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Abstract
Microarray based transcription profiling is now a consolidatedmethodology and has widespread use in areas such as
pharmacogenomics, diagnostics and drug target identification. Large-scale microarray studies are also becoming
crucial to a new way of conceiving experimental biology. A main issue in microarray transcription profiling is data
analysis and mining. When microarrays became a methodology of general use, considerable effort was made to
produce algorithms and methods for the identification of differentially expressed genes. More recently, the focus has
switched to algorithms and database development for microarray data mining. Furthermore, the evolution of micro-
array technology is allowing researchers to grasp the regulative nature of transcription, integrating basic expression
analysis with mRNA characteristics, i.e. exon-based arrays, and with DNA characteristics, i.e. comparative genomic
hybridization, single nucleotidepolymorphism, tiling andpromoter structure. In this article,wewill review approaches
used to detect differentially expressed genes and to link differential expression to specific biological functions.
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INTRODUCTION
Microarray-based transcription profiling is now a

consolidated methodology and large-scale microar-

ray studies are becoming a crucial aspect of a new

way of conceiving experimental biology. Microarray

technology started as two-channel technology [1, 2],

i.e. simultaneous hybridization of two different sam-

ples performed on the same array. However, single-

channel technology, i.e. a RNA sample hybridized

on a single array, has more recently become the

preferred approach, due to the simpler and flexible

experimental design [3, 4].

Within the commercial single channel microarray

platforms available on the market, Affymetrix (www.

affymetrix.com) is the older, with the largest panel of

microarray designed for a variety of different organ-

isms and the higher number of public available data

sets (www.ncbi.nlm.nih.gov/geo/; www.ebi.ac.uk/

microarray-as/aer/?#ae-main[0]). Affymetrix micro-

arrays are based on chemical synthesis of 25 mer

oligonucleotides in 11-5 mm2 features on glass slides.

The high density of oligonucleotides provides

adequate space on the chip for use of multiple

probes per mRNA transcript. The arrays based on

11 mm2 features are also called 30 based expression

arrays (30 IVT arrays) since each transcript is queried

by a probe set, made up of 11 probe pairs mapping on

600 bases of the most 30 end of the transcript. More

recently, Affymetrix started the production of arrays

based on 5 mm2 features. The higher density array

manufacturing capability enabled the profiling of

exon-level expression at the whole-genome scale on a

single array (Exon 1.0 ST). In these arrays, each exon

is queried by four probes. This technological

improvement allowed also the production of arrays

where each transcript is queried using 26 probes

spread across the full length of the gene (Gene 1.0 ST

arrays), providing a more complete and more accurate

picture of gene expression than 30-based expression

array designs. A comparison study between 30 IVT
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and the new exon platform was recently published

[5], indicating that, despite several major technologi-

cal changes, a high concordance between the two

platforms can be observed and the median relative

sensitivity is similar in both platforms.

More recently, Illumina (www.illumina.com) has

become increasingly popular within the scientific

community due to some features of its arrays: long

oligonucleotides, probe replication, reduced per

hybridization cost, etc. Illumina have created a

microarray technology (Bead-Array) based on ran-

domly arranged beads. A specific oligonucleotide

sequence is assigned to each bead type, which is

replicated on the average about 30 times on an array.

A series of decoding hybridizations is used to identify

every bead [6]. The high degree of replication makes

robust measurements for each bead type possible.

The BeadChip technology comprises a series of

rectangular strips on a slide, each strip containing

about 24 000 bead types.

Measured independently by the type of single

channel array in use, the main issue in microarray

experiment is data analysis and the consequent

extraction of biological knowledge. Transcriptome

analysis is complicated by multiple factors such as the

limited number of possible experiment replications

which is always lower than the number of variables,

i.e. genes under investigation, or the actual limited

knowledge of gene regulation and gene product

function. Furthermore, in microarray analysis, it is

not possible to identify any specific piece of software

that is globally accepted by the scientific community

as the gold standard for microarray data analysis. It is

clear however that any microarray data analysis can

be summarized in four main steps and each step can

be completed using different computational tools:

(i) quality control

(ii) data pre-processing:

� microarray-specific background subtraction

� experiment-specific background subtraction

� transcript intensity summary

� removal of non-significant transcripts

(iii) differential expression detection

(iv) biological knowledge extraction

QUALITYCONTROL
Quality control (QC) is a very important step of

microarray analysis. Essentially, qualiy control could

be divided in two subareas:

� Detection of array artifacts and outliers.

� Evaluation of the homogeneity of experimental

groups.

Furthermore, QC is strongly depended on the

microarray platform in use.

In Affymetrix 30 IVT arrays, each transcript is

represented by a probe set made of 11–20 probes

pairs. Each probe pair is made of PM andMM probes.

One probe designed to perfectly match the target

transcript (PM probe) and the other designed to

measure the non-specific binding signal of its partner

PM probe. The mismatch (MM) probe is identical to

its partner PM probe except for the central (13th)

nucleotide, which is changed to the complementary

base. PMs and MMs are used by the Liu’s algorithm

[7] to determine whether the transcript of a gene is

detected (present) or undetected (absent).

As basic QC, Affymetrix suggests a certain

number of checks to be performed at the level of

each array (see Affymetrix manual: data_analysis_

fundamentals_manual). These checks include:

� Average background and noise, which is a measure

of the pixel-to-pixel variation of probe cells on a

GeneChip array, (proposed correct range: 20–100).

� The number of probe sets called present relative

to the total number of probe sets on the array

and replicate samples should have similar percent

present values.

� Poly-A RNA spiked-in controls are used to

monitor the entire target labelling process and

should be all called present.

� Eukaryotic hybridization controls are spiked into

the hybridization cocktail, independent of RNA

sample preparation, and are thus used to evaluate

sample hybridization efficiency on eukaryotic

gene expression arrays. They should be called

present at least 50% of the time.

