pairs (xk, yk) with pairwise different plaintexts xk = (ak1, . . . , ak(2n)). Consider two
fixed plaintexts xk and xl, for k 6= l. The attacker may choose the plaintexts so that all differences between
subsequent parts are in both plaintexts equal, i.e. for all 1 ≤ i ≤ 2n − 1:

∆aki = ∆ali. (8.4)

If ak1 = al1 then from (8.4) also all other aki = ali, and thus xk = xl. Thus, assuming pairwise
different plaintexts, this case does not occur. Let al1 = ak1 + δ, for a nonzero δ. Then from (8.4) we get
that for all i, ali = aki + δ.

Let yk = (bk1, . . . , bk(2n)) be the output of the first round processing the plaintext xk as depicted in
Figure 8.6. Then for all 1 ≤ i < n

∆bl(2i−1) = al(2i) + F ∗
i (∆al(2i−1)) − al(2i+1) − F ∗

i+1(∆al(2i+1))

= ak(2i) + δ + F ∗
i (∆ak(2i−1)) − ak(2i+1) − δ − F ∗

i+1(∆ak(2i+1)) = ∆bk(2i−1)

and ∆bk(2n−1) = ∆bl(2n−1) if and only if

ak(2n) + F ∗
n(∆ak(2n−1)) − σ (ak1 + F ∗

1 (∆ak1)) = al(2n) + F ∗
n(∆al(2n−1)) − σ (al1 + F ∗

1 (∆al1))

= ak(2n) + δ + F ∗
n(∆ak(2n−1))

− σ (ak1 + δ + F ∗
1 (∆ak1))

i.e. if

−σ (ak1 + F ∗
1 (∆ak1)) = δ − σ (ak1 + δ + F ∗

1 (∆ak1))

−σ′ (ak1 + F ∗
1 (∆ak1)) − ak1 − F ∗

1 (∆ak1) = δ − σ′ (ak1 + δ + F ∗
1 (∆ak1)) − ak1 − δ − F ∗

1 (∆ak1)

σ′ (ak1 + F ∗
1 (∆ak1)) = σ′ (ak1 + δ + F ∗

1 (∆ak1))

From (8.1),

Pr[∆bk(2n−1) = ∆bl(2n−1)] =
1

|M| . (8.5)

Notation: We will write that “there is an input to a round function distinct for two plaintexts
xk 6= xl”, if x = (a1, a2, . . . , a2n) and there is an i such that ∆ak(2i−1) 6= ∆al(2i−1).

The following lemma shows that we need at least n rounds to get the inputs to all the round functions
distinct (for all pairs of plaintexts the attacker has access to) with a high probability.

Lemma 8.3.4 Let F ∗
11, . . . , F

∗
1n, F ∗

21, . . . , F
∗
2n, . . . F ∗

r1, . . . , F
∗
rn be independent perfect random functions

on a group M. Consider r rounds of the scalable IDEA (performing σ and block shift also after the last
round). Let d be an integer. Let τ be any transcript, Xτ = (x1, x2, . . . , xd) with pairwise different entries,
Yτ = (y1, y2, . . . , yd), xk = (ak1, . . . , ak(2n)), and yk = (bk1, . . . , bk(2n)). Then

1. If r < n and d ≥ 2, it is possible to choose inputs Xτ such that there is at least one 1 ≤ i ≤ n and
1 ≤ k, l ≤ d with ∆bk(2i−1) = ∆bl(2i−1);

2. If r = n:

Pr[∃k 6= l, i : ∆bk(2i−1) = ∆bl(2i−1)] ≤
d2n2

2 |M| .

Proof:

1. Let r = n − 1 and d = 2. Let the attacker choose the plaintexts so that (8.4) holds. Then from
(8.5) follows that there is at most one input into the next round-functions (to the last one) after
the first round which differs for the two chosen plaintexts. After each following round the
difference spreads to one more input to the left, so that after the r-th round at most the last r
inputs are distinct, and thus after n − 1 rounds the input to the first round function is still equal
for both plaintexts.

8.3. SCALABLE SCHEME BASED ON IDEA 103

2. Let Sr
k denote the output of the r-th round for the plaintext xk. Then for all 1 ≤ i < n

∆Sr+1
k(2i−1) = ∆Sr

k(2i) + F ∗
ri(∆Sr

k(2i−1)) − F ∗
r(i+1)(∆Sr

k(2i+1))

and
∆Sr+1

k(2n−1) = Sr
k(2n) + F ∗

rn(∆Sr
k(2n−1)) − σ(Sr

k1 + F ∗
r1(∆Sr

k1)).

Let P r[k, l, i] denote the probability that ∆Sr
k(2i−1) = ∆Sr

l(2i−1). Then for all 1 ≤ i < n

P r+1[k, l, i]

= 1 if ∆Sr
k(2i) = ∆Sr

l(2i) and ∆Sr
k(2i−1) = ∆Sr

l(2i−1) and

∆Sr
k(2i+1) = ∆Sr

l(2i+1)

≤ 1

|M| otherwise

(8.6)

P r+1[k, l, n] ≤

1 if ∆Sr
k(2n−1) = ∆Sr

l(2n−1) and ∆Sr
k1 = ∆Sr

l1

1

|M| otherwise
(8.7)

The proof continues by induction for fixed k and l.

a) For the first round S0
k = xk. If there is 1 ≤ i < n such that ∆aki 6= ∆ali, then from (8.6)

and (8.7) follows that there is at least one input to the next round function distinct for both
plaintexts with a high probability. If there is no such i, from (8.5) we know that with a
high probability the inputs to the last round-function are distinct. In summary, there is at
least one input to the next round functions i for which P 1[k, l, i] ≤ 1

|M| .

b) Assume now that there are at least r values of ij (1 ≤ j ≤ r) such that
P r[k, l, ij] = Pr[∆Sk(2ij−1) = ∆Sl(2ij−1)] ≤ r

|M| after the r-th round. In the worst case
they are in sequence so that ij+1 = ij + 1, which causes that the difference spreads only
one part further, i.e.

P r+1[k, l, ij1 − 1] = P r+1[k, l, ij1] = P r+1[k, l, ij1 + 1] = . . . = P r+1[k, l, ij1 + r − 1]

≤ 1

|M| · (1 − p) + 1 · p,

where p is the probability that the condition in (8.6), or in (8.7), is satisfied. In both cases
this probability is smaller than Pr[∆Sk(2ij−1) = ∆Sl(2ij−1)] = P r[k, l, ij] ≤ r

|M| for
some of the ij . Thus after the (r + 1)-th round there are at least r + 1 inputs to the next
round functions such that

P r+1[k, l, ij] ≤
1

|M| · 1 + 1 · r

|M| ≤
r + 1

|M| .

Therefore, after the n-th round, for all inputs to the next round functions,

P n[k, l, i] ≤ n

|M| ,

and the overall probability

Pr[∃k 6= l, i : ∆bk(2i−1) = ∆bl(2i−1)] ≤
(

d

2

)

· n · n

|M| =
d2n2

2 |M| .

Using the previous lemma we can evaluate the number of rounds in order for the scheme to be secure
against the chosen plaintext attack.

Theorem 8.3.5 Let F ∗
11, . . . , F

∗
1n, F ∗

21, . . . , F
∗
2n, . . . , F ∗

(n+2)1, . . . , F
∗
(n+2)n for n > 1 be independent per-

fect random functions on a group M, and let d be an integer. Then

AdvCACPA(d)(Πσ
n[F ∗

11, . . . , F
∗
(n+2)n] ≤ d2(n + 1)2

2 |M| .

104 CHAPTER 8. IDEA

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>

...
...

...
...

...
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .

. . .

. . .

. . .

. . .

. . .

F ∗
1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ

σ

a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1 ak2 ak3 ak4 ak(2n−1) ak(2n)

akn

bk1 bk2 bk3 bk4 bk(2n−1)

bk(2n−2)

bk(2n)

bk(n−1)
bkn

F ∗
11 F ∗

12

F ∗
13

F ∗
1n

F ∗
21 F ∗

22

F ∗
23

F ∗
2n

F ∗
31 F ∗

32

F ∗
33

F ∗
3n

Sk1 Sk2 Sk3 Sk4 Sk(n−1) Skn

Tk1 Tk2 Tk3 Tk4 Tk(n−1) Tkn

Uk1 Uk2 Uk3 Uk4 Uk(n−1) Ukn

Vk1 Vk2 Vk3 Vk4 Vk(n−1) Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 8.7: The last three rounds of an r-round scalable IDEA scheme

Proof: A d-limited known-plaintext attack distinguisher has access to d plaintexts x1, x2, . . . , xd and
corresponding ciphertexts y1, y2, . . . , yd. When the oracle implements the IDEA scheme, the
ciphertexts are calculated as depicted in Figure 8.7. For convenience we will index the round
functions in reverse order, i.e. F1i are the round functions of the last round.

We may assume that all inputs in X to the oracle are pairwise different. Let
Y = {Y = (y1, . . . , yd) ∈ M|∀k : yk = (bk1, . . . , bk(2n)) and ∀k 6= l ∀i : ∆bk(2i−1) 6= ∆bl(2i−1)}.
Consider any fixed value of Y ∈ Y . Then Vk = yk if and only if Vk(2i−1) = bk(2i−1) and
∆Uk(2i−1) = ∆bk(2i−1) for all 1 ≤ i ≤ n.

Vk(2i−1) = Uk(2i−1) + F ∗
1i(∆Uk(2i−1)) = Uk(2i−1) + F ∗

1i(∆bk(2i−1)) = bk(2i−1)

and we can define an event Ek as follows:

Ek =
[

∀1 ≤ i ≤ n : F ∗
1i(∆bk(2i−1)) = bk(2i−1) − Uk(2i−1)

]

.

Since

∆Uk(2i−1) = Tk(2i) + F ∗
2i(∆Tk(2i−1)) − Tk(2i+1) − F ∗

2(i+1)(∆Tk(2i+1)) = ∆bk(2i−1),

for all 1 ≤ i < n, and

∆Uk(2n−1) = Tk(2n) + F ∗
2n(∆Tk(2n−1)) − σ(Tk1 + F ∗

21(∆Tk1)) = ∆bk(2n−1),

8.3. SCALABLE SCHEME BASED ON IDEA 105

we get

n
∑

i=1

∆bk(2i−1) =

n
∑

i=1

∆Uk(2i−1) = −σ′(Tk1 + F ∗
k1(∆Tk1)) −

n
∑

i=1

∆Tk(2i−1)

and we can define another event Fk:

Fk =

[

F ∗
21(∆Tk1) ∈ σ′−1

(

−
n
∑

i=1

∆bk(2i−1) −
n
∑

i=1

∆Tk(2i−1)

)

− Tk1

and

F ∗
2i(∆Tk(2i−1)) = −∆bk(2i−3) + ∆Tk(2i−2) + F ∗

2(i−1)(∆Tk(2i−3))

for all 1 < i ≤ n
]

.

Since for all i all values ∆bk(2i−1) are pairwise different

Pr[∀k : Ek] =
1

|M|nd
,

and if all ∆Tk(2i−1) are pairwise different and −∑n
i=1 ∆bk(2i−1) −

∑n
i=1 ∆Tk(2i−1) ∈ σ′(M) for

all k, then

Pr

[

∀k : F ∗
21(∆Tk1) ∈ σ′−1

(

−
n
∑

i=1

∆bk(2i−1) −
n
∑

i=1

∆Tk(2i−1)

)

− Tk1

]

=

d
∏

k=1

∣

∣

∣σ′−1 (−∑n
i=1 ∆bk(2i−1) −

∑n
i=1 ∆Tk(2i−1)

)

∣

∣

∣

|M| ≥ 1

|M|d
.

and

Pr
[

∀k, 1 < i ≤ n : F ∗
2i(∆Tk(2i−1)) = −∆bk(2i−3) + ∆Tk(2i−2) + F ∗

2(i−1)(∆Tk(2i−3))
]

=
1

|M|(n−1)d
.

