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Gram-negative bacterial pathogens use common strategies to

invade and colonize plant and animal hosts. In many species,

pathogenicity depends on a highly conserved type-III protein

secretion system that delivers effector proteins into the

eukaryotic cell. Effector proteins modulate a variety of host

cellular pathways, such as rearrangements of the cytoskeleton

and defense responses. The specific set of effectors varies in

different bacterial species, but recent studies have revealed

structural and functional parallels between some effector

proteins from plant and animal pathogenic bacteria. These

findings suggest that bacterial pathogens target similar

pathways in plant and animal host cells.
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Abbreviations
avr avirulence

GAP GTPase-activating protein

HR hypersensitive response

Hrp hypersensitive response and pathogenicity

IKKb IkB kinase complex

NF-jB nuclear factor kB

NLS nuclear localization signal

pv. pathovar

R resistance

TTS type-III secretion

Yop Yersinia outer protein

Introduction
Gram-negative pathogenic bacteria have evolved sophis-

ticated strategies to exploit the attractive nutritional

menu provided by plants and animals. The majority of

bacterial pathogens are highly specialized for a limited

number of eukaryotic host organisms. However, some

bacterial strains, such as Pseudomonas aeruginosa PA14, are

capable of infecting a wide range of diverse hosts that

includes both plants and animals [1]. Screening of a

mutagenized PA14 population allowed the identification

of bacterial virulence determinants that are involved in

the interaction of PA14 with both Arabidopsis and mice [2].

The contribution of common proteins to bacterial viru-

lence on plants and animals has also been revealed by

studies of different bacterial taxa, as is described below [3].

Bacterial invasion and colonization of eukaryotic tissues

involves a variety of extracellular factors, such as polysac-

charides, adhesins, toxins and degradative enzymes.

Furthermore, bacterial effector proteins are delivered into

the host cell cytosol where they interfere with cellular

responses to the pathogen’s benefit. Interestingly, proteins

that contribute to the host–pathogen interaction are often

encoded by pathogenicity islands (PAIs), suggesting their

acquisition by horizontal gene transfer [4]. Genetic mobi-

lity provides one explanation for the presence of conserved

pathogenicity genes in different bacterial species. Broad

conservation is well exemplified by type-III secretion

(TTS) systems, which are key pathogenicity determinants

and mediate the delivery of effector proteins into the host

cell [5]. TTS systems have been intensively studied in

bacterial model systems such as species (spp.) of the animal

pathogens Yersinia (in which they were discovered), Sal-
monella and Shigella, and the plant pathogens Erwinia spp.,

Pseudomonas syringae, Ralstonia solanacearum and Xantho-
monas spp. [6]. Despite the broad conservation of the core

components of the secretion machinery, the number and

sequences of the secreted proteins vary considerably.

However, recent studies have unraveled sequence homo-

logies among some type-III effector proteins from plant

and animal pathogenic bacteria, suggesting that they exert

similar functions in eukaryotic host cells.

In this review, we highlight some common themes in the

molecular interactions between Gram-negative bacterial

pathogens and their eukaryotic hosts. We focus particu-

larly on the recently discovered structural and functional

parallels between type-III effector proteins from plant

and animal pathogenic bacteria.

Initial events at the host–pathogen interface
One of the first events in a host–pathogen interaction is

the physical contact between the bacterium and the host

cell. Bacterial attachment to the host cell surface is

mediated by surface proteins, termed adhesins, that are

assembled into pilus-like structures (fimbrial adhesins) or

anchored in the outer membrane (afimbrial adhesins) [7].

In animal pathogenic bacteria, adhesins bind to specific

host-cell receptors, thus allowing a tight contact between

the pathogen and the host cell. In plant pathogenic

bacteria, however, the role of adhesins in the interaction

with the cell wall, a natural barrier that surrounds plant
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but not animal cells, is less clear. Two afimbrial adhesins

have been characterized that show homology to adhesins

from animal pathogenic bacteria. Both proteins, HecA

from Erwinia chrysanthemi and XadA from Xanthomonas
oryzae pv. oryzae, are involved in bacterial virulence [8,9].

Furthermore, HecA contributes to the bacterial compe-

tence in attaching to and aggregating on leaf surfaces [9].