� b-actin and GAPDH are used to assess RNA

sample and assay quality. Specifically, the signal

values of the 30 probe sets for actin and GAPDH

are compared to the signal values of the corres-

ponding 50 probe sets. The ratio of the 30 probe set

to the 50 probe set is generally no more than three

for the one-cycle assay.

Furthermore, Bioconductor package affyPLM

(www.bioconductor.org) allows to perform a

Probe Level Model (PLM) fitting. PLM is a model
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that is fitted to probe-intensity data. The model is

fitted with probe level and chip level parameters

on a probe set by probe set basis. In quality control

chip level, parameters are a factor variable with a

level for each array. The PLM model can be

used to plot relative Log expression (RLE) values,

which are computed for each probe set by compar-

ing the expression value on each array against the

median expression value for that probe set across all

arrays. Assuming that most genes are not changing in

expression across arrays means ideally most of these

RLE values will be near 0. Another QC plot that can

be produced using PLM data is normalized unscaled

standard errors (NUSE). The standard error estimates

obtained for each gene on each array are taken and

standardized across arrays so that the median standard

error for that gene is 1 across all arrays. This process

accounts for differences in variability between

genes. An array where there are elevated SE relative

to the other arrays is typically of lower quality.

Bioconductor packages AffyExpress, affyQCReport

also offer the possibility to produce various types of

quality controls.

Concerning Illumina arrays BeadStudio allows

the generation of a graphical control summary report

based on performance of built-in controls (positive/

negative hybridization beads, specificity hybridiza-

tion signals, etc). Bioconductor package beadarray

[8] offers some other QC tools. The package has the

ability to read the raw data produced from BeadScan.

Boxplots, density plots and image plots are generated

automatically and summarized in an HTML report

and could be used to identify outlier arrays. The

limiting issue of this useful package is the large

amounts of computer memory required to run these

analyses. The lumi package also provides bead level

Illumina microarray data analysis. The package

covers data input, quality control, variance stabiliza-

tion, normalization and gene annotation. In parti-

cular, the quality control of a LumiBatch object

includes a data summary (the mean and standard

deviation, sample correlation, detectable probe ratio

of each sample) and different quality control plots

(boxplots, density plots, pairwise MA or sample

correlation).

Furthermore, principal component analysis

(PCA) [9] as well as hierarchical clustering [10] can

offer a graphical view of the homogeneity of

experimental groups and are available in many

Bioconductor packages, e.g. oneChannelGUI [11]

and lumi.

DATA PRE-PROCESSING
Pre-processing is the process that allows the trans-

formation of the raw fluorescence signal detected by

microarray staining into a signal normalized for

experimental errors.

The main steps of pre-processing are: background

subtraction, experiment normalization, transcript

intensity summarization, removal of non-informative

and not expressed transcripts.

The first three steps of data pre-processing

(i.e. background subtraction, experiment normal-

ization, transcript intensity summarization) are

usually combined together in a unique algorithm as

in the case of Affymetrix arrays, where the intensities

of multiple short probes need to be combined to

generate transcript expression level; or in Illumina

bead arrays, where the intensities of multiple copies

of the same long probe, used to the detect the same

transcript, need to be summarized to the average

transcript expression level. It should be noted that

for the development of summarization algorithms,

publicly available dilution experiments as well

as spike-in experiments are extremely important as

benchmarks in the testing of sensibility

and specificity of the algorithms. Both types of

benchmark experiments are available for Affymetrix

arrays (www.affymetrix.com) whereas for Illumina

bead arrays only a few dilution experiments are

available [12].

Much has been published on data pre-processing

for Affymetrix 30 IVT array [13], due to the fact

that each transcript is described by a group of short

25-mer probes (probe set) and it is necessary to

summarize the probe set intensity by taking into

consideration various types of noise.

Affymetrix defined an empirical method for

summarization of differential expression [14] imple-

mented in the MAS 5.0 software package (www.

affymetrix.com/support/technical/technotes/statisti

cal_reference_guide.pdf). The algorithm is based on

the specific construction of 30 IVT Affymetrix arrays

(see above) probe set signal is calculated using

the One-Step Tukey’s Biweight Estimate [14],

which yields a robust weighted mean that is

relatively insensitive to outliers, even when extreme.

The mismatch intensity is used to estimate stray

signal. The real signal is estimated by taking the log

of the PM intensity after subtracting the stray signal

estimate. Stray signal estimate is equal to MM when

the MM intensity is lower than the PM intensity.

In case of MM values higher than PM values,
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an imputed value called change threshold (CT) is

used instead of the uninformative MM. If the MM

probe cells are generally informative across the probe

set except for a few MM, CT is an adjusted MM

value based on the bi-weight mean of the PM and

MM ratio. If the MM probe cells are generally

uninformative, CT is given by a value that is slightly

smaller than the PM.

The probe set summary methods currently used

widely by the scientific community are mainly

model-based methods. These methods model

probe set summaries using the information

derived from a multi array experiment. The disper-

sion of the probe set probes in various locations of

the array makes the Affymetrix arrays somewhat

insensitive to local constructions/hybridization

artifacts.

However, an important issue of probe set sum-

marization using 25-mer probes is the definition of

the sequence-dependent non-specific hybridization.

RMA methodology [15] performs background

correction, normalization and summarization in a

modular way, but it does not take into account non-

specific probe hybridization in probe set background

calculation. GCRMA [16] is instead an extension of

RMA with a background correction component,

which makes use of probe sequence information.

More recently, Affymetrix proposed the probe

logarithmic error intensity estimate (PLIER)

method which produces an improved signal by

accounting for experimentally observed patterns in

probe behaviour and handling errors at the appro-

priately low and high-signal values (www.affy

metrix.com). Methods such as PLIER and GCRMA,

which use model-based background correction,

maintain relatively good accuracy without losing

much precision. PLIER is also superior to other

algorithms in avoiding false positives with poorly

performing probe sets [17]. Seo and Hoffmann [17]

however highlight the fact that background is a very

complex variable and cannot be perfectly estimated.

