
Exercises of Petersen’s Riemannian Geometry

Peter Petersen

Zujin Zhang

January 14, 2010

To my parents, Jihe Zhang and Yulan Ouyang

Contents

1 Riemannian Metrics 2

2 Curvature 7

3 Examples 29

4 Hypersurfaces 34

5 Geodesics and Distance 38

6 Sectional Curvature Comparison I 43

1



Zujin Zhang 2

1 Riemannian Metrics

1.1 On product manifolds M × N one has special product metrics g =

gM + gN , where gM , gN are metrics on M,N respectively.

∙ Show that (ℝn, can) = (ℝ, dt2)× ⋅ ⋅ ⋅ × (ℝ, dt2).

∙ Show that the flat square torus

T 2 = ℝ2/ℤ2 =

(
S1,

(
1

2�

)2

d�2

)
×

(
S1,

(
1

2�

)2

d�2

)
.

∙ Show that

F (�1, �2) =
1

2�
(cos �1, sin �1, cos �2, sin �2)

is a Riemannian embedding: T 2 → ℝ4.

Proof. ∙ canℝn =
n∑
i=1

(dxi)2.

∙ Note that(
1

2�

)
d(�1)

2 +

(
1

2�

)
d(�2)

2 =

(
d

(
�1
2�

))2

+

(
d

(
�1
2�

))2

,

where �1, �2 ∈ [0, 2�).

∙ ★ F is injective.

sin �1 = sin �2, cos �1 = cos �2 ⇒ � = 0.

★ dF is injective.

dF (∂�1) =
1

2�
(− sin �1, cos �1, 0, 0),
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Figure 1: The isometry between T 1 and S1 with metric above

dF (∂�2) =
1

2�
(0, 0,− sin �2, cos �2).

dF (�∂�1 + �∂�2) = 0⇒ � = 0 = �.

★ F is a Riemannian embedding.

Just note that

F ∗canℝ4 =

(
d

(
1

2�
cos�1

))2

+ ⋅ ⋅ ⋅

=

(
1

2�

)2 (
(d�1)

2 + (d�2)
2) .

1.5 Let G be a Lie group.

∙ Show that G admits a bi-invariant metric, i.e. both right and left

translation are isometries.
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∙ Show that the inner automorphism Adℎ(x) = ℎxℎ−1 is a Rieman-

nian isometry. Conclude that its differential at x = e denoted by

the same letters

Adℎ : g→ g

is a linear isometry with respect to g.

∙ Use this to show that the adjoint action

adU : g→ g,

adU(X) = [U,X]

is skew-symmetric, i.e.,

g([U,X], Y ) = −g(X, [U, Y ]).

Proof. ∙ Let gL be a left-invariant metric, i.e.

gL(v, w) = gL((dLx−1)x(v), (dLx−1)x(w)),

∀ v, w ∈ TxG, x ∈ G.

Let E1, ⋅ ⋅ ⋅ , En the left-invariant orthonormal vector fields, �1, ⋅ ⋅ ⋅ , �n

the dual 1-forms. Thus the volume form

! = �1 ∧ ⋅ ⋅ ⋅ ∧ �n.

Define

g(v, w) =
1∫
!

∫
gL(DRx(v), DRx(w))!.

We have
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★ g is left-invariant.

g((DLy)e(v), (DLy)e(w))

=
1∫
!

∫
gL((DRx)y ∘ (DLy)e(v), (DRx)y ∘ (DLy)e(w))!

=
1∫
!

∫
gL((DLy)x ∘ (DRx)e(v), (DLy)x ∘ (DRx)e(w))!

(Rx ∘ Ly = Ly ∘Rx)

=
1∫
!

∫
gL((DRx)e(v), (DRx)e(w))!

(gL is left-invariant)

= g(v, w), ∀ v, w ∈ TeG; y ∈ G.

★ g is right-invariant.

g((DRy)e(v), (DRy)e(w))

=
1∫
!

∫
gL((DRx)y ∘ (DRy)e(v), (DRx)y ∘ (DRy)e(w))!

=
1∫
!

∫
gL((DRyx)e(v), (DRyx)e(w))!

=
1∫
!

∫
gL((DRz)e(v), (DRz)e(w))!

( change of variables: z = yx )

= g(v, w), ∀ v, w ∈ TeG; y ∈ G.