DNA sequence analyses revealed the presence of xadA
and hecA homologs in the genomes of the plant pathogens

Xylella fastidiosa, R. solanacearum, Xanthomonas axonopodis
pv. citri and pathovars of Xanthomonas campestris [10–13].

The broad conservation of adhesin-like proteins in plant

and animal pathogens suggests that these proteins are

commonly used to infect eukaryotic hosts.

TTS systems in plant and animal
pathogenic bacteria
Once the bacteria are close to a host cell, they start to

inject effector proteins into the cytosol of the eukaryotic

cell. The delivery of effector proteins is mediated by the

TTS system, which spans both bacterial membranes and

is associated with an extracellular appendage [6]. TTS

systems are present not only in many Gram-negative

pathogenic bacteria but also in some plant symbionts,

such as Rhizobium spp., in which they presumably influ-

ence the host range. The structure and function of TTS

systems have been extensively reviewed elsewhere

[5,6,14] and will not be discussed in detail. It is worth

noting, however, that major structural differences among

the TTS systems of plant and animal pathogenic bacteria

reside in the extracellular part of the secretion machinery.

The TTS system of animal pathogens is associated with a

needle, which is essential for the delivery of effector

proteins into the host cell [15–17]. In plant pathogenic

bacteria, the TTS system is connected to a pilus struc-

ture, which is up to 200 nm in length and can potentially

cross the plant cell wall ([18]; Figure 1). The pilus serves

as a conduit for secreted proteins [19�,20�].
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Model describing the role of TTS systems in bacterial interactions with plants and animals. (a) The TTS system of plant pathogenic bacteria is
associated with the Hrp pilus, which presumably spans the plant cell wall (200 nm thick; not drawn to scale) and serves as a conduit for secreted

proteins. Among the secreted proteins are harpins (yellow) that presumably act at the plant cell surface and effector proteins (dark green). The

translocation of effector proteins into the host cell cytosol is mediated by the putative TTS translocon, a bacterial protein complex in the host plasma

membrane (PM) [59]. (b) The TTS system of animal pathogenic bacteria is associated with a needle structure that is significantly shorter than the Hrp

pilus. The translocation of effector proteins into the host cell cytosol is mediated by a putative channel formed by the TTS translocon. Several animal

pathogenic bacteria (e.g. species of Salmonella and Shigella) are able to induce their uptake into non-phagocytic cells [60].
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www.current-opinion.com Current Opinion in Plant Biology 2003, 6:312–319



Proteins that travel through the TTS systems include

extracellular components of the apparatus as well as

effector proteins. Harpin proteins represent another class

of secreted proteins that are characteristic of plant patho-

genic bacteria. They are heat-stable, glycine-rich proteins

that lack cysteines and presumably act at the plant cell

surface ([21]; Figure 1).

Crossing the borderline — bacterial type-III
effector proteins
Type-III-mediated delivery into the host cell cytosol had

initially been shown for Yersinia outer proteins (Yops) [5]

and was only recently demonstrated for effector proteins

from plant pathogenic bacteria. Here, evidence for pro-

tein translocation was provided by the use of reporter

fusions and by direct visualization of effector proteins

inside the infected plant cells using immunocytochem-

istry [22,23,24��,25�,26�]. Because of the low secretion

efficiency in vitro, effector proteins from plant pathogenic

bacteria have mainly been identified genetically as the

products of avirulence (avr) genes. Avr proteins induce

specific defense responses in plants that express the

corresponding resistance (R) genes [3]. Plant defense is

often associated with the induction of the hypersensitive

response (HR), a local programmed death of plant cells at

the infection site [27], which can be easily scored. The

fact that Avr proteins induce the HR when expressed in
planta or when transfected into protoplasts strongly sug-

gests that these effectors are translocated into the plant

cell during the natural infection [28,29�].

It should be noted that effector proteins act not only as

avirulence factors. Effector proteins presumably provide a

selective advantage for pathogens that infect host plants

that do not contain a corresponding R gene [30]. How-

ever, knockout studies indicate that individual effectors

often contribute little to bacterial virulence or are func-

tionally redundant [31]. Plant pathogenic bacteria have

presumably evolved multiple effectors that have similar

functions in order to evade recognition by the plant’s

surveillance system. In fact, when compared to animal

pathogens (e.g. six known effectors in Yersinia spp. [32]),

the effector protein arsenal from plant pathogenic bac-

teria appears to be much larger. In P. syringae pv. tomato
DC3000, for instance, at least 38 putative effector pro-

teins are known to date (for review see [33,34]). The

identification of candidate effectors in P. syringae, as well

as in other plant pathogenic bacteria, has recently been

fueled by bioinformatic approaches and by comparative

analyses of genomic sequences [11,12].