It is therefore not feasible to identify the ‘best’ probe

set algorithm, but this should be defined on the basis

of the type of project. A confirmation of the

importance to select probe set algorithm on the

basis of the experiment type comes from a recent

paper [18] shows that MAS5 is the best choice in

reverse engineering studies of cellular networks,

since a crucial step of GCRMA algorithm is

responsible for a systematic overestimation of pair-

wise correlation, which instead does not affect the

detection of differential expression in two and

multiple class experiments.

Data pre-processing for Illumina data is relatively

simple, mainly because multiple replications of one

long oligonucleotide are used to detect the 30 end of

a transcript. The use of long oligonucleotides greatly

reduces the non-specific hybridization problem [19]

present in Affymetrix arrays. Furthermore, the

average 30-fold bead-type redundancy strongly

reduces local hybridization artefacts. Pre-processing

of Illumina arrays can be performed using Illumina

BeadStudio software (www.illumina.com). Bead

Studio produces an average value for each bead

type on the un-logged scale and provides various

normalization and visualization tools. However,

loose information is given about replicates of each

bead type, data are automatically background

corrected and there is no possibility of controlling

image processing. Before summarization, BeadStudio

detects as outliers all beads of the same type that have

an un-logged intensity of more than three median

absolute deviations (MAD) and does not include

them in intensity summarization. Background is

measured for all beads as the mean of the negative

controls on an array and is used by BeadStudio

software to perform background normalization.

Recently, an open source tool [8, 20] allowing the

bead-level data handling of Illumina bead arrays

improved the flexibility of the Illumina summariza-

tion algorithm. In the beadarray package [8] available

in Bioconductor [21], the detection of outliers can

be done using either un-logged and logged inten-

sities and using a user defined number of MADs.

Dunning [20] has also shown that background values

for beads are virtually constant within arrays and also

across arrays. Local measure of background is

equivalent to global value, but background corrected

data show much more variability among beads of the

same type [20]. This observation therefore suggests

the use of the automatic background correction

available in BeadStudio be avoided [20]. Log

intensity transformation is another part of the pre-

processing that can be applied both to Affymetrix

and Illumina arrays, and is used to reduce variance

and improve precision [20, 22–24]. However, it

should be used carefully since the increased precision

of log transformation could be at the expense of

levels of accuracy [22, 25].

During data generation, numerous factors could

alter the outcome through the introduction of sys-

tematic biases. Those are mainly linked to the limited
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control that the experimenter has on biological

objects, i.e. cell cultures, biopsies, reagents, etc., or to

the presence of overall disparities of slide surfaces

and variation in manufacturing as well as scanner-

introduced bias, which influence the RNA quanti-

fication process. As a means of identifying and

removing systematic biases, data normalization is

typically performed.

Global median normalization is usually not rec-

ommended since the simple adjustment of the

median intensity value within each array does not

take into account local intensity bias. Global loess

normalization is instead used to address intensity-

dependent bias [26, 27].

The loess method was initially proposed by Yang

[27]. This approach stems from the M versus A plot,

where M is the difference in log expression values

and A is the average of those. A normalization curve

is fitted to this M versus A plot by using loess, which

is a method of local regression. The fits based on the

normalization curve are subsequently subtracted

from the M values. This method was extended to

single channel arrays by Bostald [26]. In his imple-

mentation, each array is normalized against all the

others for one or two iterations.

A normalization method widely used for single

channel arrays is the quantile [26]. The goal of the

quantile method is to make the distribution of probe

intensities for each of a set of arrays the same. The

idea behind the method is that a quantile–quantile

plot shows that the distribution of two data vectors is

the same if the plot is a straight diagonal line, but not

if it is other than a diagonal. This concept can be

extended to n dimensions if more than two arrays

are available. This suggests that an n set of data can be

made to have the same distribution by projecting

the points of the n-dimensional quantile plot onto

the diagonal. However, according to very recent

results, this normalization method can have an

impact on the biological variability and, therefore,

appears to be less than optimal from this point of

view [28].

A method for the normalization of Illumina bead

arrays other than quantile available in the beadStudio

is the cubic spline method. This method is similar

to the one proposed by Workman [29]. The nor-

malization uses quantiles of sample intensities to fit

smoothing B-splines. For each sample, its vector of

quantile intensities as well as quantiles for the ‘virtual’

averaged sample after background subtraction are

computed. Cubic B-spline is than computed and

used for interpolation. Furthermore, the Biocon-

ductor lumi package supports directly reading of the

Illumina Bead Studio toolkit. It contains a variance-

stabilizing transformation algorithm that takes

advantage of the technical replicates available on

every Illumina microarray and a robust spline

normalization algorithm, which combines the fea-

tures of the quantile and loess normalization.

All these methods are based on the assumption

that the majority of elements should be not differen-

tially expressed. A recent paper [30] has described a

normalization method called orthogonal projections

to latent structures (OPLS), which the authors claim

to be independent from the previous assumption.

This method identifies joint variation within bio-

logical samples, allowing the removal of sources of

variation that do not correlate with the within-

sample variation. This ensures that the structured

variation related to the underlying biological samples

is separated from the remaining bias-related sources

of systematic variation.

A problem in microarray data analysis is the high

dimensionality of gene expression space, which

prohibits a comprehensive statistical analysis without

focusing on particular aspects of the joint distribution

of the gene expression levels. A theoretical compu-

tation [31] showed that there is an optimal number

of hypotheses to be tested which is limited by

the number of samples in the experiment. When

the proportion of differentially expressed transcripts

is small, they tend to get buried among the non-

differentially expressed. Possible strategies to over-

come this problem are to undertake some kind of

biology-driven filtering or to perform signal-driven

filtering of genes before the actual statistical analysis

[32–34].