∙ Indeed,

Adℎ = Lℎ ∘Rℎ−1 ,

thus its differential

D(Adℎ) = (DLℎ) ∘ (DRℎ−1),
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and

g(Adℎ(v), Adℎ(w))

= g(D(Adℎ)e(v), D(Adℎ)e(w))

= g((Dℎ)xℎ−1 ∘ (DRℎ−1)x(v), (Dℎ)xℎ−1 ∘ (DRℎ−1)x(w))

= g(v, w), ∀ v, w ∈ TeM,

i.e. Adℎ is a linear isometry w.r.t. g.

∙ By the second assertion,

g(Adexp(tU)X,Adexp(tU)Y ) = g(X, Y ), ∀X, Y ∈ g.

Differentiating the above equality at t = 0, we get

g(adUX, Y ) + g(X, adUY ) = 0,

i.e.

g([U,X], Y ) = −g(X, [U, Y ]).

1.6 Let V be a n-dimensional vector space with a symmetric nondegenerate

bilinear form g of index p.

∙ Show that there exists a basis e1, ⋅ ⋅ ⋅ , en such that g(ei, ej) = 0

if i ∕= j, g(ei, ei) = −1 if i = 1, ⋅ ⋅ ⋅ , p and g(ei, ei) = 1 if i =

p+ 1, ⋅ ⋅ ⋅ , n. Thus V is isometric to ℝp,q .

∙ Show that for any v we have the expansion

v =
n∑
i=1

g(v, ei)

g(ei, ei)
ei = −

p∑
i=1

g(v, ei)ei +
n∑

i=p+1

g(v, ei)ei.
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∙ Let L : V → V be a linear operator. Show that

tr(L) =
n∑
i=1

g(L(ei), ei)

g(ei, ei)
.

Proof. Indeed, nothing need to show if one is familiar with the theory

of quadratic forms!

2 Curvature

2.1 Show that the connection on Euclidean space is the only affine connec-

tion such that ∇X = 0 for all constant vector fields X.

Proof. If ∇X = 0, ∀ X = ai∂i, with ai constant, then for ∀j,

0 = ∇∂jX = ∇∂j(a
i∂i)

= (∂ja
i)∂i + ai∇∂j∂j = ai∇∂j∂i

= aiΓkji∂k,

i.e.

Γkij = 0, ∀ i, j, k,

the connection is flat.

2.2 If F : M → M is a diffeomorphism, then the push-forward of a vector

field is defined as

(F∗X)∣p = DF (X∣F−1(p)).

Let F be a isometry on (M, g).

∙ Show that F∗(∇XY ) = ∇F∗XF∗Y for all vector fields.
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∙ If (M, g) = (ℝ, can), then isometries are of the form F (x) =

Ox+ b, where O ∈ O(n) and b ∈ ℝn.

Proof. ∙ By Koszul formula, we have for ∀Z ∈ X (M),

g(F∗(∇XY ), F∗Z) ∘ F = (F ∗g)(∇XY, Z)

=
1

2
[X((F ∗g)(Y, Z)) + Y ((F ∗g)(Z,X))− Z((F ∗g)(X, Y ))

+(F ∗g)(Z, [X, Y ]) + (F ∗g)(Y, [Z,X])− (F ∗g)(X, [Y, Z])]

=
1

2
[X(g(F∗Y, F∗Z) ∘ F ) + Y (g(F∗Z, F∗X) ∘ F )

−Z(g(F∗X,F∗Y ) ∘ F )

+g(F∗Z, [F∗X,F∗Y ]) ∘ F + g(F∗Y, [F∗F∗Z, F∗X]) ∘ F

+g(F∗X, [F∗Y, F∗Z]) ∘ F ]

= g(∇F∗XF∗Y, F∗Z) ∘ F.

∙ If (M, g) = (ℝn, can), and F is an isometry, then due to

0 = F∗(∇∂i∂j) = ∇F∗∂iF∗∂j,

we have

∇F∗∂j = 0.

Thus
∂2Fi
∂xj∂xk

= 0, ∀ i, j, k.



Zujin Zhang 9

While, F is an isometry implies

�ij = ⟨∂i, ∂j⟩

= ⟨F∗∂i, F∗∂j⟩

=

〈
∂Fi
∂xk

∂k,
∂Fj
∂xl

∂l

〉
=

∑
k

∂Fi
∂xk

∂Fj
∂xk

.

i.e. [
∂Fi
∂xj

]
∈ O(n).