Thus,

Pr[∀k : Fk] ≥ 1

|M|nd
,

Let C1, and C2 be the following conditions:

C1 =

[

∀k : −
n
∑

i=1

∆bk(2i−1) −
n
∑

i=1

∆Tk(2i−1) ∈ σ′(M)

]

C2 =
[

∀ k 6= l ∀i : ∆Tk(2i−1) 6= ∆Tl(2i−1)

]

If both C1 and C2 hold, then

[

Πσ
n[F ∗

11, . . . , F
∗
(n+2)n]

]d

Xτ ,Yτ

≥ 1

|M|2nd
=

(

|M|2n
)d

|M|2nd
[C∗]dX,Y ≥

(

1 − d2

2 |M|2n

)

[C∗]dX,Y

Now we evaluate the probability that the conditions C1 and C2 are not satisfied. For a fixed k:

Pr

[

−
n
∑

i=1

∆bk(2i−1) −
n
∑

i=1

∆Tk(2i−1) /∈ σ′(M)

]

= Pr

[

−
n
∑

i=1

∆bk(2i−1) −
n
∑

i=1

∆Sk(2i−1) + σ′(Sk1 + F ∗
31(∆Sk1)) /∈ σ′(M)

]

= Pr [∃a ∈ M : δ + σ′(a) /∈ σ′(M)]

106 CHAPTER 8. IDEA

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .

. . .F ∗
1 F ∗

2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σσσ

a1 a2 a3 a4

a5

a6

a2n−1 a2n

an

b1 b2 b3

b4

b5

b6

b2n−2 b2n−1 b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 8.8: Scalable IDEA scheme with bit rotation in all sub-blocks

for a constant δ = −∑n
i=1 ∆bk(2i−1) −

∑n
i=1 ∆Sk(2i−1). From (8.3) we get that this probability is

not greater than 2
|M| . Therefore,

Pr[¬C1] ≤
2d

|M| .

From Lemma 8.3.4 we know that

Pr[¬C2] ≤
d2n2

2 |M| .

Now we can use Corollary 3.1.4 with the following parameters:

1. ε1 = d2n
2 |M| (since Pr[∃ k 6= l ∃i : ∆bk(2i−1) 6= ∆bl(2i−1) ≤ d2n

2 |M| ,

2. ε2 = d2

2 |M|2n , and

3. ε3 = d2n2+4d
2 |M| ,

and we get

AdvCACPA(d)(Πσ
n[F ∗

11, . . . , F
∗
(n+2)n]) ≤ d2n

2 |M| +
d2

2 |M|2n +
d2n2 + 4d

2 |M|

≤ d2n − dn + 1 + d2n2 − dn2 + 4d

2 |M|

≤ d2(n + 1)2

2 |M|

In Lemma 8.3.4 we found the minimal number of rounds necessary to ensure a high probability that all
inputs to the round functions are pairwise different. The worst case occurred when the attacker created two
plaintexts with all differences of successive parts equal for both the plaintexts. For the scalable schemes
with n ≥ 3, we may avoid this attack by adding the bit rotation σ not only to the first sub-block but to
all sub-blocks of the first round (see Figure 8.8). In this way we ensure that after the first round there are
at least two different inputs to the next round functions. If the attacker chose all the differences between
subsequent parts equal, all inputs to the next round functions would be distinct with a high probability for
both plaintexts (from the same reason as in (8.5) for the last sub-block).

Thus, using σ in each sub-block, we get

∆Sr+1
k(2i−1) = Sr

k(2i) + F ∗
ri(∆Sr

k(2i−1)) − σ(Sr
k(2i+1) + F ∗

r(i+1)(∆Sr
k(2i+1))).

and we have the following cases:

8.3. SCALABLE SCHEME BASED ON IDEA 107

1. If there is an i such that ∆ak(2i−1) 6= ∆al(2i−1) then there are at least two j (j ∈ {i, i − 1}) such that
P [k, l, j] ≤ 1

|M| .

2. If there is no i such that ∆ak(2i−1) 6= ∆al(2i−1), but at least two i such that ∆ak(2i) 6= ∆al(2i), then for
all these i, P [k, l, ij] ≤ 1

|M| .

3. If there is no i such that ∆ak(2i−1) 6= ∆al(2i−1) and only one i such that ∆ak(2i) 6= ∆al(2i), then the
input to the i-th next round function is influenced directly, i.e. Pr[∆S1

k(2i−1) = ∆Sr
l(2i−1)] ≤ 1

|M| ,
and we show that there is at least one more next-round function with distinct inputs for the two fixed
plaintexts.

Let al(2i) = ak(2i) + δ1 and al(2i+1) = ak(2i+1) + δ2, then for all j ≤ 2i, alj = akj + δ1; and for all
j > 2i, alj = akj + δ2. Since ∆ak(2i) 6= ∆al(2i), δ1 6= δ2.

a) Let δ1 = 0 and δ2 6= 0. Then ∆bk(2n−1) = ∆bl(2n−1) if and only if

ak(2n) + F ∗
n(∆ak(2n−1)) − σ (ak1 + F ∗

1 (∆ak1))

= al(2n) + F ∗
n(∆al(2n−1)) − σ (al1 + F ∗

1 (∆al1))

= ak(2n) + δ2 + F ∗
n(∆ak(2n−1)) − σ (ak1 + F ∗

1 (∆ak1))

i.e. Pr[∆bk(2n−1) = ∆bl(2n−1)] = 0.

b) Similarly, if δ2 = 0 and δ1 6= 0, ∆bk(2n−1) = ∆bl(2n−1) if and only if

ak(2n) + F ∗
n(∆ak(2n−1)) − σ (ak1 + F ∗

1 (∆ak1))

= al(2n) + F ∗
n(∆al(2n−1)) − σ (al1 + F ∗

1 (∆al1))

= ak(2n) + F ∗
n(∆ak(2n−1)) − σ (ak1 + δ1 + F ∗

1 (∆ak1))

and Pr[∆bk(2n−1) = ∆bl(2n−1)] = 0.

c) Let both δ1 and δ2 be nonzero. Then there are at least four successive parts (two sub-blocks) with the
same difference, i.e. there is an i′ such that al(2i′+j) = ak(2i′+j) + δ for j ∈ {−1, 0, 1, 2}, and as
∆bk(2i′−1) = ∆bl(2i′−1) if and only if

ak(2i′) + F ∗
n(∆ak(2i′−1)) − σ

(

ak(2i′+1) + F ∗
1 (∆ak(2i′+1))

)

= al(2i′) + F ∗
n(∆al(2i′−1)) − σ

(

al(2i′+1) + F ∗
1 (∆al(2i′+1))

)

= ak(2i′) + δ + F ∗
n(∆ak(2i′−1)) − σ

(

ak(2i′+1) + δ + F ∗
1 (∆ak(2i′+1))

)

i.e. if σ′
(

ak(2i′+1) + F ∗
1 (∆ak(2i′+1))

)

= σ′ (ak1 + δ + F ∗
1 (∆ak1)), and from (8.1),

Pr[∆bk(2i−1) = ∆bl(2i−1)] = 1
|M| . Thus for example, if n = 3 and the distinct difference is between

the second and the third part, we get the inputs to the first and second function of the next round
distinct for the fixed plaintexts (see also Figure 8.9).

When n = 2, we can construct the plaintexts so that al1 = ak1 + δ1, al2 = ak2 + δ1, al3 = ak3 + δ2,
and al4 = ak4 + δ2 with δ1 6= δ2. Then ∆bk3 = ∆bl3 if and only if

ak4 + F ∗
n (∆ak3) − σ (ak1 + F ∗

1 (∆ak1)) = al4 + F ∗
n(∆al3) − σ (al1 + F ∗

1 (∆al1))

= ak4 + δ2 + F ∗
n(∆ak3) − σ (ak1 + δ1 + F ∗

1 (∆ak1))

i.e. if

δ2 = σ (ak1 + δ1 + F ∗
1 (∆ak1)) − σ (ak1 + F ∗

1 (∆ak1))

Thus, Pr[∆bk(2i−1) = ∆bl(2i−1)] = Pr[δ2 = σ(δ1 + r) − σ(r)] for a random r. Since

δ2 = σ(δ1 + r) − σ(r) = 2(δ1 + r) + msb(δ1 + r) − 2r − msb(r) = 2δ1 + msb(δ1 + r) − msb(r)

the probability depends only on the most significant bits, and we can choose the values δ1 and δ2 so that the
probability is high. For example, let δ1 = 1 and δ2 = 2. Then 2 = σ(r + 1) − σ(r) if and only if

msb(r + 1) = msb(r).

If msb(r) = 0 then r < 2m−1, and if r 6= 2m−1−1, then msb(r + 1) = 0 as well. Similarly, if msb(r) = 1
and r 6= 2m − 1 then msb(r + 1) = 1 as well. Therefore,

Pr[σ(r + 1) − σ(r) = 2] =
|M| − 2

|M| = 1− 2

|M| ,

108 CHAPTER 8. IDEA

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .

F ∗
1 F ∗

2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σσσ

a1 a2 a3 a4 a5 a6

a2n−1
a2n

an

b1 b2 b3 b4 b5 b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a b c d e f
a + δ1 b + δ1 c + δ2 d + δ2 e + δ2 f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 8.9: Case C: Differences after the first round

and we get with a very high probability only one input to the next round different for the two plaintexts.
Adding the bit rotation permutation σ to all sub-blocks of the first round, we get using the proof of

Lemma 8.3.4 that for all 1 ≤ i ≤ n, P n−1[k, l, i] ≤ n−1
|M| and consequently,

AdvCACPA(d)(Πσ
n[F ∗

11, . . . , F
∗
(n+1)n]) ≤ d2n

2 |M| +
d2

2 |M|2n +
d2n2 + 4d

2 |M| ≤ d2n2 + 1

2 |M|

Note that we cannot save more rounds, since choosing the plaintext so that they differ only in one part (i.e.
there is an j such that akj 6= alj , and for all i 6= j, aki = ali), we need n − 1 rounds to get all inputs to the
next round functions pairwise different for both the plaintexts.

8.3.2 Adaptive Chosen Plaintext-Ciphertext Attack

Similarly as for the basic scheme we can make use of the previous theorem in order to evaluate the number
of rounds necessary for making the scalable scheme super-pseudorandom.

Theorem 8.3.6 Let F ∗
11, . . . , F

∗
1n, F ∗

21, . . . , F
∗
2n, . . . , F ∗

(2n+2)1, . . . , F
∗
(2n+2)n for n > 1 be independent

perfect random functions on a group M, and let d be an integer. Then

AdvCACPCA(d)(Πσ
n[F ∗

11, . . . , F
∗
(2n+2)n] ≤ d2n2

|M| .

Proof: Similarly as for the basic scheme of IDEA, we may use the proof of Theorem 8.3.5, adding a
new condition:

C3 =
[

∀ k 6= l ∀i : ∆πk(2i−1) 6= ∆πl(2i−1)

]

,

for πk = (Πσ
n)

−1
[F ∗

(n+3)1, . . . F
∗
(2n+2)n](yk). The probability that C3 does not hold may be

analyzed in the same way as in Lemma 8.3.4 with the same result, i.e.

Pr[¬C3] ≤
d2n2

2 |M| .

Now we can use Corollary 3.1.6 with the following parameters:

1. ε1 = d2

2 |M|2n , and

2. ε2 = 2d2n2+4d
2 |M| = d2n2+2d

|M| ,

8.4. SIMPLE SCALABLE SCHEME BASED ON IDEA 109

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .

. . .

F ∗
1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ

a1 a2 a3 a4

a5

a6

a2n−1
a2n

an

b1 b2 b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1 bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 8.10: Simple scalable IDEA scheme

and we get

AdvCACPCA(d)(Πσ
n[F ∗

11, . . . , F
∗
(2n+2)n]) ≤ d2

2 |M|2n +
d2n2 + 2d

|M| ≤ d2n2

|M| .

Using the same argument as for the adaptive chosen plaintext attack, we can save two rounds in schemes
with n > 3 by adding the bit rotation σ to all sub-blocks after the first and before the last round, so that we
need altogether only 2n rounds to ensure super-pseudorandomness, and the advantage of this scheme is

AdvCACPCA(d)(Πσ
n[F ∗

11, . . . , F
∗
(2n)n]) ≤ d2

2 |M|2n +
d2n2 + 2d

|M| ≤ d2n2

|M| .

8.4 Simple Scalable Scheme Based on IDEA

The scalable scheme in the previous section enables parallelization of the computation so that the ciphertext
of an r-round scalable scheme can be calculated in r steps computing all n round-functions in parallel in
each step. When the parallel computation is not possible, the ciphertext can be calculated in rn-steps.
Another solution is to design a scalable scheme which requires only one primitive function per round. An
example of such a scheme is depicted in Figure 8.10. In this section, we analyze this type of scheme, and
show how many rounds we need to ensure their pseudorandomness and super-pseudorandomness.