Although the integration of biological knowledge

is usually associated with the data mining process

[35, 36], the use of biology-driven filters could be

an ideal choice when the experimenter has a

clear idea of which subarea of biology should be

investigated at transcription level by microarray

analysis. These types of filters are clearly dependent

on the availability of biological knowledge and on

the robustness of data annotation. The database

most used, which links biological information to

genes, is Gene Ontology (GO) [37], but many

other biology-driven ontologies have become

available in recent years [38], increasing the

number of biological topics to be used for biology-

driven filters.

Microarray data analysis and mining approaches 269



Non-informative signals, i.e. those characterized

by an expression close to background over all the

experimental points, can be detected, in the case of

30 IVT arrays, by detection (Present/Absent) call

algorithm (www.affymetrix.com). This is a p-score

that assesses the reliability of each expression level

and is produced using a signed rank test to consider

the significance of the difference between the PM

and MM values for each probe set [7]. This approach

could be used to remove data that are not reliably

detected, before further analysis [39]. McClintick

[39] also observed that the use of a filter based on

detection call removes probe sets contributing to a

disproportionate number of false positives. Experi-

ment size does however greatly affect the ability to

reproducibly detect significant differences, and also

impacts on the effect of filtering, i.e. small experi-

ments based on 3–5 samples per treatment group

benefit from more restrictive filtering (�50%

present). A similar filtering approach could be

applied to Illumina arrays using the detection score,

which is given by R/N, where R is the rank of the

gene signal relative to negative controls and N is the

number of negative controls.

A generally applicable filtering approach called

the IQR filter, which eliminates genes that do not

show sufficient variation in expression across all

samples, as they tend to provide little discriminatory

power, was proposed by von Heydebreck [32] and

could be used routinely to reduce the number of

hypothesis testing [40–43]. This filter is one of the

filters implemented in the Bioconductor package

genefilter (www.bioconductor.org) and allows the

removal of genes that do not show an expression

variation over all samples greater than a user defined

threshold. The strength of such filtering procedure

is palpable when applied to the Affymetrix latin

square experiments (Figure 1), where 42 probe sets

are spiked-in with concentrations ranging from

0.125 to 512 pM in a common background. This

example highlights the fact that invariant transcripts

can be easily eradicated, although an important issue

of this filtering approach is the homogeneity of the

experimental groups. This procedure, if applied to a

data set designed to identify cell cycle genes such as

Spellman [44], will be inefficient since the vast

majority of the genes are characterized by repetitive

wave-like fluctuations.

Figure 1: IQR filtering on HGU133A latin square experiments. Forty-two probe sets are spike-in at concentration
ranging from 0.125 to 512 pM in a common background. It removes all probe sets which are not characterized by a
broad inter-quantile range within the various samples. (A) Unfiltered complete set. (B) IQR filtering at 0.125. (C) IQR
filtering at 0.5.This has a tremendous effect in the spike-in experiments, since they are based on a concentration curve
from 0 to 512 pM.

270 Cordero et al.



DIFFERENTIAL EXPRESSION
DETECTION
Extracting biological information from microarray

data requires appropriate statistical methods. Much

work has been done to optimize conventional

statistical tests to the limited experimental structure

usually available in microarray experiments. The

main issue in differential expression analysis is the

experiment group size, which is always smaller than

the number of tests (transcripts) to be investigated.

Due to the limited sample size of the majority of

experiments involving microarray analysis, statistical

tools simply work like a filter that highlights the most

significant differentially expressed transcripts, but do

not represent the ultimate validation of the differ-

ential expression. Transcripts detected by statistical

analysis need to get back to the wet laboratory to

confirm their differential expression. Furthermore,

the integration of different pre-processing steps

combined with different statistics does not necessarily

detect the same subset of differentially expressed

transcripts [45, 46].

Each combination of methods will attain some

but not all true signals (Figure 2). At the same time

each combination of methods will get some false

signals (Figure 2). The trick is to find the best

condition to maximize true signals, while minimiz-

ing fakes. However, the only way to define the best

combination of methods is to know the differential

expressed subset of transcripts, which is not known

since it is the goal of a differential expression analysis.

Using benchmark experiments, however, it is possi-

ble to evaluate the performances of different

methods [45, 47] in order to identify which

method better fits to a specific experimental

structure.

The works of Choe [47] and that of Jeffery [45]

investigate different aspects of differential expression

analysis. Choe compares the performances of two

moderated t-test statistics, significance analysis of

microarrays (SAM) [48] and CyberT [49] in the

identification of differentially expressed transcripts in

an experiment that resembles the vast majority of

microarray experiments designed to highlight the

transcriptional events involved in a biological treat-

ment. Jeffery evaluates the performances of SAM,

empirical bayes t-statistics [50], rank products [51]

and other statistics to select meaningful features to be

used for classification studies.

SAM is a well-known software within the

biological scientific community, in its t-statistic a

constant value is added to the standard deviation.

This constant is called the ‘fudge factor’ and it is

chosen to minimize the dependence of the t-statistic
variance on standard deviation levels. However, it

has been found that SAM does not control well

FDR [52–54]. A recent paper of Zhang [55] also

indicates that even the most recent improvements in

SAM (sam2.20) still produce erroneous and even

conflicting results under certain situations.

CyberT [49] models the standard deviation as

a function of signal intensity and its functionality

was further enhanced by other linear modelling

approaches such as that proposed by Smyth [50] and

implemented in the limma Bioconductor package.

In particular, CyberT was limited to two-sample

control versus treatment designs and its model did

not distinguish between differentially and non-

differentially expressed genes. Furthermore, CyberT

was not characterized by consistent estimators for the

hyperparameters [50] and the degrees of freedom

associated with the prior distribution of the variances

was set to a default value, while the prior variance

was simply equated to locally pooled sample

variances [50]. Despite these limitations, Choe’s

paper [47] shows that CyberT performs better than

SAM.