Thus Taylor’s expansion tells us

F = Ox+ b,

with O ∈ O(n), b ∈ ℝn.

2.4 Show that if X is a vector field of constant length on a Riemannian

manifold, then ∇vX is always perpendicular to X.

Proof.

0 = Dvg(X,X) = 2g(∇vX,X).

2.5 For any p ∈ (M, g) and orthonormal basis e1, ⋅ ⋅ ⋅ , en for TpM , show

that there is an orthonormal frame E1, ⋅ ⋅ ⋅ , En in a neighborhood of p

such that Ei = ei and (∇E)∣p = 0.
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Proof. Fix an orthonormal frame Ei near p ∈ M with Ei(p) = ei. If

we define Ei = �jiEj, where [�ji (x)] ∈ SO(n) and �ji (p) = �ji , then this

will yield the desired frame provided that the Dek�
j
i are prescribed as

0 = Dek(�jiEj) = Dek�
j
iEj + �jiDekEj.

2.7 Let M be a n-dimensional submanifold of ℝn+m with the induced met-

ric and assume that we have a local coordinate system given by a

parametrization xs(u1, ⋅ ⋅ ⋅ , un), s = 1, ⋅ ⋅ ⋅ , n + m. Show that in these

coordinates we have:

∙

gij =
n+m∑
s=1

∂xs

∂ui
∂xs

uj
.

∙

Γij,k =
n+m∑
s=1

∂xs

∂uk
∂2xs

∂ui∂uj
.

∙ Rijkl depends only on the first and second partials of xs.

Proof. ∙

gij = g

(
dxs

(
∂

∂ui

)
, dxs

(
∂

∂uj

))
= g

(
∂xs

∂ui
∂

∂xs
,
∂xt

∂uj
∂

∂xt

)
=

∂xs

∂ui
∂xt

∂uj
�st

=
∂xs

∂ui

∂xs

∂uj
.
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∙

Γij,k = Γlijglk

=
1

2
(∂jgik + ∂igjk − ∂kgij)

=
1

2
[∂j(∂ix

s∂kx
s) + ∂i(∂jx

s∂kx
s)− ∂k(∂ixs∂jxs)]

=
1

2
(∂2ijx

s∂kx
s + ∂kx

s∂2ijx
s)

= ∂kx
s∂2ijx

s.

∙

Rijkl = g(R(∂i, ∂j)∂k, ∂l)

= g(∇∂i∇∂j∂k −∇∂j∇∂ik −∇[∂i,∂j ]∂k, ∂l)

= g(∇i(Γ
p
jk∂p)−∇j(Γ

p
ik∂p), ∂l)

= ∂iΓ
p
jkgpl + ΓpjkΓ

q
ipgql − ∂jΓ

p
jikgpl − ΓpikΓ

q
jpgql,

while the terms involving third partials of xs offset:

∂px
s∂i(∂

2
jkx

s)− ∂pxs∂j(∂2ikxs) = 0.

2.8 Show that Hessf = ∇df.
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Proof.

Hessf(X, Y ) = g(∇X∇f, Y )

= Xg(∇f, Y )− g(∇f,∇XY )

= ∇X(df(Y ))− df(∇XY )

= (∇Xdf)(Y )

= (∇df)(X, Y ).

2.10 Let (M, g) be oriented and define the Riemannian volume form dvol as

follows:

dvol(e1, ⋅ ⋅ ⋅ , en) = det(g(ei, ej)) = 1,

where e1, ⋅ ⋅ ⋅ , en is a positively oriented orthonormal basis for TpM .

∙ Show that if v1, ⋅ ⋅ ⋅ , vn is positively oriented, then

dvol(v1, ⋅ ⋅ ⋅ , vn) =
√

det(g(vi, vj)).

∙ Show that the volume form is parallel.

∙ Show that in positively oriented coordinates,

dvol =
√

det(gij)dx
1 ∧ ⋅ ⋅ ⋅ ∧ dxn.

∙ If X is a vector field, show that

LXdvol = div(X)dvol.
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∙ Conclude that the Laplacian has the formula:

△u =
1√

det(gij)
∂k

(√
det(gij)g

kl∂lu

)
.

Given that the coordinates are normal at p we get as in Euclidean

space that

△f(p) =
n∑
i=1

∂i∂if.