Similarly as in the previous scheme we enhanced the scheme by the permutation operation, since for
the even number of rounds we get the same characteristic as described in Distinguisher 8.3. Note that this
attack cannot be applied against this schemes with odd number of sub-blocks.

First, we again observe the input/output dependencies between individual parts.

Example 8.4.1 Consider a simple scalable scheme of IDEA with four parts. Let the input to the scheme be
(a1, a2, a3, a4) and denote the i-th part of the output block after the first r rounds by ari

+Fri(a1, a2, a3, a4).
The following table shows which part of the plaintext is on which position after the r-th round, and on which
input parts the function Fri depends. Note that for 1 < i < n, Fri = F(r−1)(i+1).

after 1 2 3 4
the round r i1 Fr1 i2 Fr2 i3 Fr3 i4 Fr4

1 2 1, 2 3 — 4 — 1 1, 2
2 3 1–3 4 — 1 1, 2 2 1–3
3 4 1–4 1 1, 2 2 1–3 3 1–4
4 1 1–4 2 1–3 3 1–4 4 1–4
5 2 1–4 3 1–4 4 1–4 1 1–4

Thus, the table shows that we need at least 5 rounds to get all output parts dependent on all input parts.

This example may be generalized to the following theorem.

110 CHAPTER 8. IDEA

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .

. . .

F ∗
1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ

a1 a2 a3 a4

a5

a6

a2n−1
a2n

an

b1 b2 b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1 bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 8.11: Modification of the simple scalable IDEA scheme

Theorem 8.4.2 Let the scalable IDEA scheme divide the input into n parts. Then it requires at least 2n−3
rounds to get all output parts dependent on all input parts.

Proof: After the first round, the first and the last output parts depend on the first and the second input
parts; all other output parts are in the plaintext form. After each following round, the first and the
last output block depend on one more input block coming after the block shift from the third part to
the second part. Thus, we need at least n − 1 rounds to get the first and the last block dependent on
all inputs. After that we need further n − 2 rounds to spread the dependency to the other n − 2 parts
of the input.

Consider now that an attacker obtains d plaintext/ciphertext pairs (xk , yk) with pairwise different plain-
texts such that xk = (ak1, . . . , akn). Consider two fixed plaintexts xk and xl, with k 6= l. If the plaintexts
are such that all differences between subsequent parts are in both plaintexts equal, i.e. for all 1 ≤ i ≤ n− 1

∆aki = ∆ali, (8.8)

there are two possible cases:

1. If ak1 = al1 then from (8.8) also all other aki = ali, and thus x1 = x2.

2. If ak1 6= al1, let al1 = ak1 + δ. Then from (8.8) we get that for all i, ali = aki + δ.

Since we assume all the plaintexts to be different, only the second case is relevant.
Let (bk1, . . . , bkn) be outputs of the first round as depicted in Figure 8.10. Then for all 1 < i < n − 1

∆bli = ∆ali = ∆aki = ∆bki, and

∆bl1 = al2 + F ∗(∆al1) − al3 = ak2 + δ + F ∗(∆ak1) − ak3 − δ = ∆bk1

Thus, the only difference may occur in ∆bk(n−1) 6= ∆bl(n−1), and then we have to wait for the following
n − 1 rounds until we get it as input of the round function.

Consider now that the permutation σ is placed on the output of the second part rather than of the first
one (see Figure 8.11) and the same plaintexts. Then for all 1 < i < n − 1

∆bli = ∆ali = ∆aki = ∆bki, and

∆bl(n−1) = aln − al1 − F ∗(∆al1) = akn + δ − ak1 − δ − F ∗(∆ak1) = ∆bk(n−1)

and ∆bk1 = ∆bl1 if and only if

σ (ak2 + F ∗(∆ak1)) − ak3 = σ (al2 + F ∗(∆al1)) − al3 = σ (ak2 + δ + F ∗(∆ak1)) − ak3 − δ

i.e. if

σ′ (ak2 + F ∗(∆ak1)) + ak2 + F ∗(∆ak1) = σ′ (ak2 + δ + F ∗(∆ak1)) + ak2 + δ + F ∗(∆ak1) − δ

σ′ (ak2 + F ∗(∆ak1)) = σ′ (ak2 + δ + F ∗(∆ak1))

8.4. SIMPLE SCALABLE SCHEME BASED ON IDEA 111

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .

. . .

F ∗
1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ

a1 a2 a3 a4

a5

a6

a2n−1
a2n

an

b1 b2 b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1 bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 8.12: Simple scalable IDEA scheme with the right block-rotation

From (8.1),

Pr[∆bk1 = ∆bl1] =
1

|M| . (8.9)

Thus, considering these inputs in the modified scheme, we have a high probability to get different inputs to
the round function for each fixed pair of plaintexts already after the first round.

Notation: The modified simple scalable scheme of IDEA enhanced by the permutation σ
(depicted in Figure 8.11) will be denoted by Πσ

1 , i.e. Πσ
1 : Mn × Mn → for a set M =

{0, 1, . . . , 2m − 1}. We will further consider only this simple scheme, and omit the word
“modified”.

Note that Theorem 8.4.2 holds also for the modified scheme. Further, we would achieve the same effect
of getting a different inputs to the round function already after the first round also by changing the block
rotation direction from left to right as depicted in Figure 8.12.

8.4.1 Adaptive Chosen Plaintext Attack

Consider a d-limited chosen plaintext attack against the simple scheme of IDEA with pairwise different
plaintext blocks x1, x2, . . . , xd. Let xk = (ak1, . . . , akn) and yk = (bk1, . . . , bkn). Consider two fixed
plaintexts xk and xl with k 6= l. In the previous section we already showed that choosing the plaintexts so
that they differ in the first or the second part, we get the input to the next round function different with a
high probability, even if the inputs to the first round function are equal. Thus, in order to get as many equal
inputs to the round functions as possible, the attacker has to choose the plaintext so that they differs only in
the last part, i.e. aki = ali for all 1 ≤ i < n and akn 6= aln. In that case we need n − 2 rounds to get the
first input to a round function different for these plaintexts (i.e. to get the different values from the last part
to the second one).

In general, let min[k, l] be defined as follows:

• If there is an i (1 ≤ i < n) such that ∆aki 6= ∆ali, then min[k, l] is the number of rounds necessary
to get the first difference to the input of a round function, i.e.

min[k, l] =

{

0 if i = 1

i − 2 if i > 1

• If ∆aki = ∆ali for all 1 ≤ i < n, then

min[k, l] = 0.

Let Sr
k denote the output of the (min[k, l] + r)-th round on the plaintext xk. The differences between the

subsequent parts are as follows:

∆Sr
k1 = σ

(

Sr−1
k2 + F ∗

r (∆Sr−1
k1)

)

− Sr−1
k1

∆Sr
k(n−1) = ∆Sr−1

kn − F ∗
r (∆Sr−1

k1)

112 CHAPTER 8. IDEA

and for all 1 < i < n
∆Sr

ki = ∆Sr−1
k(i+1).

Let P r[k, l, i] denote the probability that ∆Sr
ki = ∆Sr

li. Then for i ∈ {1, n− 1}

P r+1[k, l, i] ≤

1 if ∆Sr
k1 = ∆Sr

l1

1

|M| otherwise
(8.10)

and for 1 < i < n

P r+1[k, l, i] = Pr[∆Sr
k(i+1) = ∆Sr

l(i+1)] = P r[k, l, i + 1] (8.11)

The following lemma shows that after the n − 2 rounds necessary to ensure that we get distinct inputs
to a round function, the inputs to the next n − 3 rounds are distinct with a high probability.

Lemma 8.4.3 Consider 2n − 5 rounds of the simple scalable IDEA (performing σ and the block rotation
also after the last round). Let d be an integer, and τ be a transcript such that Xτ = (x1, x2, . . . , xd) with
pairwise different inputs, and Yτ = (y1, y2, . . . , yd). Let xk = (ak1, . . . , akn) and yk = (bk1, . . . , bkn).
Then for any fixed plaintexts xk and xl (k 6= l), the probability that their inputs to the r-th round function
for n − 1 ≤ r ≤ 2n − 5 are equal is not greater than n−2

|M| .

Proof: Let k 6= l be fixed, and j = min[k, l].

I. First, we analyze the case when there is an i (1 ≤ i < n) such that ∆aki 6= ∆ali.
First, consider the n − 2 rounds after the j-th one. (Note that if j = n − 2, we do not have to
take the last one into account.) The proof continues by induction.

a) From the definition of min[k, l], ∆S0
k1 6= ∆S0

l1, and from (8.10) we get that

P 1[k, l, i] ≤

1

|M| for i ∈ {1, n− 1}

1 otherwise.

b) Assume that after the (j + r)-th round, the probabilities are as follows:

P r[k, l, 1] ≤ r

|M|
P r[k, l, i] ≤ 1 for 1 < i < n − r

P r[k, l, i] ≤ i − n + r + 1

|M| for n − r ≤ i ≤ n − 1

After the next round we get from (8.11)

P r+1[k, l, i] = P r[k, l, i + 1] ≤

1 for 1 < i < n − r − 1

i + 2 − n + r

|M| for n − r − 1 ≤ i < n − 1

and for i ∈ {1, n − 1}:

P r+1[k, l, i] ≤ 1

|M| · 1 + 1 · p,

where p is the probability that the condition in (8.10) is satisfied, i.e.

p = Pr[∆Sr
k1 = ∆Sr

l1] = P r[k, l, 1]. (8.12)

Therefore, for i ∈ {1, n− 1}

P r+1[k, l, i] ≤ 1

|M| · 1 + 1 · r

|M| ≤
r + 1

|M| , (8.13)

and after the (j + n − 2)-nd round we have

P n−2[k, l, 1] ≤ n − 2

|M|

P n−2[k, l, i] ≤ i − 1

|M| for 2 ≤ i ≤ n − 1

8.4. SIMPLE SCALABLE SCHEME BASED ON IDEA 113

If j < n − 3, we need to perform some more rounds, however, for all
j + n − 2 < r ≤ n − 3 − j, P n−2+r−1[k, l, 2] = P n−2[k, l, r + 1] ≤ r

|M| . Thus,

p = Pr[∆Sn−2+r−1
k1 = ∆Sn−2+r−1

l1 ∧ ∆Sn−2+r−1
k2 = ∆Sn−2+r−1

l2]

≤ Pr[∆Sn−2+r−1
k2 = ∆Sn−2+r−1

l2] = P n−2+r−1[k, l, 2] ≤ r

|M| ,

we get

P n−2+r[k, l, 1] ≤ r + 1

|M| . (8.14)

In the last round r ≤ n − 3, and thus for all n − 2 ≤ r ≤ 2n − 5

P r[k, l, 1] ≤ n − 2

|M| .

II. The other case, when for all 1 ≤ i < n ∆aki = ∆ali is very similar to the previous one, with
the difference that

P 1[k, l, i]

≤ 1

|M| for i = 1

= 1 otherwise.

and

P r[k, l, 1] ≤ r

|M|
P r[k, l, i] ≤ 1 for 1 < i ≤ n − r

P r[k, l, i] ≤ i − n + r + 1

|M| for n − r < i ≤ n − 1

Hence, we need one more round (i.e. n − 1 rounds) to eliminate the last P r[k, l, 2] = 1. After
the (n − 1)-st round we get

P n−1[k, l, 1] ≤ n − 1

|M|

P n−1[k, l, i] ≤ i

|M| for 2 ≤ i ≤ n − 1

Then we need to add n − 4 rounds. Similarly as in the previous case, for all
j + n − 1 < r ≤ n − 4, P n−1+r−1[k, l, 2] = P n−1[k, l, r + 1] ≤ r+1

|M| , and thus

P n−1+r[k, l, 1] ≤ r + 2

|M| . (8.15)

After the last (i.e. (n − 4)-th) round, we again get

P r[k, l, 1] ≤ n − 2

|M|

for all n − 2 ≤ r ≤ 2n − 5.

Theorem 8.4.4 Let F ∗
1 , F ∗

2 , . . . , F ∗
2n−3 be independent perfect random functions on a group M, and let d

be an integer. Then

AdvCACPA(d)(Πσ
1 [F ∗

1 , . . . , F ∗
2n−3] ≤

d2n2 + 1

2 |M| .

Proof: A d-limited known-plaintext attack distinguisher has access to d plaintexts x1, x2, . . . , xd and
corresponding ciphertexts y1, y2, . . . , yd. When the oracle implements the IDEA scheme, the
ciphertexts are calculated as depicted in Figure 8.13.