Significant progress has been made in studying the bio-

chemical functions and host cell targets of effector proteins

from animal pathogenic bacteria. This is due in part to the

fact that cultured eukaryotic cells, such as HeLa cells and

macrophages, could be used for bacterial infection assays.

Effector proteins have been shown to modulate a variety of

cellular activities, such as the control of host cell survival,

immune response, actin rearrangement and vesicle traf-

ficking [5]. The similarity of some effector proteins (e.g.

YopH, SptP, YpkA and SopB; see Figure 2) to eukaryotic

enzymes such as phosphatases and kinases indicates that

mimicry of host proteins is one important strategy for

interference with eukaryotic pathways [35,36]. A summary

of the known enzymatic activities of effector proteins and

their influence on the host cell is given in Figure 2. Some

examples are presented in more detail below.

It has been difficult to deduce possible functions for

effector proteins from plant pathogenic bacteria as the

respective mutant strains often do not display phenotypic

effects and most effectors are not homologous to proteins

with a known function [30]. Host target proteins that were

identified by interactor screens provided the first indica-

tions of how effectors modulate host cellular processes.

The recent observation that the effector proteins

AvrRpm1, AvrB and AvrRpt2 from P. syringae interact with

the Arabidopsis protein RIN4, a component of the basal

plant defense, supports the hypothesis that type-III effec-

tors interfere with host defense responses [37��,38�,39�].
Furthermore, these findings demonstrate that a given

host protein can be targeted by several distinct effectors.

In addition to virulence targets, interactor studies will

uncover host proteins that are recruited by effectors to

help them reach their final destination in the host cell. One

notable example is pepper importin a, which mediates

nucleocytoplasmic trafficking of X. campestris pv. vesicatoria
AvrBs3, an effector protein that presumably acts as a

modulator of the host’s transcriptome [40,41�].

The host cell cytoskeleton as an effector
protein target
The host cell cytoskeleton is a major virulence target of

effector proteins from animal pathogenic bacteria (see

Figure 2). YopE, YpkA and YopT from Yersinia spp., for

instance, directly influence the activity of Rho GTPases

[42], which are key regulators of the actin cytoskeleton.

Rho GTPases act as molecular switches that are active

when bound to GTP and inactive when bound to GDP

[43]. YopE is a GTPase-activating protein (GAP) that

directly regulates the activity of Rho GTPases [42].

Homologs of YopE have been identified in Salmonella
typhimurium (SptP) and P. aeruginosa (ExoS) (Figure 2). In

all three proteins, the GAP activity domains contain an

‘arginine finger’ that is also involved in the catalytic

activity of mammalian Rho GAPs [44]. This is an intri-

guing example of convergent evolution and shows that

YopE and its homologs mimic eukaryotic enzymes.

Another case of host mimicry has been reported for YpkA

(YopO in Yersinia enterocolitica), which contains a domain

with sequence similarity to eukaryotic serine/threonine

kinases [45]. YpkA binds to actin and to Rho GTPases,

and presumably phosphorylates proteins that are involved

in actin regulation [42].
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Both YopE and YpkA induce the disruption of actin stress

fibers in HeLa cells [42]. A similar cytological effect has

been observed for the cysteine protease YopT, which

cleaves Rho GTPases near the carboxyl terminus, leading

to their release from the plasma membrane [46�]. Inter-

estingly, the plant pathogenic bacterium P. syringae pv.

tomato DC3000 expresses a homolog of YopT, AvrPphB,

which triggers the HR in resistant Arabidopsis plants

([46�]; Figure 2). In AvrPphB, the invariant amino-acid

residues that are essential for YopT cytotoxicity are

required for autocatalytical processing of an AvrPphB

precursor to the mature protein, as well as for the induc-

tion of HR in resistant plants, indicating that AvrPphB

acts as a protease. It remains to be investigated whether

AvrPphB targets Rho GTPases.

To date, effector proteins from plant pathogenic bacteria

have not been shown to modulate the host cytoskeleton.