Proof. ∙ Let vi = �jiej, then

dvol(v1, ⋅ ⋅ ⋅ , vn) =
∑

�i11 ⋅ ⋅ ⋅�inn det(ei1 , ⋅ ⋅ ⋅ , ein)

=
∑

sgn(i1, ⋅ ⋅ ⋅ , in)�i11 ⋅ ⋅ ⋅�inn

= det�ji

=
√

det�ji ⋅ det�ij

=

√
det(�ki �

j
k)

=
√

det(g(vi, vj).

∙ By Exercise 5, ∃ local orthonormal frame (Ei) around p, such that

Ei(p) = ei, ∇Ei(p) = 0.

Then for any X ∈ X (M), X = X iEi, we have

(∇Xdvol)(E1, ⋅ ⋅ ⋅ , En)

= X(dvol(E1, ⋅ ⋅ ⋅ , En))−
∑
d

vol(E1, ⋅ ⋅ ⋅ ,∇XEi, ⋅ ⋅ ⋅ , En)

= 0.

∙ This is just a direct consequence of the first assertion, i.e.

dvol(∂1, ⋅ ⋅ ⋅ , ∂n) =
√

det(gij)
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implies that

dvol =
√

det(gij)dx
1 ∧ ⋅ ⋅ ⋅ ∧ dxn.

∙

(LXdvol)(E1, ⋅ ⋅ ⋅ , En)

= LX(dvol(E1, ⋅ ⋅ ⋅ , En))−
∑

dvol(E1, ⋅ ⋅ ⋅ , LXEi, ⋅ ⋅ ⋅ , En)

= (divX)dvol(E1, ⋅ ⋅ ⋅ , En),

where we use the fact

LXEi = [X,Ei] = ∇XEi −∇Ei
X = −∇eiX = −(∇eiX

i)ei.

∙

△u ⋅ dvol = div(∇u)dvol = L∇udvol = Lgkl∂lu∂kdvol

implies that

△u ⋅ dvol(∂1, ⋅ ⋅ ⋅ , ∂n)

= (Lgkl∂lu∂kdvol)(∂1, ⋅ ⋅ ⋅ , ∂n)

= gkl∂lu(L∂kdvol)(∂1, ⋅ ⋅ ⋅ , ∂n)

+d(gkl∂lu)(∂m)dvol(∂1, ⋅ ⋅ ⋅ , ∂k, ⋅ ⋅ ⋅ , ∂n)

= gkl∂lu∂k

√
det(gij) + ∂k(g

kl∂lu)
√

det(gij)

= ∂k

(√
det(gij)g

kl∂lu

)
=

1√
det(gij)

∂k

(√
det(gij)g

kl∂lu

)
dvol(∂1, ⋅ ⋅ ⋅ , ∂n),

i.e.

△u =
1√

det(gij)
∂k

(√
det(gij)g

kl∂lu

)
.
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In normal coordinates around p,

△u =
∑

∂i∂if.

2.11 Let (M, g) be a oriented Riemannian manifold with volume form dvol

as above.

∙ If f has compact support, then∫
M

△f ⋅ dvol = 0.

∙ Show that

div(f ⋅X) = g(∇f,X) + f ⋅ divX.

∙ Establish the integration by parts formula for functions with com-

pact support:∫
M

f1 ⋅ △f2 ⋅ dvol = −
∫
M

g(∇f1,∇f2) ⋅ dvol.

∙ Conclude that if f is sub- or superharmonic (i.e. △f ≥ 0 or△f ≤

0) then f is constant. This result is known as the weak maximum

principle. More generally, one can show that any subharmonic

(respectively superharmonic) function that has a global maximum

(respectively minimum) must be constant. This result is usually

referred to as the strong maximum principle.

Proof.
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∙ ∫
M

△f ⋅ dvol =

∫
M

L∇fdvol

=

∫
M

i∇fd(dvol) + d(i∇fdvol)

= 0.

∙

div(f ⋅X)

= div(f ⋅X)dvol(e1, ⋅ ⋅ ⋅ , en)

= (Lf ⋅Xdvol)(E1, ⋅ ⋅ ⋅ , En)

= f(LXdvol)(E1, ⋅ ⋅ ⋅ , En) + df(Ei)dvol(E1, ⋅ ⋅ ⋅ , X, ⋅ ⋅ ⋅ , En)

= f(divX)dvol(E1, ⋅ ⋅ ⋅ , En) + g(∇f, Ei)g(X,Ei)

= f ⋅ divX + g(∇f,X).