114 CHAPTER 8. IDEA

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>

...
...

...
...

...

...
...

...
...

...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L
R
L′

R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .

. . .

. . .

. . .

. . .

. . .

F ∗
1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ

σ

a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1 ak2 ak3 ak4

ak(2n−1)

ak(2n)

akn

bk1 bk2 bk3 bk4

bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)

bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1 S1

k2 S1
k3 S1

k4 S1
kn

S2
k1 S2

k2 S2
k3 S2

k4 S2
kn

S3
k1 S3

k2 S3
k3 S3

k4 S3
kn

Sn
k1 Sn

k2 Sn
k3 Sn

k4 Sn
kn

F ∗
n−1

Figure 8.13: The last n − 1 rounds of an r-round simple scalable IDEA scheme

We may assume that all inputs in X to the oracle are pairwise different. Let
Y = {Y = (y1, . . . , yd) ∈ M|∀k : yk = (bk1, . . . , bkn) and ∀k 6= l : ∆bk1 6= ∆bl1}. Consider any
fixed value of Y ∈ Y .

1. If n is even then S1
k = yk if and only if

bk1 = S1
k1 = S2

k1 + F ∗
1 (∆S2

k1) = S2
k1 + F ∗

1 (∆bk1)

∆bk1 = ∆S1
k1 = ∆S2

k1 = σ
(

S3
k2 + F ∗

2 (∆S3
k1)
)

− S3
k3

bk3 = S1
k3 = Sn

k1 + F ∗
n−1(∆Sn

k1)

∆bk3 = ∆S1
k3 = ∆Sn−1

kn − F ∗
n−2(∆Sn−1

k1)

bk5 = S1
k5 = Sn−2

k1 + F ∗
n−3(∆Sn−2

k1)

∆bk5 = ∆S1
k5 = ∆Sn−3

kn − F ∗
n−4(∆Sn−3

k1)

. . .

bk(n−1) = S1
k(n−1) = S4

k1 + F ∗
3 (∆S4

k1)

∆bk(n−1) = ∆S1
k(n−1) = ∆S3

kn − F ∗
2 (∆S3

k1)

8.4. SIMPLE SCALABLE SCHEME BASED ON IDEA 115

Therefore,

∆bk1 + ∆bk(n−1) = σ
(

S3
k2 + F ∗

2 (∆S3
k1)
)

− S3
k3 + ∆S3

kn − F ∗
2 (∆S3

k1)

= ∆S3
k2 + ∆S3

kn + σ′
(

S3
k2 + F ∗

2 (∆S3
k1)
)

and we can define an event Ek as follows:

Ek =
[

F ∗
1 (∆S2

k1) = bk1 − S2
k1∧

F ∗
2 (∆S3

k1) = σ′−1 (
∆bk1 + ∆bk(n−1) − ∆S3

k2 − ∆S3
kn

)

− S3
k2∧

∀1 < i ≤ n

2
: F ∗

2i−1(∆S2i
k1) = bi(n−2i+3) − S2i

k1∧

∀1 < i <
n

2
: F ∗

2i(∆S2i+1
k1) = ∆S2i+1

kn − ∆bk(n−2i+3)

]

There is a solution for F ∗
2 if and only if the following condition (denote it by C1) is satisfied:

For all k,

∆bk1 + ∆bk(n−1) − S3
k2 + S3

k3 − S3
kn + S3

k1

= ∆bk1 + ∆bk(n−1) − S4
k3 + S4

k4 − S4
k1 − F3(∆S4

k1) + σ
(

S4
k2 + F3(∆S4

k1)
)

= ∆bk1 + ∆bk(n−1) − ∆S4
k1 − ∆S4

k3 + σ′
(

S4
k1 + F3(∆S4

k1)
)

∈ σ′(M).

From (8.3),

Pr[¬C1] = Pr
[

∆bk1 + ∆bk(n−1) − ∆S3
k2 − ∆S3

kn /∈ σ′(M)
]

≤ 2

|M| . (8.16)

2. Similarly, if n is odd then S1
k = yk if and only if

bk1 = S1
k1 = S2

k1 + F ∗
1 (∆S2

k1) = S2
k1 + F ∗

1 (∆bk1)

∆bk1 = ∆S1
k1 = ∆S2

k1 = σ
(

S3
k2 + F ∗

2 (∆S3
k1)
)

− S3
k3

bk3 = S1
k3 = Sn

k1 + F ∗
n−1(∆Sn

k1)

∆bk3 = ∆S1
k3 = ∆Sn−1

kn − F ∗
n−2(∆Sn−1

k1)

. . .

bk(n−2) = S1
k(n−2) = S5

k1 + F ∗
4 (∆S5

k1)

∆bk(n−2) = ∆S1
k(n−2) = ∆S4

kn − F ∗
3 (∆S4

k1)

bkn = S1
kn = S3

k1 + F ∗
2 (∆S3

k1)

Therefore,

∆bk1 − bkn = σ′
(

S3
k2 + F ∗

2 (∆S3
k1)
)

− S3
k1 + ∆S3

k2

and we can define an event Ek as follows:

Ek =
[

F ∗
1 (∆bk1) = bk1 − S2

k1∧

F ∗
2 (∆S3

k1) = σ′−1 (
∆bk1 − bkn + S3

k1 − ∆S3
k2

)

− S3
k2∧

∀1 < i ≤
⌊n

2

⌋

: F ∗
2i(∆S2i+1

k1) = bk(n−2i+2) − S2i+1
k1 ∧

∀1 < i <
⌊n

2

⌋

: F ∗
2i−1(∆S2i

k1) = ∆S2i
kn − ∆bk(n−2i+2)

]

There is a solution for F ∗
2 if and only if the following condition (C1) is satisfied: For all k

∆bk1 − bkn + S3
k1 − S3

k2 + S3
k3

= ∆bk1 − bkn + σ
(

S4
k2 + F ∗

3 (∆S4
k1)
)

− S4
k3 + S4

k4 ∈ σ′(M)

and thus

Pr[¬C1] = Pr
[

∃k : ∆bk1 − bkn + S3
k1 − ∆S3

k2 /∈ σ′(M)
]

≤ 1

|M| . (8.17)

116 CHAPTER 8. IDEA

All ∆bk1 are pairwise different. If also ∆Si
k1 are pairwise different for all 3 ≤ i ≤ n and all

arguments for σ′−1 have a preimage in M, then

Pr[∀k : Ek] ≥ 1

|M|(n−1)d
≥ 1

|M|nd
.

Let C2 be the following conditions:

C2 =
[

∀ k 6= l ∀ 3 ≤ i ≤ n : ∆Si
k1 6= ∆Si

l1

]

If both C1 and C2 hold, then

[

Πσ
1 [F ∗

1 , . . . , F ∗
2n−3]

]d

Xτ ,Yτ
≥ 1

|M|nd
≥
(

1 − d2

2 |M|n
)

[C∗]dX,Y

From (8.16) and (8.17), Pr[¬C1] ≤ 2
|M| ; and from Lemma 8.4.3, Pr[¬C2] ≤ d2(n−2)2

2 |M| . Thus, we can
use Corollary 3.1.4 with the following parameters:

1. ε1 = d2

2 |M| (since Pr[∃ k 6= l : ∆bk1 6= ∆bl1 ≤ d2

2 |M|),

2. ε2 = d2

2 |M|n , and

3. ε3 = d2(n−2)2+4d
2 |M| ,

and we get

AdvCACPA(d)(Πσ
1 [F ∗

1 , . . . , F ∗
2n−3]) ≤

d2

2 |M| +
d2

2 |M|n +
d2(n − 2)2 + 4d

2 |M|

≤ d2n2 + 1

2 |M|

Note that for the simplified scalable scheme of IDEA we achieved the minimal number of rounds —
see Theorem 8.4.2.

8.4.2 Adaptive Chosen Plaintext-Ciphertext Attack

Here we evaluate the number of rounds for which the simple scalable IDEA achieves the super-pseudoran-
domness.

Theorem 8.4.5 Let F ∗
1 , F ∗

2 , . . . , F ∗
3n−5 be independent perfect random functions on a group M, and let d

be an integer. Then

AdvCACPCA(d)(Πσ
1 [F ∗

1 , . . . , F ∗
3n−5] ≤

d2n2 + 1

2 |M| .

Proof: Similarly as for the basic scheme of IDEA, we may use the proof of Theorem 8.4.4, adding a
new condition

C3 = [∀ k 6= l : ∆πk1 6= ∆πl1] ,

where πk = (Πσ
1)

−1
[F ∗

2n−2, . . . F
∗
3n−5](yk). The probability that C3 does not hold may be analyzed

in the same way as in Lemma 8.4.3, and

Pr[¬C3] ≤
d2(n − 2)

2 |M| .

Thus, we can use Corollary 3.1.6 with the following parameters:

1. ε1 = d2

2 |M|n , and

2. ε2 = d2(n−2)2+d2(n−2)+4d
2 |M| ,

and we get

AdvCACPCA(d)(Πσ
1 [F ∗

1 , . . . , F ∗
3n−5]) ≤

d2

2 |M|2n +
d2(n − 2)2 + d2(n − 2) + 4d

2 |M| ≤ d2n2 + 1

2 |M|

8.5. CONCLUSIONS 117

8.5 Conclusions

In this chapter, we examined three schemes based on the IDEA cipher — the basic scheme of IDEA, and
two of its scalable variants — with emphasis on their pseudorandomness and super-pseudorandomness.

Each of the schemes divides the input into several parts. The basic scheme of IDEA uses two parts of
the same size. The scalable schemes generalize its concept for an even number (the scalable scheme) or
any number (the simple scalable scheme) of parts of the same size as in the basic IDEA scheme. Assume
that the parts are from a group M. Then for a d �

√

|M|, we can summarize the results of this chapter as
follows:

Basic scheme of IDEA

For the basic scheme of IDEA dividing the plaintext blocks into two equally large parts from a group M:

• 2 rounds are secure against the known plaintext attack
(AdvCKPA(d)(Λσ[F ∗

1 , F ∗
2]) ≤ d2+d+1

|M|);

• 2 rounds are not secure against the chosen plaintext attack;

• 3 rounds are secure against the adaptive chosen plaintext attack
(AdvCACPA(d)(Λσ [F ∗

1 , F ∗
2 , F ∗

3]) ≤ d2+d+1
|M|);

• 4 rounds are secure against the adaptive chosen plaintext-ciphertext attack
(AdvCACPCA(d)(Λσ [F ∗

1 , F ∗
2 , F ∗

3 , F ∗
4]) ≤ d2+d+1

|M|).

Scalable scheme of IDEA

For the scalable scheme of IDEA dividing the plaintext blocks into 2n equally large parts from a group M:

• n − 1 rounds are not secure against the chosen plaintext attack;

• n + 2 rounds are secure against the adaptive chosen plaintext attack

(AdvCACPA(d)(Πσ
n[F ∗

11, . . . , F
∗
(n+2)n] ≤ d2(n+1)2

2 |M|);

• 2n + 2 rounds are secure against the adaptive chosen plaintext-ciphertext attack
(AdvCACPCA(d)(Πσ

n[F ∗
11, . . . , F

∗
(2n+2)n] ≤ d2n2

|M|).

Modifying the scheme so that the bit rotation permutation σ is performed in each sub-block of the first and
the second to last round, we may improve the schemes with n > 2 (i.e. with at least 6 parts) as follows:

• n + 1 rounds are secure against the adaptive chosen plaintext attack;

• 2n rounds are secure against the adaptive chosen plaintext-ciphertext attack.

Simple scalable scheme of IDEA

For the simple scalable schemes of IDEA dividing the plaintext blocks into n equally large parts from a
group M:

• 2n − 4 rounds are not secure against the chosen plaintext attack;

• 2n − 3 rounds are secure against the adaptive chosen plaintext attack
(AdvCACPA(d)(Πσ

1 [F ∗
1 , F ∗

2 , . . . , F ∗
2n−3] ≤ d2n2+1

2 |M|);

• 3n − 5 rounds are secure against the adaptive chosen plaintext-ciphertext attack
(AdvCACPCA(d)(Πσ

1 [F ∗
1 , F ∗

2 , . . . , F ∗
3n−5] ≤ d2n2+1

2 |M| .).

Scalability of IDEA through primitives

Both the scalable schemes of IDEA discussed above scale the original IDEA scheme through the structure.
Here we shortly discuss its scalability through primitives.