It is interesting to note, however, that AvrBs3 from X.
campestris pv. vesicatoria induces hypertrophy symptoms

(i.e. an enlargement of mesophyll cells) in susceptible

plants [41�]. The expansion of plant cells involves multi-

ple processes that probably include changes in microtu-

bules and actin filaments [47].

Effector proteins interfere with the host’s
surveillance system
One major capability of bacterial effector proteins appears

to be the suppression of host defense responses. This has

been well studied for YopJ from Yersinia pestis (YopP in

Yersinia pseudotuberculosis and Y. enterocolitica), which

Figure 2
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Enzymatic activities of bacterial effector proteins. Known enzymatic activities of effector proteins from animal pathogenic bacteria (blue circle) and

their major effects on infected host cells (yellow circle). Homologous effector proteins that have been identified in plant pathogenic bacteria are

indicated in the green area. An enzymatic activity has not yet been demonstrated for members of the YopJ/AvrRxv family or for effector proteins from

plant pathogenic bacteria.�Proteins from Yersinia spp. (see text for details). YopH dephosphorylates components of focal adhesions, thereby inhibiting

their complex formation [32]. yProteins from P. aeruginosa. ExoS is a bifunctional effector protein with an amino-terminal GTPase-activating protein

domain and a carboxy-terminal ADP-ribosyltransferase activity [61]. The ExoS homolog ExoT is a GTPase-activating protein but does not exhibit ADP-

ribosyltransferase activity in vivo [62]. ExoY is a calmodulin-independent adenylate cyclase [63]. zProteins from Salmonella spp. [64]. SopB is an

indirect activator of the Rho GTPase Cdc42 and induces actin rearrangements. SopE and SopE2 directly activate Rho GTPases. This effect is reversed

by the amino-terminal GTPase-activating activity of SptP. The function of the SptP phosphatase activity is unclear. One potential substrate is the

intermediate filament protein vimentin. §Proteins from pathovars of P. syringae [33]. #YopJ/AvrRxv homologs from X. campestris pv. vesicatoria [14].
�YopJ/AvrRxv homolog from R. solanacearum [65]. ¥YopJ/AvrRxv homolog from Rhizobium NGR345.
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belongs to the YopJ/AvrRxv family of effectors (Figure 2).

YopJ inhibits cytokine production by the host cell and

induces apoptosis in macrophages [48]. This global effect

is caused by the ability of YopJ to downregulate multiple

mitogen-activated protein kinases and to block the acti-

vation of the transcription factor NF-kB. Activation of

NF-kB requires its release from its cytosolic inhibitor

(IkB), which is degraded upon phosphorylation by the IkB

kinase complex (IKKb). YopJ binds to and thus inhibits

IKKb, resulting in the cytosolic capture of NF-kB.

Intriguingly, the prediction of secondary structures

revealed a similarity between YopJ and adenovirus pro-

tease (AVP), a cysteine protease that resembles the yeast

ubiquitin-like protein protease 1. The catalytic residues

of AVP are conserved in YopJ and are essential for the

virulence function of YopJ. However, a proteolytic activ-

ity of YopJ has yet to be demonstrated [49]. Homologs of

YopJ have been identified in Salmonella spp. (AvrA) as

well as in several plant pathogenic bacteria (e.g. AvrRxv,

AvrBsT, AvrXv4 and XopJ from X. campestris pv. vesica-
toria) ([48,50]; Figure 2). The putative catalytic residues

are strictly conserved in all YopJ-like proteins [48], indi-

cating that they function as proteases. In AvrBsT, muta-

tion of these amino acids abolishes the ability to induce

the HR in resistant host plants [49], suggesting that the

corresponding R protein recognizes the products of the

AvrBsT protease [51]. It is not yet clear whether all

members of the YopJ/AvrRxv family target the same host

cellular pathways. AvrA from Salmonella spp., for instance,

Figure 3
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Animal
 pathogen

Proposed virulence functions of type-III effector proteins from plant and animal pathogenic bacteria. The TTS system of plant and animal pathogenic
bacteria delivers effector proteins into the host cell cytosol where they interfere with specific host target proteins. (a) Some effector proteins from

plant pathogenic bacteria presumably localize to the plant cell nucleus and modulate host gene expression, as has been shown for AvrBs3 (see

text for details). The molecular activities of effector proteins inside the plant cell lead to a suppression of host defense responses. Furthermore,

effector proteins probably cause the release of water and nutrients into the extracellular medium. (b) In animal host cells, effector proteins trigger a

variety of cellular responses. Nuclear localization and modulation of host gene expression has been demonstrated for the effector protein YopM

(see text for details). PM, plasma membrane.
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blocks the NF-kB pathway downstream of IKKb activa-

tion [52,53].