The Rank products method [51], implemented

in the RankProd Bioconductor package, is based

on calculating rank products (RP) from replicate

experiments. It is a straightforward and statistically

Figure 2: Detection of differential expression inte-
grating different data pre-filtering and statistics. DE: the
full set of differentially expressed transcripts associated
to a specific biological process. I^III: different integration
of pre-filtering and statistical approaches.
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stringent way to determine the significance level for

each gene and allows for the flexible control of the

false-detection rate and family-wise error rate in the

multiple testing situation of a microarray experiment.

RP is more powerful and accurate for sorting genes

by differential expression than SAM, in particular

with low number of replicates (<10), which are most

commonly used in biological experiments [51].

Furthermore, its relative performance is particularly

strong when the data are contaminated by non-

normal random noise or when the samples are very

non-homogenous [56]. RP does however assume

equal measurement variance for all genes and tends

to give overly optimistic P-values when this assump-

tion is violated. It is therefore essential that proper

variance stabilizing normalization is performed on

the data before calculating the RP values [56].

Where this is impossible, another rank-based variant

of RP (average ranks) provides a useful alternative

with very similar overall performance [56].

Choe results combined with the description of

the limits of SAM and RP suggest that the empirical

bayes statistic [50] probably represents the most

robust way of identifying differential expression in

small experiments designed to have a mechanical

view of a biological treatment.

The definition of the best statistical approach

could however be different if the task is the features

selection for classification purposes. The work of

Jeffery [45] highlights the fact that data set charac-

teristics affect the performances of the applied

statistics. The empirical bayes statistic represents an

accurate way to select features unless datasets have

high pooled variance or a low number of samples.

In this case, RP has been proved useful.

Although two-sample differential expression ana-

lysis is probably the most common experiment,

multi-series time-course microarray experiments are

useful approaches for exploring biological processes.

In these types of experiments, the researcher is

frequently interested in studying gene expression

changes over time and in evaluating trend differences

between the various experimental groups. The large

amount of data, multiplicity of experimental condi-

tions and the dynamic nature of the experiments

pose great challenges to data analysis. A comprehen-

sive review of research in time series expression data

analysis was published by Bar-Joseph in 2004 [57].

Recently, Conesa has published two methods for

time-course microarray data analysis [58, 59]. One is

maSigPro [59], and is part of Bioconductor packages.

This method follows a two-step regression strategy in

order to find genes with significant temporal exp-

ression changes and significant differences between

experimental groups. As a first step, a regression fit

for each gene is computed and the P-value associated
to the F-statistic of the model is computed and

corrected for multiple comparisons by applying FDR

procedure [60]. As a second step, a variable selection

procedure [61] to find significant variables for each

gene is applied. This will ultimately be used to find

what are the profile differences between experi-

mental groups.

The other is ANOVA-SCA [58] and combines

ANOVA-modeling and a dimension reduction

technique to extract targeted signals from data by-

passing structural noise. ANOVA-SCA basically

applies PCA to the estimated parameters in each

source of variation of an ANOVA model. ANOVA-

SCA seems an effective approach for separating the

data variability present in a complex time course

experiment to extract the signal of interest from

noisy data. The selection of significant genes is done

by means of two statistics: leverage and squared

prediction error (SPE). Leverage is a measure of the

importance of a variable (i.e. transcript) in the PCA

model and SPE is a measure of the fit of the model

for that specific gene. High leverage and low SPE

transcripts are transcripts that vary according to the

main trend and correspond to major molecular

functions affected by the treatment. High SPE

transcripts are model diverging data and would

correspond to responsive genes with a minority

pattern. Low leverage transcripts show low variance

and encode functions less specific in the bulk

response.

Angelini and coworkers [62] have recently

described a fully Bayesian approach to detect

differentially expressed genes in time-course experi-

ments. Their approach allows to explicitly use

biological prior information and deals with various

technical difficulties that arise in microarray time-

course experiments such as a small number of

observations, non-uniform sampling intervals, miss-

ing or multiple data and temporal dependence

between observations for each gene. Authors

compared their method with that implemented in

R-package time course [63] and in the EDGE

software [64] claiming that their algorithm provides

results which are much closer to a ‘biologist’s choice’

and delivers a lower percentage of false positive and

negative answers than other algorithms.
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Fischer and coworkers [65] have compared

methods for identifying differentially expressed

genes on time-series microarray data simulated

from artificial gene networks. They suggest the use

of ANOVA variants of Cui and Churchill [66] on

the bases of simulated data and Efron and Tibshirani’s

empirical Bayes Wilcoxon rank sum test [67] in the

case experimental background cannot be effectively

corrected. Shi [68] has instead proposed an approach,

based on a probabilistic continuous hidden process

model (CHPM), to identify the various biological

processes involved in a specific biological experi-

ment. This method integrates time series expression

data with GO biological processes, modelling the

observed gene expression levels as being generated

by a combination of multiple GO biological pro-

cesses whose activity levels vary over time.

BIOLOGICALKNOWLEDGE
EXTRACTION
Extracting clear and coherent hypotheses from

genome-wide expression data remains an important

challenge. Much of the initial work has focused on

the development of techniques for accurate identi-

fication of differentially expressed genes and their

statistical significance in a variety of experimental

designs. However, the main difficulty in analysis lies

not in the identification of differentially expressed

genes but in their interpretation. Attempting to

understand individual genes on a list of significant

genes is demanding and laborious. The problem is

compounded when the pathway of interest involves

moderate effects that are not captured by the genes

near the top of the list. Recent efforts have therefore

focused on the discovery of biological pathways

rather than individual gene function, with the

development of methods that can withstand the

inaccuracies of specific gene estimates and provide a

more expansive view of the underlying processes.