The round function of the original IDEA scheme is depicted in Figure 8.14. It is based on the design
concept of mixing operations from different algebraic groups. The round function has a 2m-bit input, which
is divided into two equally large parts (each of m bits). The � operation is the addition of m-bit integers
modulo 2m, and � is the multiplication of integers from the set {1, 2, . . . , 2m} modulo 2m + 1 (with 2m

represented by zero). However, the multiplication operation requires 2m + 1 to be a prime, which is only

118 CHAPTER 8. IDEA

PSfrag replacements

xi

xi+1

xi−1

yi

yi+1

yi−1

C
C−1

>
...

a)
b)

a − 1
a + 1

L0

R0

Li

Ri

Li−1

Ri−1

Ln

Rn

F1

Fi

Fn

F4

L R

L′ R′

F
Lk

Rk

L′
k

R′
k

Sk

Tk

Uk

Vk

F ∗
1

F ∗
2

F ∗
3

F ∗
4

H
S
P

rotR
H ′

G
k
a)
b)
c)
d)
e)
f)

H∗
1

S∗
1

P ∗
1

H∗
2

S∗
2

P ∗
2

H∗

S∗

P ∗

a
b ⊕ ∆
c ⊕ ∆

d
e
h
p

b ⊕ s1 ⊕ ∆
c ⊕ s2 ⊕ ∆

d ⊕ s3

e ⊕ s4

(s1, s2, s3, s4)

S∗

P ∗

T ∗
1

T ∗
2

T ∗
3

T ∗

T ∗
n−1

T ∗
n

T ∗
n+1

T1

T2

Tn

m
2m

. . .
F ∗

1

F ∗
2

F ∗
3

F ∗
4

KA

KB

KC

KD

KE

KF

A
B
C
D
A′

B′

C ′

D′

σ
a1

a2

a3

a4

a5

a6

a2n−1
a2n

an

b1

b2

b3

b4

b5

b6

b2n−2
b2n−1

b2n

bn−1
bn

F ∗
n

F ∗

a
b
c
d
e
f

a + δ1

b + δ1

c + δ2

d + δ2

e + δ2

f + δ2

ak1

ak2

ak3

ak4
ak(2n−1)

ak(2n)

akn

bk1

bk2

bk3

bk4
bk(2n−1)

bk(2n−2)
bk(2n)

bk(n−1)
bkn

F ∗
11

F ∗
12

F ∗
13

F ∗
1n

F ∗
21

F ∗
22

F ∗
23

F ∗
2n

F ∗
31

F ∗
32

F ∗
33

F ∗
3n

Sk1

Sk2

Sk3

Sk4
Sk(n−1)

Skn

Tk1

Tk2

Tk3

Tk4
Tk(n−1)

Tkn

Uk1

Uk2

Uk3

Uk4
Uk(n−1)

Ukn

Vk1

Vk2

Vk3

Vk4
Vk(n−1)

Vkn

S1
k1

S1
k2

S1
k3

S1
k4

S1
kn

S2
k1

S2
k2

S2
k3

S2
k4

S2
kn

S3
k1

S3
k2

S3
k3

S3
k4

S3
kn

Sn
k1

Sn
k2

Sn
k3

Sn
k4

Sn
kn

F ∗
n−1

Figure 8.14: Round function of the original IDEA scheme

the case for m ∈ {1, 2, 4, 8, 16}. For the higher powers of 2 (m ∈ {32, 64, 128, 256}), 2m + 1 is no more
a prime [6], thus we may use this structure only for the IDEA scheme with the block size up to 64 bits
which is nowadays considered to be insufficient. In order to be able to scale the scheme through primitives
we need another operation for �. One possible solution is to generate it from the key using a random bit
generator and table representation similarly as the S-boxes of the TST cipher (see Section 7.1). Security
of such a round function depends on the quality of the random bit generator. Further, we have to take into
account that the inner structure of the round function is symmetric, and the � operation is thus represented
by a huge table of 2m × m bits, where 4m is the size of the input to the overall cipher.

Chapter 9

Comparison of the Analyzed Schemes

In this thesis, we examined three schemes: Feistel networks, TST, and IDEA. We evaluated the advantage
of different attacks against these schemes. Here we summarize the obtained results, and discuss the ideal
number of rounds for each scheme with respect to the individual attacks and a chosen upper bound on the
advantage. We already employed this approach for the Feistel networks in Section 3.9. To evaluate the ideal
number of rounds assuming the upper-bound on the advantage 2−l we use Theorem 2.4.4, which gives:

AdvCATK(d)(C[F ∗
11, . . . , F

∗
1n, . . . , F(tk)1, . . . , F

∗
(tk)n]) ≤ 1

2
(2a)

k ≤ 2−l

with the following parameters:

• F ∗
11, . . . , F

∗
1n, . . . , F(tk)1, . . . , F

∗
(tk)n are independent perfect random functions;

• C is one of the mentioned iterative ciphers

• n is number of primitives used per round (e.g. the Feistel network has only one primitive function per
round, on the other hand the basic TST has three) — the r-th round uses the functions F ∗

r1, . . . , F
∗
rn

as primitives ;

• ATK is a class of attacks;

• d is the number of plaintext/ciphertext pairs an attacker may obtain in the attack (the size of the
attack);

• t is the minimal number of rounds to achieve security against the class of attacks (e.g. 3 for ACPA
against the Feistel network — see Theorem 3.4.8);

• tk is the overall number of rounds;

• 0 ≤ a < 1 is the upper-bound on the advantage of an attack from the class of attacks ATK
accessing at most d plaintext/ciphertext pairs against the scheme C consisting of t rounds (i.e.
a = AdvCATK(d)(C[F ∗

1 , . . . , F ∗
t])).

Considering these parameters we need at least tk rounds where

k ≥ l − 1

− lg a − 1

to achieve the requested limit on the advantage. We will further compare the schemes on the basis of a
block size of the 128 bits, which is nowadays the standard size; the size of attack d = 2 (which ensures also
security against the differential and linear analysis); and the limit for the advantage 2−128 (the selection of
this parameter is discussed in Section 3.9).

Feistel network

For a Feistel network which divides the input in two parts, of which the smaller one has m bits:

• The threshold number of rounds for the pseudorandomness is 3 and for the super-pseudorandomness
4, when d � 2m/2. [Theorem 3.4.8 and 3.8.4]

• The ideal number of rounds for achieving an advantage of less than 2−l is b l−1
m−1−2 lg d with b = 3 for

the pseudorandomness and 4 for the super-pseudorandomness, when d � 2m/2.

• Considering a balanced Feistel network with m = 64 and d = 2, we get 7 rounds for the pseudoran-
domness and 9 rounds for the super-pseudorandomness.

• Considering an unbalanced Feistel network with m = 16 and d = 2, we get 30 rounds for the
pseudorandomness and 40 rounds for the super-pseudorandomness.

119

120 CHAPTER 9. COMPARISON OF THE ANALYZED SCHEMES

Basic TST

For a basic TST scheme which divides the input in two parts, with the m-bit left part:

• The threshold number of rounds for the pseudorandomness is 1 and for the super-pseudorandomness
2, when d � 2m/2. [Theorem 7.2.3 and 7.2.6]

• The ideal number of rounds for achieving an advantage of less than 2−l is b l−1
m−1−2 lg d with b = 1 for

the pseudorandomness and 2 for the super-pseudorandomness, when d � 2m/2.

• With m = 16 and d = 2, we get 10 rounds for the pseudorandomness and 20 rounds for the super-
pseudorandomness.

Simplified TST

For a simplified TST scheme which divides the input in two parts, with the m-bit left part:

• The threshold number of rounds is 2 for both the pseudorandomness and super-pseudorandomness,
when d � 2m/2. [Theorem 7.2.5]

• The ideal number of rounds for achieving an advantage of less than 2−l is 2 l−1
m−1−2 lg d for both the

pseudorandomness and super-pseudorandomness, when d � 2m/2.

• With m = 16 and d = 2, we get 20 for both the pseudorandomness and super-pseudorandomness.

Basic scheme of IDEA

For a basic IDEA scheme which divides the input in two m-bit parts:

• The threshold number of rounds is 3 for the pseudorandomness and 4 for the super-pseudorandom-
ness, when d � 2m/2. [Theorem 8.2.4 and 8.2.5]

• The ideal number of rounds for achieving an advantage of less than 2−l is b l−1
m−1−2 lg(d+1) with b = 3

for the pseudorandomness and 4 for the super-pseudorandomness, when d � 2m/2.

• With m = 64 and d = 2, we get 7 rounds for the pseudorandomness and 9 rounds for the super-
pseudorandomness.

Scalable scheme of IDEA

For a scalable IDEA scheme which divides the input in 2n m-bit parts:

• The threshold number of rounds for the pseudorandomness is n + 2 and 2n + 2 for the super-
pseudorandomness, when d � 2m/2, which gives 4 and 6 respectively. [Theorem 8.3.5 and 8.3.6]

• The ideal number of rounds for achieving an advantage of less than 2−l is 4 l−1
m−2 lg d−2 lg(n+1) for the

pseudorandomness and 6 l−1
m−1−2 lg d−2 lg n for the super-pseudorandomness, when d � 2m/2.

• With m = 32, n = 2 (two sub-blocks, i.e. 4 parts) and d = 2, we get 19 rounds for the pseudoran-
domness and 29 rounds for the super-pseudorandomness.

Simple scalable scheme of IDEA

For a simple scalable IDEA scheme which divides the input in n m-bit parts:

• The threshold number of rounds for the pseudorandomness is 2n − 3 and 3n − 5 for the super-
pseudorandomness, when d � 2m/2, which gives 5 and 7 respectively. [Theorem 8.4.4 and 8.4.5]

• The ideal number of rounds for achieving an advantage of less than 2−l is b l−1
m−2 lg d−2 lg n with b = 5

for the pseudorandomness and 7 for the super-pseudorandomness, when d � 2m/2.

• With m = 32, n = 4 and d = 2, we get 23 rounds for the pseudorandomness and 32 rounds for the
super-pseudorandomness.

121

Summary

The numbers of rounds ensuring the pseudorandomness and the super-pseudorandomness of the above
mentioned schemes are summarized in the following table:

pseudorandomness super-pseudorandomness
scheme threshold number ideal number threshold number ideal number

of rounds of rounds of rounds of rounds
balanced Feistel 3 7 4 9
unbalanced Feistel 3 30 4 40
basic TST 1 10 2 20
simplified TST 2 20 2 20
IDEA 3 7 4 9
scalable IDEA 3 19 6 29
simple scalable IDEA 5 23 7 32

Note that purely comparing the number of rounds presented in the table is not sufficient for arbitration
which cipher is better for implementation. We have to take into account also the overall number of primitives
and their computational cost. For example, the original scheme of IDEA requires less rounds, but inputs and
outputs of its primitives are twice as large as those of the scalable schemes. The computational cost depends
also on the number of primitives in a scheme. For example, the scalable IDEA uses 2 functions per round,
thus altogether 38 for pseudorandomness and 58 functions for super-pseudorandomness in the ideal case,
while the simple scalable scheme uses only one function per round, i.e. 23 for pseudorandomness and 32
for super-pseudorandomness, which is significantly less. Also note that the bounds given by Theorem 2.4.4
are not tight, thus for the ideal (super-)pseudorandomness a smaller number of rounds might be sufficient
(see also Section 7.7).

122 CHAPTER 9. COMPARISON OF THE ANALYZED SCHEMES

Chapter 10

Summary

Provable security and scalability are two desirable properties of a cipher. The first one ensures that it fulfills
our expectations on securing encrypted data. The scalability makes the operation of the cipher easier,
enabling adaptation of the level of security to the current requirements just by changing some parameters.
In this thesis we discuss provable security of three scalable schemes (Feistel networks, TST and IDEA) in
the random oracle model.

The first part of the thesis is devoted to the foundations of provable security. It introduces the security
model based on two main concepts: the random oracle model and indistinguishability; and builds mathe-
matical tools enabling to evaluate security of a cipher in this model. We discuss security against general
attacks with emphasis on the adaptive chosen plaintext attack and the adaptive chosen plaintext-ciphertext
attack, because ciphers resistant to these attacks were defined by Luby and Rackoff in [14] as pseudorandom
and super-pseudorandom respectively. The proof technique is illustrated by the analysis of the unbalanced
Feistel networks against these attacks. Besides the general attacks, we examine also composed attacks,
which try to build a stronger attack based on some less efficient ones. Popular examples of the composed
attacks are the differential and linear cryptanalysis, which are discussed separately. The first part concludes
with the analysis of the operational modes of ciphers. They are very important for practical encryption,
since in the real employment of a cipher the encrypted data are usually much longer than the basic block of
the cipher. We address security of the modes defined by the FIPS 81 standard for DES, and one modification
suggested by Diffie.