∙

△(f1 ⋅ f2) = div(∇(f1 ⋅ f2))

= div(f1 ⋅ ∇f2 + f2 ⋅ ∇f1)

= f1△f2 + g(∇f1,∇f2) + f2△f1 + g(∇f2,∇f1)

= f1△f2 + 2g(∇f1,∇f2) + f2△f1.

∙ ∫
M

f1 ⋅ △f2 ⋅ dvol =

∫
M

f1 ⋅ div(∇f2) ⋅ dvol

=

∫
M

(div(f1 ⋅ ∇f2)− g(∇f1,∇f2)) ⋅ dvol

= −
∫
M

g(∇f1,∇f2) ⋅ dvol.
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∙ If △f ≥ 0, then

0 =

∫
M

△f ⋅ dvol ≥ 0,

this implies

△f = 0.

And hence

0 =

∫
M

f ⋅ △f ⋅ dvol = −
∫
M

g(∇f,∇f) ⋅ dvol,

∇f = 0,

i.e. f is constant.

For the proof of the strong maximum principle, see P280 of the book.

2.13 Let X be a unit vector field on (M, g) such that ∇XX = 0.

∙ Show that X is locally the gradient of a distance function iff the

orthogonal distribution is integrable.

∙ Show that X is the gradient of a distance function in a neigh-

borhood of p ∈ M iff the orthogonal distribution has an integral

submanifold through p.

∙ Find X with the given conditions so that it is not a gradient field.

Proof. ∙ Let X, Y2, ⋅ ⋅ ⋅ , Yn be orthonormal frame on M , and �X be

defined as

�X(Y ) = g(X, Y ), ∀ Y ∈ X (M),
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be the 1-form dual to X. ⇒: If X is locally the gradient of a

distance function, i.e. X = ∇r for some r : U(⊂M)→ ℝ. Then

�X(Y ) = g(X, Y ) = g(∇r, Y ) = dr(Y ), ∀ Y ∈ X (M),

i.e. �X = dr,d�X = d ∘ dr = 0. Hence

0 = d�X(Yi, Yj)

= Yi(�X(Yj))− Yj(�X(Yi))− �X([Yi, Yj])

= −g(X, [Yi, Yj]),

i.e.

[Yi, Yj] =
∑

ckijYk, for some ckij.

⇐: If the distribution Y = {Y2, ⋅ ⋅ ⋅ , Yn} is integrable, then

g([Yi, Yj], X) = 0.

We claim that d�X = 0 then.

✓

d�X(X,X) = X�X(X)−X�X(X)− �X([X,X]) = 0,

✓

d�X(X, Yi) = X�X(Yi)− Yi�X(X)− �X(X, Yi)

= Xg(X, Yi)− Y g(X,X)− g(X, [X, Y ])

= g(∇XX, Yi) + g(X,∇XYi)

−g(∇YiX,X)− g(X,∇YiX)

−g(X, [X, Yi])

= g(∇XX, Y )− 1

2
Y g(X,X)

= 0,
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✓

d�X(Yi, Yj) = Yi�X(Yj)− Yj�X(Yi)− �X([Yi, Yj]) = 0.

Next, we shall show X = ∇r for some r : U(⊂M)→ ℝ.

Indeed, in local coordinates, written X = X i∂i, we have

0 = d�X(∂i, ∂j)

= ∂ig(X, ∂j)− ∂jg(X, ∂i)

= ∂i(X
kgkj)− ∂j(Xkgki).

Then a simple mathematical analysis leads to the fact that

Xkgki = ∂ir, i = 1, 2, ⋅ ⋅ ⋅ , n,

for some r : U(⊂M)→ ℝ. Hence

X = X i∂i = gij∂jr∂i = ∇r,

as desired.

∙ This is just a consequence of the first assertion and the Frobenius

integrability Theorem for vector fields.

∙ We consider S3 = SU(2) with bi-invariant metric, so that

g(Xi, Xj) = �ij,

where

X1 =

⎡⎣ i 0

0 −1

⎤⎦ , X2 =

⎡⎣ 0 1

−1 0

⎤⎦ , X3 =

⎡⎣ 0 i

i 0

⎤⎦ .
Our claim is then that ∇X1X1 = 0 while [X2, X3] = 2X1. Thus

X1 is not locally a gradient field.
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✓ [X2, X3] = 2X1.