Besides YopJ-like proteins from animal pathogenic bac-

teria, several effector proteins from plant pathogenic

bacteria also suppress host defense responses [54].

Recently, AvrPtoB from P. syringae [55�] was shown to

act as a general inhibitor of programmed cell death [56��].
However, the molecular mechanisms underlying the

effector-protein-triggered suppression of plant defense

remain to be elucidated.

Modulation of host gene expression by
effector proteins
Conceivably, the interference of effector proteins with

eukaryotic signaling pathways leads to alterations in the

host’s transcriptome. Modulation of host gene expression

has indeed been demonstrated for the YopJ homolog

YopP from Y. enterocolitica by microarray analysis of

infected macrophages [57]. Besides these indirect effects,

some effector proteins presumably target the host tran-

scription machinery directly and thus regulate the expres-

sion of host genes to their own benefit (Figure 3). This

appears to be the case for the effector protein YopM from

Y. enterocolitica, which localizes to nuclei of infected host

cells [32]. YopM is a leucine-rich repeat (LRR)-contain-

ing protein that modulates the expression of host genes

that are involved in the control of cell growth and the cell

cycle [57]. LRRs are typically involved in protein–protein

interactions [58], and so one could speculate that YopM

binds to components of the host’s transcription machin-

ery. It has not yet been demonstrated, however, that the

nuclear localization of YopM is indeed required for its

regulatory activity.

Nuclear localization and modulation of host gene expres-

sion has also been shown for the effector protein AvrBs3

from X. campestris pv. vesicatoria [26�,41�]. AvrBs3 belongs

to a family of highly homologous effector proteins that

contain a central region of nearly identical 34-amino-acid

repeats, as well as carboxy-terminal nuclear localization

signals (NLSs) and an acidic activation domain (AAD)

[50]. NLSs and AAD, typical features of eukaryotic

transcription factors, are essential for the nuclear localiza-

tion of AvrBs3 and the modulation of host gene expression,

respectively [26�,41�]. Several plant genes that are induced

by AvrBs3 show homology to auxin-induced and expansin-

like genes that are presumably involved in cell enlarge-

ment. These findings provide a first link to the AvrBs3-

induced phenotype in susceptible mesophyll cells.

Conclusions
In the past decade, it has become apparent that many

plant and animal pathogenic bacteria share common

infection strategies. Recent studies have revealed that

distinct type-III effectors from plant and animal patho-

genic bacteria appear to employ similar strategies to

interfere with the host cellular machinery. Furthermore,

certain effector proteins share significant homology at the

amino-acid level. These findings indicate that the molec-

ular crosstalk between host and pathogen is determined

by a set of common effector proteins that target similar

pathways in different hosts. Comparative sequence anal-

yses of whole bacterial genomes indicate, however, that

bacterial pathogens also express unique effectors. These

proteins have presumably evolved for specific interac-

tions with distinct host organisms and might play a role in

determining the host range.

The identification of effector proteins from plant patho-

genic bacteria has been a major challenge. Recently,

sensitive genetic screens and computational analyses

have been developed to unravel the complete panoply

of effector proteins [33,34]. The elucidation of the func-

tions of effector proteins in the host plant cell remains

another demanding task. First clues have been obtained

by interactor screens and through the analysis of host gene

expression. The use of cultured host cells, which has been

instrumental in the rapid functional characterization of

effector proteins from animal pathogens, is not well estab-

lished for infection studies with plant pathogens. On the

other hand, however, the relative ease of working with the

intact plants allows the identification of virulence factors

by large-scale screening of mutagenized bacterial popula-

tions. Furthermore, recent progress in gene silencing in

plants, and the availability of mutant lines from model

plants such as Arabidopsis, will facilitate the identification

of host proteins that are involved in host–pathogen inter-

actions. The characterization of molecular events that

underlie effector protein functions inside the host cell

will not only advance our knowledge on bacterial patho-

genicity and essential cellular processes but also help us to

develop new strategies for disease control.
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