The second part of the thesis deals with the provable security of scalable ciphers. Two schemes are an-
alyzed using the tools introduced in the first part. The first one, TST, demonstrates the scalability through
primitives of the scheme; the other one, IDEA, the scalability through the structure of the scheme. Using
the TST cipher we illustrate that careful selection of primitives can make the cipher provable secure also
without full analysis. Our analysis focuses on one of the primitive functions — a hash function — and
shows how slight changes in the function can influence the security of the whole scheme. Since the prim-
itive function of the IDEA cipher is not scalable over 32 bits, we focus our analysis to scalability through
structure. We introduce two schemes — one with parallel and the other one with serial structure — and
evaluate their security. The second part closes with comparison of the schemes discussed in the thesis.

123

124 CHAPTER 10. SUMMARY

Appendix A

Notation

1(X,Y)∈A 1 if (X, Y) ∈ A, 0 otherwise

Adv
ATK(d)
D (F1, F2) advantage of the distinguisher D realizing attack from the class of

attacks ATK distinguishing between functions F1 and F2 [page 8]
AdvCATK(d)(C) advantage of the best distinguisher realizing attack from the class of

attacks ATK against the cipher C (distinguishing between C and C∗)
[page 8]

AdvC
ATK(d)
D (C|A) advantage of the distinguisher D realizing attack from the class of attacks

ATK against the cipher C if the oracle queries and responses satisfy the
condition A [page 9]

AdvCATK(d|q)(Mode[C]) advantage of the best distinguisher for the cipher C used in a particular
mode Mode and a perfect cipher querying an oracle with up to q
messages containing together up to d blocks [page 55]

AdvFATK(d)(F) advantage of the best distinguisher realizing attack from the class of
attacks ATK against the function F (distinguishing between F and F ∗)
[page 8]

AdvF
ATKD(d)
D (F |A) advantage of the distinguisher D realizing attack from the class of attacks

ATK against the function F if the oracle queries and responses satisfy the
condition A [page 9]

ATK class of attacks
ATK+ induced attack against a function F if there is no inversion of the

function calculated during an attack from the class ATK [page 14]
ATK− induced attack against a function F if there is only the inversion of the

function (F−1) calculated during an attack from the class ATK [page 14]
ATK± induced attack against a function F if there both F and F−1 are

calculated during an attack from the class ATK [page 14]
ATKF induced attack against the function F if the usage of the function is not

determined [page 14]
C cipher (random permutation) [page 10]
C∗ perfect cipher (perfect random permutation)[page 7]
DecCd(C) decorrelation bias of the cipher C according to the distance D

[page 12]
DecF d(F) decorrelation bias of the function F according to the distance D [page 12]
F random function [page 10]
F ∗ perfect random function [page 7]
[F]d d-wise distribution matrix of the function F [page 10]
lg(x) log2(x)
mk m(m − 1)(m − 2) · · · (m − k + 1)
M message space
M+ M\ {0}
M∗

⋃k
i=0 Mk

Mk {(x1, . . . , xk)|∀ 1 ≤ i ≤ k : xi ∈ M}
|M| the number of elements of M
msb(x) the most significant bit of x
SL left half of the block S [page 92]

125

126 APPENDIX A. NOTATION

SR right half of the block S [page 92]
Sr

k = (Sr
k1, S

r
k2, . . . , S

r
kn) output of the r-th round (if r = 0 input) of a (simple) scalable IDEA for

the k-the plaintext
Xτ sequence of plaintexts which the distinguisher can extract from the trace τ

(sequence of plaintexts occurred during an attack) [page 19]
Yτ sequence of ciphertexts which the distinguisher can extract from the trace

τ (sequence of ciphertexts occurred during an attack) [page 19]
∆S SL − SR [page 92]
∆Si for a block S = (s1, s2, . . . , sn): si − si+1 if i < n, or sn − s1 if i = n

[page 100]
∆Sr

ki ∆Sr
ki = Sr

ki − Sr
k(i+1)

Θ simplified TST scheme [page 74]
Λσ scheme of IDEA [page 92]
πx1,y1([F]dX,Y) sub-matrix of the decorrelation matrix obtained by fixing the first

plaintext/ciphertext pair to (x1, y1) (see also Definition C.5)
Πσ

n scalable scheme of IDEA [page 101]
Πσ

1 simple scalable scheme of IDEA [page 111]
Φ basic TST scheme [page 74]
Ψ unbalanced Feistel network scheme
Ω composed scheme [page 14]
τ trace, i.e. sequence of all queries and responses occurred during an attack

[page 19]

Appendix B

Acronyms

ACCA Adaptive Chosen Ciphertext Attack
ACPA Adaptive Chosen Plaintext Attack
ACPCA Adaptive Chosen Plaintext-Ciphertext Attack
AES Advanced Encryption Standard
CA Combined Attack
CBC Cipher Block Chaining Mode
CCA Chosen Ciphertext Attack
CFB Cipher Feedback Mode
CPA Chosen Plaintext Attack
CPCA Chosen Plaintext-Ciphertext Attack
CRT Counter Mode
DCA Differential Cryptanalysis
DES Data Encryption Standard
ECB Electronic Codebook Mode
IA Iterated Attack
IDEA International Data Encryption Standard
IV Initialization Vector
KPA Known Plaintext Attack
LCA Linear Cryptanalysis
MSB Most Significant Bit
OFB Output Feedback Mode
PES Proposed Encryption Standard
ROM Random Oracle Model
SBC Scalable Block Cipher
UFN Unbalanced Feistel Network

127

128 APPENDIX B. ACRONYMS

Appendix C

Matrix Norms

The decorrelation theory uses norms on sets of matrices as a tool for calculating the distance between
functions. This distance determines the advantage (strength) of an attack against a cryptographic function
or permutation. Here we summarize the norms used in Chapter 3 for evaluating advantage of different types
of attacks, and prove their properties.

Let A be a set of matrices. A mapping from A to the set of real numbers is a norm if for all matrices
A, B ∈ A for which the particular operation makes sense the following properties hold:

1. ‖A‖ = 0 if and only if A = 0,

2. ‖u · A‖ = |u| · ‖A‖, for any real number u,

3. ‖A + B‖ ≤ ‖A‖ + ‖B‖.

A norm is a matrix norms [26], if

4. ‖A × B‖ ≤ ‖A‖ · ‖B‖

Example C.1 Let A be a set of all matrices. A mapping N f
∞ : A → R such that for all A ∈ A, N f

∞ (A) =

maxX,Y
|AX,Y |
f(X,Y) (with the convention that a/0 = 0 for any a) is a norm.

Proof:

1. Nf
∞ ([0]) = maxX,Y

|0|
f(X,Y) = 0

2. Nf
∞ (u · A) = maxX,Y

|[u·A]X,Y |
f(X,Y) = maxX,Y

|u·AX,Y |
f(X,Y) = |u| ·maxX,Y

|AX,Y |
f(X,Y) = |u| ·Nf

∞ (A)

3. Nf
∞ (A + B) = maxX,Y

|[A+B]X,Y |
f(X,Y) = maxX,Y

|AX,Y +BX,Y |
f(X,Y) ≤

maxX,Y

{

|AX,Y |
f(X,Y) +

|BX,Y |
f(X,Y)

}

≤ maxX,Y
|AX,Y |
f(X,Y) + maxX,Y

|BX,Y |
f(X,Y) = Nf

∞ (A) + Nf
∞ (B)

Example C.2 Let A be a set of all matrices. A mapping ‖·‖1 : A → R such that for all A ∈ A, ‖A‖1 =
∑

X,Y |AX,Y | is a matrix norm.

Proof:

1. ‖[0]‖1 =
∑

X,Y 0 = 0

2. ‖u · A‖1 =
∑

X,Y |[u · A]X,Y | =
∑

X,Y |u · Ax,y| = |u|∑X,Y |Ax,y| = |u| · ‖A‖1

3. ‖A + B‖1 =
∑

X,Y |[A + B]X,Y | =
∑

X,Y |Ax,y + Bx,y| ≤
∑

X,Y |Ax,y| +
∑

X,Y |Bx,y| =
‖A‖1 + ‖B‖1

4. ‖A × B‖1 =
∑

X,Y |[A × B]X,Y | =
∑

X,Y |
∑

k AX,k · Bk,Y | ≤
∑

X,Y,k |AX,k · Bk,Y | =
∑

X,Y,k |AX,k| · |Bk,Y | =
∑

X,k |AX,k| · (
∑

Y |Bk,Y |) ≤∑X,k |AX,k | · ‖B‖1 = ‖A‖1 · ‖B‖1

Example C.3 Let A be a set of all matrices. A mapping |||·|||∞ : A → R such that for all A ∈ A,
|||A|||∞ = maxX

∑

Y |AX,Y | is a matrix norm.

129

130 APPENDIX C. MATRIX NORMS

Proof:

1. ∀X :
∑

Y |[0]X,Y | =
∑

Y 0 = 0

2. ∀X :
∑

Y |[u · A]X,Y | =
∑

Y |u · Ax,y| = |u|∑Y |Ax,y|
∀X1, X2 :

∑

Y |AX1,Y | ≤∑Y |AX2,Y | ⇔ |u|∑Y |AX1,Y | ≤ |u|∑Y |AX2,Y |
Therefore |||u · A|||∞ = |u| · |||A|||∞

3. ∀X :
∑

Y |[A + B]X,Y | =
∑

Y |Ax,y + Bx,y| ≤
∑

Y |Ax,y| +
∑

Y |Bx,y| ≤
|||A|||∞ + |||B|||∞

4. ∀X :
∑

Y |[A × B]X,Y | =
∑

Y |
∑

k AX,k · Bk,Y | ≤
∑

Y

∑

k |AX,k · Bk,Y | =
∑

k

∑

Y |AX,k| · |Bk,Y | =
∑

k |AX,k | · (
∑

Y |Bk,Y |) ≤∑k |AX,k | · |||B|||∞ ≤
|||A|||∞ · |||B|||∞

Example C.4 Let A be a set of all matrices. A mapping ‖·‖m : A → R such that for all A ∈ A,
‖A‖m = maxk maxx1,...,xk

maxyk+1,...,yd

∑

xk+1,...,xd

∑

y1,...yk
|AX,Y | is a matrix norm.

Proof: For short, X(k) will denote the left k entries of X (x1, . . . , xk), and X(d−k) will denote the right
d − k entries of X (xk+1, . . . , xd).

1. ∀k, X(k), Y (d−k) :
∑

X(d−k)

∑

Y (k) |[0]X,Y | =
∑

X(d−k)

∑

Y (k) 0 = 0

2. ∀k, X(k), Y (d−k) :
∑

X(d−k)

∑

Y (k) |[u · A]X,Y | =
∑

X(d−k)

∑

Y (k) |u · Ax,y| =
|u|
∑

X(d−k)

∑

Y (k) |Ax,y|
Therefore,
maxk maxX(k) maxY (d−k)

∑

X(d−k)

∑

Y (k) |[u · A]X,Y | =
|u| · maxk maxX(k) maxY (d−k)

∑

X(d−k)

∑

Y (k) |Ax,y|
and ‖u · A‖m = |u| · ‖A‖m.

3. ∀k, X(k), Y (d−k) :
∑

X(d−k)

∑

Y (k) |[A + B]X,Y | =
∑

X(d−k)

∑

Y (k) |Ax,y + Bx,y| ≤
∑

X(d−k)

∑

Y (k) |Ax,y| +
∑

X(d−k)

∑

Y (k) |Bx,y|
Therefore,
maxk maxX(k) maxY (d−k)

∑

X(d−k)

∑

Y (k) |[A + B]X,Y | ≤
maxk maxX(k) maxY (d−k)

∑

X(d−k)

∑

Y (k) |Ax,y| +
maxk maxX(k) maxY (d−k)

∑

X(d−k)

∑

Y (k) |Bx,y|,
and ‖A + B‖m‖A‖m + ‖B‖m.