Pathway analysis
Hosack [46], showed that prevalent biological

themes within the set of differentially expressed

transcripts derived from the same experiment, but

using different transcript selection methods, are a

stable representation of the biology underlying the

experiment. Therefore, even though differentially

expressed transcript lists have only partial overlap [46]

they all represent subsets of transcripts associated to a

specific biological event (Figure 2).

A much used database for the functional annota-

tion of transcription profiling is the GO [37]. GO is

however marked by flaws of certain characteristic

types, due to a failure to address basic ontological

principles [69, 70]. This problem has been recently at

least partially overcome thanks to the availability, as

commercial data mining databases, of highly struc-

tured knowledge ontologies. Some of the databases

are produced by automatic extraction of biological

knowledge by means of text mining algorithms, e.g.

Ariadne Genomics’ PathwayStudio (http://www.

ariadnegenomics.com/), others are mainly based

on manual curating, e.g. Ingenuity (www.ingenu

ity.com). The strength of databases such as Ingenuity

is not the availability of new statistical methods

or proprietary graphical algorithms to depict the

relation between functional pathways and differen-

tially expressed transcripts, but the availability of

manually curated and fully traceable data derived

from primary literature sources.

Routinely, both over- and under-representation

of ontology terms can be detected using the standard

hypergeometric test [71]. In probability theory and

statistics, the hypergeometric distribution is a discrete

probability distribution that describes the number of

successes in a sequence of n draws from a finite

population without replacement. The test based on

the hypergeometric distribution is identical to the

corresponding one-tailed version of Fisher’s exact

test. Reciprocally, the P-value of a two-sided

Fisher’s exact test can be calculated as the sum of

two appropriate hypergeometric tests. Even though

ontology enrichment approaches are widely used,

only the most significant portion of the gene list is

used to compute their statistic. Furthermore, the

order of genes on the significant gene list is not taken

into consideration. As a result simply counting the

number of gene set members contained in the short

list leads to loss of information, especially if the list is

long and the difference between the more significant

and the less significant is substantial. Finally, the

correlation structure of gene sets is not considered at

all [72]. More recently, Alexa [73] proposed a

conditional hypergeometric test that computes the

significance of a GO term based on its neighbour-

hood. Using the classical approach in which each

node is scored independently, only few true

significant nodes remain undiscovered. However,

the dependencies between top scoring nodes

yield a high false-positive rate. Alexa introduced

the possibility of weighting genes annotated to a GO
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term based on the scores of neighboring GO terms

or iteratively removing genes mapped to significant

GO terms from more general (higher level) GO

terms. The conditional hypergeometric test based on

GO terms weightings reduces the false-positive rate,

while not missing many true enriched nodes. The

other conditional test is more efficient in finding the

important areas in the GO graph, it also further

reduces the false-positive rate, but with a higher risk

of discarding relevant nodes.

A different use of GO is that applied in the

SemSim Bioconductor package, which allows the

estimation of information content-based similarity

scores of GO terms and gene products [74–76].

GO-based semantic similarity scores can be used to

perform annotation-based clustering as described

by Wolting [77]. Furthermore, the availability of

methods like simUI and simLP in the GOstats

package [71], which allow the estimation of

similarity between lists of differentially expressed

genes derived by the induced GO graphs, can be

extremely useful to detect the presence of common

regulative pathways in meta-analysis experiments

made in different laboratories and/or different

microarray platforms and biological models.

The integration of transcription profiles with biol-

ogy knowledge bases (e.g. GO, KEGG, PUBMED,

etc.) is another way of mapping differentially

expressed transcripts in specific biology knowledge

domains. A coordinated change among many gene

products can produce potent biological effects, while

the effect of each individual transcript can be subtle.

The identification of pathways distinctively enriched

within a set of differentially expressed transcripts

can also be subsequently used to check if more

subtle transcriptional variations, not considered in

the stringent differential expression analysis, could

also be used to strengthen the biological mean of

the identified pathway. Another possible applica-

tion could be the link of alternative splicing

events, detected with the new exon-oriented

Affymetrix microarray platform, to functional path-

ways depicted by conventional differential expres-

sion analysis.

Two of the most used statistics to evaluate the

association between functional pathways and differ-

ential expression are the one-tailed Fisher exact test,

(FET) [46, 78, 79] and Gene Set Enrichment

Analysis (GSEA) [80]. FET is a statistical significance

test used in the analysis of categorical data where

sample sizes are small. The test is used to examine the

significance of the association between two variables

in a 2� 2 contingency table. GSEA on the other

hand evaluates microarray data at the level of genesets.
The gene sets are defined based on prior biological

knowledge, e.g. published information about bio-

chemical pathways or co-expression in previous

experiments. The goal of GSEA is to determine

whether members of a gene set S tend to occur

toward the top (or bottom) of the list L, in which

case the gene set is correlated with the phenotypic

class distinction. GSEA acts through three steps:

(i) Calculation of an enrichment score.

(ii) Estimation of significance level of enrichment

score.

(iii) Adjustment for multiple hypothesis testing.

Since an accurate and rapid identification of

perturbed pathways through the analysis of genome-

wide expression profiles facilitates the generation of

biological hypotheses, Tian [81] proposed a statistical

framework for determining whether a specified

group of genes for a pathway has a coordinated

association with a phenotype of interest. In this

framework, the overall objective of the analysis is to

test whether a group of genes has a coordinated

association with a phenotype of interest evaluating

the following two null hypothesis:

(i) The genes in a gene set show the same pattern

of associations with the phenotype compared

with the rest of the genes.

(ii) The gene set does not contain any genes whose

expression levels are associated with the pheno-

type of interest.

After the test statistics are computed for testing the

two hypotheses gene sets are then ranked in order of

their significance and a control for the inflated Type I

error due to multiple comparisons of gene sets is also

applied. The authors claimed that their approach has

more statistical power than currently available

methods and can result in the discovery of statistically

significant pathways that are not depicted by other

methods [81].