4. ∀k, X(d−k), Y (k) :
∑

X(d−k)

∑

Y (k) |[A × B]X,Y | =
∑

X(d−k)

∑

Y (k) |
∑

Z AX,Z · BZ,Y | ≤
∑

X(d−k)

∑

Y (k)

∑

Z |AX,Z · BZ,Y | =
∑

Z(k)

∑

Y (k)

∑

Z(d−k)

∑

X(d−k) |BZ,Y | · |AX,Z | =
∑

Z(k)

∑

Y (k)

∑

Z(d−k) |BZ,Y | · (
∑

X(d−k) |AX,Z |) ≤
∑

Z(k)

∑

Y (k)

∑

Z(d−k) |BZ,Y | · (maxZ(d−k)

∑

X(d−k) |AX,Z |) =
∑

Z(k)

∑

Y (k) (maxZ(d−k)

∑

X(d−k) |AX,Z |) (
∑

Z(d−k) |BZ,Y |) ≤
∑

Z(k)

∑

Y (k) (maxZ(d−k)

∑

X(d−k) |AX,Z |) (maxY (d−k)

∑

Z(d−k) |BZ,Y |) =
∑

Z(k) (maxZ(d−k)

∑

X(d−k) |AX,Z |) (
∑

Y (k) maxY (d−k)

∑

Z(d−k) |BZ,Y |) ≤
∑

Z(k) (maxZ(d−k)

∑

X(d−k) |AX,Z |) (maxZ(k)

∑

Y (k) maxY (d−k)

∑

Z(d−k) |BZ,Y |) =
(maxZ(k)

∑

Y (k) maxY (d−k)

∑

Z(d−k) |BZ,Y |) (
∑

Z(k) maxZ(d−k)

∑

X(d−k) |AX,Z |) ≤
(maxZ(k)

∑

Y (k) maxY (d−k)

∑

Z(d−k) |BZ,Y |) (maxX(k)

∑

Z(k) maxZ(d−k)

∑

X(d−k) |AX,Z |)
≤ (maxk maxX(k)

∑

Y (k) maxY (d−k)

∑

X(d−k) |AX,Y |) ·
(maxk maxX(k)

∑

Y (k) maxY (d−k)

∑

X(d−k) |BX,Y |) = ‖A‖m · ‖B‖m

Definition C.5 Let A be a set of all |Mi|d × |Mj |d matrices. A mapping πx1,y1 : |Mi|d × |Mj |d →
|Mi|d−1 × |Mj |d−1 is defined as follows: ∀A ∈ A ∀x2, . . . , xd ∈ Mi ∀y1, . . . , yd ∈ Mj :

[πx1,y1(A)](x2,...,xd),(y2,...,yd) = A(x1,x2,...,xd),(y1,y2,...,yd)

Lemma C.6 Let A be a set of all |Mi|d × |Mj |d matrices. For all A ∈ A, and for all B ∈ A for which
the following operations make sense:

1. πx1,y1([uA]) = u · πx1,y1(A)

2. πx1,y1([A + B]) = πx1,y1(A) + πx1,y1(B)

131

3. πx1,y1([A × B]) =
∑

k1
πx1,k1(A) × πk1,y1(B)

Proof:

1. (πx1,y1([u · A]))(x2,...xd),(y2,...yd) = [u · A](x1,...xd),(y1,...yd) = u · A(x1,...xd),(y1,...yd)

= u · (πx1,y1(A))(x2,...xd),(y2,...yd)

2. (πx1,y1([A + B]))(x2,...xd),(y2,...yd) = [A + B](x1,...xd),(y1,...yd) = A(x1,...xd),(y1,...yd) +

B(x1,...xd),(y1,...yd) = (πx1,y1(A) + πx1,y1(B))(x2,...xd),(y2,...yd)

3. (πx1,y1([A × B]))(x2,...xd),(y2,...yd) = [A × B](x1,...xd),(y1,...yd) =
∑

k1

∑

k2,...kd
A(x1,...xd),(k1,...kd) · B(k1,...kd),(y1,...yd) =

(
∑

k1
πx1,k1(A) × πk1 ,y1(B)

)

(x2,...xd),(y2,...yd)

Example C.7 Let A be a set of |Mi|d×|Mj |d matrices. A mapping ‖·‖a : A → R such that for all A ∈ A,

‖A‖a =

max
x1

∑

y1

‖πx1,y1(A)‖a, d > 1,

|||A|||∞, d = 1,

i.e. ‖A‖a = maxx1

∑

y1
maxx2

∑

y2
. . . maxxd

∑

yd

∣

∣A(x1,x2,...,xd),(y1,y2,...,yd)

∣

∣ is a matrix norm.

Proof: By induction:

A. For d = 1 see Theorem A.3.

B. d > 1:

1. ‖[0]‖a = maxx1

∑

y1
‖πx1,y1(A)‖a = maxx1

∑

y1
0 = 0

2. ∀x1 :
∑

y1
‖πx1,y1([uA])‖a =

∑

y1
‖u · πx1,y1(A)‖a =

∑

y1
|u| · ‖πx1,y1(A)‖a

= |u| ·∑y1
‖πx1,y1(A)‖a

Hence for any x11 and x12:
∑

y1
‖πx11,y1([uA])‖a ≤∑y1

‖πx12,y1([uA])‖a ⇔∑

y1
‖πx11,y1(A)‖a ≤

∑

y1
‖πx12,y1(A)‖a.

From this follows that ‖[u · A]‖a = |u| · ‖A‖a

3. ∀x1 :
∑

y1
‖πx1,y1([A + B])‖a =

∑

y1
‖πx1,y1(A) + πx1,y1(B)‖a ≤

∑

y1
‖πx1,y1(A)‖a + ‖πx1,y1(B)‖a ≤ ‖A‖a + ‖B‖a

4. ∀x1 :
∑

y1
‖A × B‖a =

∑

y1,k1
‖πx1,k1(A) × πk1,y1(B)‖a ≤∑y1,k1

‖πx1,k1(A)‖a ·
‖πk1,y1(B)‖a =

∑

k1
‖πx1,k1(A)‖a

(

∑

y1
‖πk1,y1(B)‖a

)

≤
∑

k1
‖πx1,k1(A)‖a · ‖B‖a ≤ ‖A‖a · ‖B‖a

Example C.8 Let A be a set of |Mi|d×|Mj |d matrices. A mapping ‖·‖s : A → R such that for all A ∈ A,

‖A‖s =

max

{

max
x1

∑

y1

‖πx1,y1(A)‖s, max
y1

∑

x1

‖πx1,y1(A))‖s

}

, d > 1,

max
{

|||A|||∞,
∣

∣

∣

∣

∣

∣AT
∣

∣

∣

∣

∣

∣

∞

}

, d = 1,

where AT is a transposed matrix to A, is a matrix norm.

Proof:

A. d = 1:

1. ∀x1 :
∑

y1
|[0]x1,y1 | = 0.

∀y1 :
∑

x1
|[0]x1,y1 | = 0.

Therefore, ‖[0]‖s = max{0, 0} = 0.

132 APPENDIX C. MATRIX NORMS

2. ∀x1 :
∑

y1
|[uA]x1,y1 | =

∑

y1
|u · Ax1,y1 | = |u| ·

∑

y1
|Ax1,y1 |.

∀y1 :
∑

x1
|[uA]x1,y1 | =

∑

x1
|u · Ax1,y1 | = |u| ·∑x1

|Ax1,y1 |.
Therefore,
maxx1

∑

y1
|[uA]x1,y1 | = |u| · maxx1

∑

y1
|Ax1,y1 |,

maxy1

∑

x1
|[uA]x1,y1 | = |u| · maxy1

∑

x1
|Ax1,y1 |,

and

‖[uA]‖s = max

{

max
x1

∑

y1

|[uA]x1,y1 |, max
y1

∑

x1

|[uA]x1,y1 |
}

= |u| · max

{

max
x1

∑

y1

|Ax1,y1 |, max
y1

∑

x1

|Ax1,y1 |
}

3. ∀x1 :
∑

y1
|[A + B]x1,y1 | =

∑

y1
|Ax1,y1 + Bx1,y1 | ≤

∑

y1
|Ax1,k1 | +

∑

y1
|Bx1,y1 |

≤ maxx1

∑

y1
|Ax1,k1 | + maxx1

∑

y1
|Bx1,y1 |

∀y1 :
∑

x1
|[A + B]x1,y1 | =

∑

x1
|Ax1,y1 + Bx1,y1 | ≤

∑

x1
|Ax1,k1 | +

∑

x1
|Bx1,y1 |

≤ maxy1

∑

x1
|Ax1,k1 | + maxy1

∑

x1
|Bx1,y1 |

Therefore,

‖[A + B]‖s

= max

{

max
x1

∑

y1

|[A + B]x1,y1 |, max
y1

∑

x1

|[A + B]x1,y1 |
}

≤ max

{

max
x1

∑

y1

|Ax1,y1 | + max
x1

∑

y1

|Bx1,y1 |, max
y1

∑

x1

|Ax1,y1 | + max
y1

∑

x1

|Bx1,y1 |
}

≤ max

{

max
x1

∑

y1

|Ax1,y1 |, max
y1

∑

x1

|Ax1,y1 |
}

+ max

{

max
x1

∑

y1

|Bx1,y1 |, max
y1

∑

x1

|Bx1,y1 |
}

= ‖A‖s + ‖B‖s

4.

∀x1 :
∑

y1

|[A × B]x1,y1 | =
∑

y1

∣

∣

∣

∣

∣

∑

k1

Ax1,k1 · Bk1,y1

∣

∣

∣

∣

∣

≤
∑

y1

∑

k1

|Ax1,k1 · Bk1,y1 |

=
∑

y1

∑

k1

|Ax1,k1 | · |Bk1,y1 | =
∑

k1

|Ax1,k1 |
(

∑

y1

|Bk1,y1 |
)

≤
∑

k1

|Ax1,k1 |
(

max
k′
1

∑

y1

∣

∣Bk′
1,y1

∣

∣

)

= max
k1

∑

y1

|Bk1,y1 | ·
∑

k1

|Ax1,k1 |

≤ max
x1

∑

k1

|Ax1,k1 | · max
k1

∑

y1

|Bk1,y1 |

Similarly, ∀y1 :
∑

x1
|[A × B]x1,y1 | ≤ maxk1

∑

x1
|Ax1,k1 | · maxy1

∑

k1
|Bk1,y1 |.

133

Therefore,

‖[A × B]‖s

= max

{

max
x1

∑

y1

|[A × B]x1,y1 |, max
y1

∑

x1

|[A × B]x1,y1 |
}

≤ max

{

max
x1

∑

x1

|Ax1,y1 | · max
x1

∑

y1

|Bx1,y1 |, max
y1

∑

x1

|Ax1,y1 | · max
y1

∑

x1

|Bx1,y1 |
}

≤ max

{

max
x1

∑

x1

|Ax1,y1 |, max
y1

∑

x1

|Ax1,y1 |
}

· max

{

max
x1

∑

y1

|Bx1,y1 |, max
y1

∑

x1

|Bx1,y1 |
}

= ‖A‖s · ‖B‖s

B. d > 1:

1. ∀x1 :
∑

y1
‖πx1,y1 [0]‖s = 0.

∀y1 :
∑

x1
‖πx1,y1 [0]‖s = 0.