Markowetz proposed an algorithm to infer non-

transcriptional pathway features based on differential

gene expression in silencing assays [82]. The author’s

idea is that cellular signalling pathways, which are

not modulated on a transcriptional level, cannot

be directly deduced from expression profiling
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experiments. However, when external interventions

occur i.e. RNA interference or gene knock-outs,

even if the expression of the signalling genes is not

changed, secondary effects in downstream genes shed

light on the pathway, and allow partial reconstruc-

tion of its topology. The core of Markowetz’

approach is the definition of a scoring function,

which measures how well hypotheses about pathway

topology are supported by experimental data.

Promoter analysis
Since microarray data produce a representation of

the effect of a specific treatment on the transcrip-

tional machinery, it is extremely important to link

the transcriptional output signals, measured by

microarray analysis, to promoter elements common

to a subset of differentially expressed genes.

In order to perform this association, it is necessary

to grasp the hidden structure of eukaryotic promo-

ters. Here, we summarize the characteristics of some

of the available methods for transcription-binding

site identification.

The computational discovery of regulatory ele-

ments is humanly possible because they occur several

times in the same genome and because they may be

evolutionarily conserved among different species.

This means that novel regulatory elements may be

discovered by searching for overrepresented motifs

across regulatory regions [83]. This apparently simple

approach is complicated by the fact that most

transcription factor binding sites (TFBSs) are short,

and they can have some variation without loss of

function. Therefore, most motifs are also found as

random hits throughout the genome, and it is a

challenging problem to distinguish between false

positive hits and true positive binding sites. Motif

finding is essentially a signal-to-noise problem. It has

been estimated that in human DNA about 3% of

inter-genic regions are regulatory elements [84]. For

this reason, most algorithms to identify the genomic

regulatory elements use orthogonal data. Several

algorithms include additional prior knowledge about

gene regulation; regulatory elements are not ran-

domly distributed, but tend to form clusters of

regulatory modules [85], and the presence of co-

occurring motifs can be used to identify putative

regulatory modules. Functional sequences are pre-

ferentially conserved over the course of evolution by

selective pressure. This is another characteristic,

along with over-representation, applied by Corà

[86] to determine TFBSs in the human genome.

The hypothesis that many orthologous genes are

expressed similarly in a tissue-specific manner in

human and mouse and are likely to be co-regulated

by orthologous transcriptional factors (TF) is the base

of the cis-regulatory regions search [87].

Usually, the TFBSs are represented by a ‘consen-

sus sequence’. Consensus sequence has been widely

used to represent the specificity of TF. However, the

consensus sequence is not flexible enough to account

for all variations: in general, it refers to a sequence

that matches all of a site closely, but not necessarily

exactly [88]. An alternative to consensus sequence

is a position weight matrix (PWM) or profile. The

PWM summarizes the statistical properties of

a collection of TF binding sites and represents the

DNA sequences. The PWM is the formalism to

represent DNA motifs bound to a particular TF

because it contains two kinds of knowledge: the

thermodynamic interactions between TF and DNA

and the evolutionary selection [89]. The underlying

assumptions are that natural selection gave rise to a

certain level of sequence specificity for each TF and

that sequences that gave rise to the same physically

binding affinity are equally likely to be selected [90].

A new algorithm to build PWM was implemented

by Foat [91], MatrixREDUCE that uses genome-

wide occupancy data for TF (e.g. ChIP-chip).

A microarray measurement of TF occupancies and

relevant nucleotide sequences for each microarray

feature are used as input to MatrixREDUCE. The

algorithm performs a least-squares fit to a statistical–

mechanical model of TF–DNA interaction, in order

to discover the relative contribution to the free

energy of binding for each nucleotide at each posi-

tion in the generalized TF binding site. The measure

of significance for the PWM is commonly given by

information content of Equation (1), IC, also called

relative entropy [92]:

IðpÞ ¼
XL

j¼1

XT

i¼A

fi; j log
fi; j
Pi

ð1Þ

where p is a pattern, L is the pattern length, i is the
index of a base at position j of the PWM, fi,j is the
frequency of the base i at position j of the PWM, and

Pi is the probability of observing that base in the data.

The IC is the weighted average for the binding

energies from each of the sites represented in the

matrix, the lower the IC, the higher the variability in

the site [93].

Currently, there are two comprehensive and

annotated databases that contain information on
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TFs binding site profiles. JASPAR [94] contains a

smaller set that is non-redundant (each TF has only

one profile), while TRANSFAC [95] contains

multiple profile models for some TFs. The discovery

of motifs in sequence data was an early problem to

be addressed in computational biology. The DNA

motif discovery algorithms that have been developed

can be divided into three main groups:

� Complete ab initio methodologies: parameter-free

algorithms for de novo identification of potential

TFBS. This group contains all methodologies that

implement a simple search for the most probable

subsequence in a set of sequences. In this case,

there are no assumptions about the biological

features of the sequences.

� Partial ab initio methodologies: algorithms that

assume some biological knowledge. There are two

categories of algorithms: the first contains algo-

rithms that use ‘complementary information’ (see

below), while the second contains algorithms

which assume that the found subsequences are

possible TFBS, and describes a sequence motif by

means of a position-specific scoring matrix.

� Matrix-based methodologies: algorithms detect

potential TFBS by a sliding window search, with

one specific PWM, of a match subsequences.

An example of a complete ab initiomethodology is

Weeder [96]. This algorithm extends the exhaustive

enumeration of signals without giving as input the

exact length of the patterns to be found. Each motif

is evaluated according to the number of sequences in

which it appears and how well it is conserved in each

sequence with respect to expected values derived

from the oligo frequency analysis of upstream

sequences in the same organism. The algorithm

then compares the top-scoring motifs of each run

with a clustering method to detect which ones could

be more likely to correspond to a TFBS. The

consensus for a set of TFBSs can be seen as a perfect

form recognized by a TF. The algorithm then

enumerates all the possible oligos of the same length

of the motif to be found. For each one, it counts

how many times it appears in the sequences. The

sequences that are overrepresented form a new set of

sequences. It then ranks the motifs found according

to some statistical measure and gives as output the

highest-ranking motifs.

Another algorithm in this category is Yeast Motif

Finder (YMF), written by Sinha [97]. YMF uses an

exhaustive search algorithm to find motifs with the

greatest z-score. The z-score of a motif is the

number of standard deviations by which its observed

number of instances in the actual input sequences

exceeds its expected number of instances.

Both algorithms do not need any input para-

meter. With many parameters to set, the user

explores the parameter space and makes arbitrary

judgment calls on which output to trust. Different

studies have shown the programs to be quite sensitive

to parameters [98].

However, the algorithms that used ‘complemen-

tary information’, as overrepresented in evolution-

arily conserved upstream regions or infer about

co-regulation (GO and results of a set of microarray

experiments), improve the signal/noise ratio by

selecting for analysis those portions of the upstream

regions that are more likely to be functionally

relevant [86]. These methodologies are grouped in

the ‘Partial ab initio’ set. An example is the algorithm

by Caselle [99], where the genome is grouped in sets

based on words that are overrepresented in the

upstream region, and their frequencies in the ref-

erence sample are then compared to the whole

genome. For each of these sets, they compare the

average expression in microarray experiments with

the genome-wide average. If the difference is

statistically significant, the set is a putative TFBS.

Other examples in the ‘Partial ab initio’ set are

algorithms that used a different type of ‘comple-

mentary information’. One example is Consensus.

This algorithm employs a greedy heuristic [100] and

builds up an entire alignment of the sites by adding

in a new one at each iteration. The best alignment of

a potential site is the one with highest information

content. The goal of Consensus is then to determine

a sequence alignment that maximizes log-likelihood

statistics described in a PWM. An expectation-

maximization (EM) method was implemented in the

MEME program [101]. MEME method allows for

the simultaneous identification of multiple patterns,

the starting point derived from each subsequence

occurring in the input sequences. For every sub-

sequence, the algorithm evaluated the quality and

the accuracy of the statistical significance by a pro-

duct of the P-value of column information contents.

In the latter two algorithms, the basic assumption is

that the sequences that are overrepresented in the

genome are putative TFBSs; they then consider the

alignments for every motif as a starting point on

which to build a PWM.
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The third group is a set of methodologies which

search for the presence of a PWM in all sequence

positions using a sliding window approach. One

example is MatInspector [102]: this algorithm detects

potential sequence matches by automatic searches

with a library of pre-compiled matrices. The search

method includes position weighting of the matrices

based on the information content of individual posi-

tions and calculates a relative matrix similarity.

Another example is Patser [103]. This algorithm

computes the numerical estimation of the P-value of
the match score between a subsequence and a

specific matrix. The P-value is the probability of

observing a particular score at a particular sequence

position. The motif with the highest P-value is a

putative TFBS.

Tools allowing the integration of microarray data

with promoter structure information have been

developed [104–109]. The software developed by

Kel [104, 106] is commercially available (Explain

software, www.biobase.de) and uses a genetic algo-

rithm to predict relevant promoters in a set of given

transcripts obtained from microarray analysis, taking

advantage of the promoter element matrix database

TRANSFAC [110–112]. Werner software [107, 108]

is also a commercial tool where promoter elements

are identified usingMatInspector [113]. Tamada [109]

instead has developed a statistical method for esti-

mating gene networks and detecting promoter

elements simultaneously. This method integrates

microarray gene expression data and the DNA

sequence information into a Bayesian network

model. The basic idea of the method is that, if a

parent gene is a TF, its children may share a consensus

motif in their promoter regions of the DNA

sequences. The method detects consensus motifs

based on the structure of the estimated network and

then re-estimates the network using the result of the

motif detection.

Although these data mining tools could enable

a better comprehension of the complex mechanism

of regulation associated to transcription profiling,

it should be pointed out that their main limits are

related to the quality of the promoter level anno-

tation. A statistic comparing the accuracy of the main

tools to discover TFBSs is found in Tompa [114], but

it is very difficult to compare the performance of

methods, in particular on complex genomes like the

human genome.

If sufficient a priori knowledge is available, it is

possible to reconstruct the gene target network for at

least one TF using the method proposed by Barenco

[115], which is based on a mathematical technique

known as hidden variable dynamic modelling

(HVDM). This approach is based on a simple

differential equation model that uses hidden infor-

mation to partially reconstruct, with confidence

intervals, the TF target network. The HVDM takes

advantage of prior biological knowledge to create a

training set of genes, the behaviour of which can be

used to derive the activity profile of the controlling

TF. The method needs quite a lot of input

information, thus rendering its use not easily

generally applicable:

(i) Expression time course microarray data, con-

sisting of at least five time points.

(ii) Some prior biological knowledge about the TF

under review, e.g. at least three genes in the

training set, should be known to be targets of

that TF and presumed to be targets of that TF

only.

(iii) The transcript degradation rate of one of the

known targets, measured in an independent

experiment.

(iv) The technical measurement error for each

expression value should be known.

CONCLUSIONS
In this review, we have touched upon some of the

approaches used for microarray data analysis. The

numerical analysis of microarray is now considerably

consolidated and when new methods appear they

mainly allow for a refinement of the numerical data.

However, the true integration of numerical analysis

and biological knowledge is still a long way off.

The main reason for this lack of integration is the

low amount of functional gene annotation and the

difficulties of the integration of the massive amount

of biological data which are daily published by the

scientific community. A further critical issue in high

eukaryotes data integration is due to data hetero-

geneity, which manifests itself in multiple tiers of

the biological information base and is a major barrier

to progress in the fundamental understanding of

biological processes; an example being that biological

results produced in in-vitro models (e.g. immortalized

cell lines) are very useful for investigating specific

biological events but they are not representative of

the global behavior of a gene in different tissues.
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