Therefore, ‖[0]‖s = max{0, 0} = 0

2. ∀x1 :
∑

y1
‖πx1,y1 [uA]‖s =

∑

y1
‖u · πx1,y1A‖s = |u| ·∑y1

‖πx1,y1A‖s
∀y1 :

∑

x1
‖πx1,y1 [uA]‖s =

∑

x1
‖u · πx1,y1A‖s = |u| ·∑x1

‖πx1,y1A‖s
Therefore,
maxx1

∑

y1
‖πx1,y1 [uA]‖s = |u| · maxx1

∑

y1
‖πx1,y1A‖s,

maxy1

∑

x1
‖πx1,y1 [uA]‖s = |u| · maxy1

∑

x1
‖πx1,y1A‖s,

and

‖[uA]‖s = max

{

max
x1

∑

y1

‖πx1,y1 [uA], ‖s max
y1

∑

x1

‖πx1,y1 [uA]‖s

}

= |u| · max

{

max
x1

∑

y1

‖πx1,y1A, ‖s max
y1

∑

x1

‖πx1,y1A‖s

}

3. ∀x1 :
∑

y1
‖πx1,y1 [A + B]‖s =

∑

y1
‖πx1,y1A + πx1,y1B‖s ≤

∑

y1
‖πx1,y1Ax1,k1‖s +

∑

y1
‖πx1,y1B‖s ≤ maxx1

∑

y1
‖πx1,y1Ax1,k1‖s + maxx1

∑

y1
‖πx1,y1B‖s

∀y1 :
∑

x1
‖πx1,y1 [A + B]‖s =

∑

x1
‖πx1,y1A + πx1,y1B‖s ≤∑x1

‖πx1,y1Ax1,k1‖s +
∑

x1
‖πx1,y1B‖s ≤ maxy1

∑

x1
‖πx1,y1Ax1,k1‖s + maxy1

∑

x1
‖πx1,y1B‖s

Therefore,

‖[A + B]‖s

= max

{

max
x1

∑

y1

‖πx1,y1 [A + B]‖s, max
y1

∑

x1

‖πx1,y1 [A + B]‖s

}

≤ max

{

max
x1

∑

y1

‖πx1,y1A‖s + max
x1

∑

y1

‖πx1,y1B‖s ,

max
y1

∑

x1

‖πx1,y1A‖s + max
y1

∑

x1

‖πx1,y1B‖s

}

≤ max

{

max
x1

∑

y1

‖πx1,y1A‖s, max
y1

∑

x1

‖πx1,y1A‖s

}

+ max

{

max
x1

∑

y1

‖πx1,y1B‖s, max
y1

∑

x1

‖πx1,y1B‖s

}

= ‖A‖s + ‖B‖s

134 APPENDIX C. MATRIX NORMS

4.

∀x1 :
∑

y1

‖πx1,y1 [A × B]‖s =
∑

y1

∥

∥

∥

∥

∥

∑

k1

πx1,y1A × πx1,y1B

∥

∥

∥

∥

∥

s

≤
∑

y1

∑

k1

‖πx1,y1A × πx1,y1B‖s

≤
∑

y1

∑

k1

‖πx1,y1A‖s · ‖πx1,y1B‖s

=
∑

k1

‖πx1,y1A‖s

(

∑

y1

‖πx1,y1B‖s

)

≤
∑

k1

‖πx1,y1A‖s

(

max
k1

∑

y1

‖πx1,y1B‖s

)

= max
k1

∑

y1

‖πx1,y1B‖s ·
∑

k1

‖πx1,y1A‖s

≤ max
x1

∑

k1

‖πx1,y1A‖s · max
k1

∑

y1

‖πx1,y1B‖s

Similarly,
∀y1 :

∑

x1
‖πx1,y1 [A × B]‖s ≤ maxk1

∑

x1
‖πx1,y1A‖s · maxy1

∑

k1
‖πx1,y1B‖s.

Therefore,

‖[A × B]‖s

= max

{

max
x1

∑

y1

‖πx1,y1 [A × B]‖s, max
y1

∑

x1

‖πx1,y1 [A × B]‖s

}

≤ max

{

max
x1

∑

y1

‖πx1,y1A‖s · max
x1

∑

y1

‖πx1,y1B‖s ,

max
y1

∑

x1

‖πx1,y1A‖s · max
y1

∑

x1

‖πx1,y1B‖s

}

≤ max

{

max
x1

∑

y1

‖πx1,y1A‖s, max
y1

∑

x1

‖πx1,y1A‖s

}

· max

{

max
x1

∑

y1

‖πx1,y1B‖s, max
y1

∑

x1

‖πx1,y1B‖s

}

= ‖A‖s · ‖B‖s

The matrix norms ‖·‖1, |||·|||∞, ‖·‖m, ‖·‖a, and ‖·‖s are similar in their essence. Calculating ‖·‖1, one
adds sums of all lines. Thus also for that one the |||·|||∞ takes as the maximal one. Therefore, the ‖·‖1 gives
always greater or equal values as |||·|||∞. Similarly, calculating ‖·‖m, or ‖·‖a one has to go also through the
choice of |||·|||∞, so these give also greater or equal value as |||·|||∞. Since ‖·‖s tries all combinations of X ,
and Y it always gives the greatest value. The following graph shows the relationship between the mentioned
matrix norms. Vectors direct from those which return smaller values to those which return greater values.

|||·|||∞
�

�
�

��
‖·‖1

- ‖·‖m

@
@

@
@R ‖·‖a

HHHHj

����* ‖·‖s

Appendix D

Some Simple Lemmas

Here we present some lemmas used in several proofs, which are not related to the theory of provable
security.

Lemma D.1 Let x be a real number such that 0 < x < 1, and d be an integer. Then

(1 − x)d ≥ 1 − dx.

Proof:

(1 − x)
d

= 1 −
(

d

1

)

x + . . . ≥ 1 − dx

Lemma D.2 Let n and d be two positive integers such that d < n. Then

nd

nd
≥ 1 − d2

2n
.

Proof:

nd

nd
=

d−1
∏

i=0

n − i

n
=

d−1
∏

i=1

(

1 − i

n

)

≥ 1 −
d−1
∑

i=1

i

n
= 1 − d2

2n

Lemma D.3 Let n and d be two positive integers such that d < n. Then

n2d

(nd)
2 ≥ 1 − d2

n
.

Proof:

n2d

(nd)
2 =

(n − d)d

nd
=

d−1
∏

i=0

n − d − i

n − i
=

d−1
∏

i=1

(

1 − d

n − i

)

≥
(

1 − d

n

)d

≥ 1 − d2

n

Lemma D.4 Let x be a real number such that 0 ≤ x ≤ 1. Then

x ≥ 1 − e−x ≥
(

1 − e−1
)

x.

Proof: The exponential function is defined by the power series

ex =

∞
∑

n=0

xn

n!
,

and thus we have

e−x = 1 − x +

∞
∑

n=2

(−1)nxn

n!
≥ 1 − x

e−1x =

∞
∑

n=0

(−1)nx

n!
= x +

∞
∑

n=1

(−1)nx

n!
≥ x +

∞
∑

n=1

(−1)nxn

n!
= x − 1 + e−x

135

136 APPENDIX D. SOME SIMPLE LEMMAS

Bibliography

[1] Mihir Bellare. Practice-oriented provable-security. In Proceedings of First International Workshop on
Information Security (ISW’97), Lecture Notes in Computer Science, volume 1396. Springer-Verlag,
1998.

[2] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A concrete security treatment of sym-
metric encryption. In IEEE Symposium on Foundations of Computer Science, pages 394–403, 1997.

[3] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM Conference on Computer and Communications Security, pages 62–73, 1993.

[4] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems. Technical Report
CS90-16, The Weizmann Institute of Science, July 1990.

[5] Gilles Brassard. Modern Cryptology, volume 325 of Lecture Notes in Computer Science. Springer-
Verlag, 1988.

[6] John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and Jr. S. S. Wagstaff. Factorizations
of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers. http://www.ams.org/online_bks/
conm22/, 2002.

[7] Valér Čanda. Scalable Symmetric Ciphers Based on Group Bases. PhD thesis, Institute of Experimen-
tal Mathematics, University of Essen, 2001.

[8] Valér Čanda and Tran van Trung. In Tatracrypt 01, volume 25, pages 39–66. Tatra Mountains Mathe-
matical Publications, 2002.

[9] Okiok Data. Why migrating to triple-DES is not easy. http://crypto.cs.mcgill.ca/
˜stiglic/Papers/tripleDES.pdf, January 2002.

[10] Lenka Fibikova. Towards proper selection of primitives and modifications for a cryptographic scheme.
In Proceedings, Workshop ”Santa’s Crypto Get Together”, pages 53–68, December 2002.

[11] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer Security,
28(2):270–299, April 1984.

[12] Otokar Grošek, Karol Nemoga, and Ladislav Satko. A remark to Luby-Rackoff and Ueli M. Maurer
pseudorandom generators. In Tatra Mountains Mathematical Publications, volume 20, pages 113–
120. Tatra Mountains Mathematical Publications, 2000.

[13] Xuejia Lai and James L. Massey. A proposal for a new block encryption standard. In Advances in
Cryptology – EUROCRYPT ’90, Lecture Notes in Computer Science, volume 473, pages 389–404.
Springer-Verlag, 1991.

[14] Michael Luby and Charles Rackoff. How to construct pseudo-random permutations from pseudo-
random functions. In Proceedings of CRYPTO ’85, pages 447–447. Springer-Verlag, 1986.

[15] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. Advanced in Cryptology — EURO-
CRYPT ’93 Lecture Notes in Computer Science, pages 386–397, 1994.

[16] Ueli M. Maurer. A simplified and generalized treatment of Luby-Rackoff pseudorandom permutation
generator. In Advances in Cryptology EUROCRYPT ’92, Lecture Notes in Computer Science, volume
658, pages 239–255, Berlin, 1992. Springer-Verlag.

[17] Shiho Moriai and Serge Vaudenay. Comparison of randomness provided by several schemes for block
ciphers. In Third AES Candidate Conference (AES3), http://csrc.nist.gov/encryption/
aes/round2/conf3/aes3papers.html, March 2001.

137

138 BIBLIOGRAPHY

[18] National Institute of Standards and Technology (NIST). FIPS 81: DES Modes of Operation. http:
//csrc.nist.gov/publications/fips/, December 1980.

[19] Bruce Schneier and John Kelsey. Unbalanced Feistel networks and block-cipher design. Lecture Notes
in Computer Science, 1039:121–144, 1996.

[20] Claude Elwood Shannon. Communication theory of secrecy systems. In Bell systems technical jour-
nal, volume 28, pages 656–715, October 1949.

[21] Serge Vaudenay. Provable security for block ciphers by decorrelation. In Symposium on Theoretical
Aspects of Computer Science, pages 249–275, 1998.

[22] Serge Vaudenay. On provable security for conventional cryptography. In Information Security and
Cryptology ICISC’99, pages 1–16. Springer-Verlag, 1999.

[23] Serge Vaudenay. On the “Lai-Massey” scheme. In Advances in Cryptology — ASIACRYPT ’99,
volume 1716 of Lecture Notes in Computer Science, pages 8–19. Springer-Verlag, 1999.

[24] Serge Vaudenay. Resistance against general iterated attacks. In Theory and Application of Crypto-
graphic Techniques, pages 255–271, 1999.

[25] Serge Vaudenay. Adaptive-attack norm for decorrelation and super-pseudorandomness. In Selected
Areas in Cryptography SAC ’99, Lecture Notes in Computer Science, volume 1758, pages 49–61.
Springer-Verlag, 2000.

[26] Serge Vaudenay. Introduction to decorrelation theory (On-line manual). http://lasecwww.
epfl.ch/dec_manual.shtml, June 2000.

[27] Yuliang Zheng, Tsutomu Matsumoto, and Hideki Imai. On the construction of block ciphers provably
secure and not relying on any unproved hypotheses (Extended abstract). In Advances in Cryptology
— CRYPTO ’89, Lecture Notes in Computer Science, volume 435, pages 461–480. Springer-Verlag,
1989.

Index

adaptive chosen ciphertext attack, 36
adaptive chosen plaintext attack, 28
adaptive chosen plaintext-ciphertext attack, 37
atomic primitive, 7

basic TST, 73

CBC, 56
CFB, 59
chosen ciphertext attack, 35
chosen plaintext attack, 25
chosen plaintext-ciphertext attack, 37
cipher

pseudorandom, 28
super-pseudorandom, 37

cipher feedback mode, 59
cipher-block chaining mode, 56
combined attack, 51
counter mode, 63
cryptographic function, 10

decorrelation bias, 12
decorrelation distance, 11
differential cryptanalysis, 43
distinguisher, 8
distribution matrix, 10

ECB, 55
electronic codebook mode, 55

F-function, 71
Feistel cipher, 71
Feistel network, 71
function family, 10

random, 10

iterated attack, 45

key expansion algorithm, 69
known plaintext attack, 23

linear cryptanalysis, 51

matrix norm, 13, 129

norm, 13, 129
matrix norm, 13

OFB, 61
output feedback mode, 61

perfect decorrelation, 12
perfect random function, 7

perfect random permutation, 7
permutation family, 10

random, 10
pseudorandom, 28

random function, 10
locally random, 10

random function family, 10
random oracle, 7
random oracle model, 7
random permutation, 10
random permutation family, 10
round function, 71
round transformation, 71, 91

simplified TST, 74
super-pseudorandom, 37

trace, 19
TST, 72

simplified, 73, 74

unbalanced Feistel network
double-round, 72

unbalanced Feistel networks, 71
mixed, 72
source heavy, 72
target heavy, 72

139