Indeed, [Xi, Xi+1] = 2Xi ( indices are mod 3 ).

✓ ∇X1X1 = 0.

This follows from the Koszul Formula and the Lie bracket just

determined.

2.14 Given an orthonormal frame E1, ⋅ ⋅ ⋅ , En on (M, g), define the structure

constants ckij by [Ei, Ej] = ckijEk. Then define the Γs and Rs as

∇Ei
Ej = ΓkijEk,

R(Ei, Ej)Ek = Rl
ijkEl

and compute them in terms of cs. Notice that on Lie groups with

left-invariant metrics the structure constants can be assumed to be

constant. In this case, computations simplify considerably.

Proof. ∙ Γkij is just computed by Koszul Formula.

2Γkij = 2g(∇Ei
Ej, Ek)

= Eig(Ej, Ek) + Ejg(Ek, Ei)− Ekg(Ei, Ej)

+g(Ek, [Ei, Ej]) + g(Ej, [Ek, Ei])− g(Ei, [Ej, Ek])

= ckij + cjki − c
i
jk.

∙

Rl
ijk = ∂iΓ

l
jk − ∂jΓlik + ΓsjkΓ

l
is − ΓsikΓ

l
js

= ⋅ ⋅ ⋅ .
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2.15 There is yet another effective method for computing the connection and

curvatures, namely, the Cartan formalism. Let (M, g) be a Riemannian

manifold. Given a frame E1, ⋅ ⋅ ⋅ , En, the connection can be written

∇Ei = !jiEj,

where !ji are 1-forms. Thus,

∇vEi = !ji (v)Ej.

Suppose now that the frame is orthonormal and let !i be the dual

coframe, i.e. !i(Ej) = �ij. Show that the connection forms satisfy

!ji = −!ij,

d!i = !j ∧ !ij.

These two equations can, conversely, be used to compute the connection

forms given the the orthonormal frame. Therefore, if the metric is given

by declaring a certain frame to be orthonormal, then this method can

be very effective in computing the connection.

If we think of [!ji ] as a matrix, then it represents 1-form with values in

the skew-symmetric n × n matrices, or in other words, with values n

the Lie algebra so(n) for O(n).

The curvature forms Ωj
i are 2-forms with values in so(n). They are

defined as

R(⋅, ⋅)Ei = Ωj
iEj.



Zujin Zhang 22

Show that they satisfy

d!ji = !ki ∧ !
j
k + Ωj

i .

When reducing to Riemannian metrics on surfaces we obtain for an

orthonormal frame E1, E2 with coframe !1, !2

d!1 = !2 ∧ !1
2,

d!2 = −!1 ∧ !1
2,

d!1
2 = Ω1

2,

Ω1
2 = sec ⋅ dvol.

Proof. ∙

!ki = !ji gjk = g(∇Ei, Ek) = −g(Ei,∇Ek) = −gil!lk = −!ik.

∙

d!i(X, Y ) = X(!i(Y ))− Y (!i(X))− !i([X, Y ])

= X(g(Ei, Y ))− Y g(Ei, X))− g(Ei, [X, Y ])

= g(∇XEi, Y ) + g(Ei,∇XY )

−g(∇YEi, X)− g(Ei,∇YX)

−g(Ei, [X, Y ])

= g(∇XEi, Y )− g(∇YEi, X)

= !ji (X)g(Ej, Y )− !ji (Y )g(Ej, X)

= !j(X)!ij(Y )− !j(Y )!ij(X)

= (!j ∧ !ij)(X, Y ).
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∙ One may calculate as before, but here we note that both sides of

d!ji = !ki ∧ !
j
k + Ωj

i

are tensors. We need only to check

d!ji (Em, El) = Em(!ji (El))− El(!
j
i (Em))

= Em(g(∇El
Ei, Ej))− El(g(∇EmEi, Ej))

= g(∇Em∇El
Ei, Ej) + g(∇El

Ei,∇EmEj)

−g(∇El
∇EmEi, Ej)− g(∇EmEi,∇El

Ej)

= g(R(Em, El)Ei, Ej)

+g(∇El
Ei,∇EmEj)− g(∇EmEi,∇El

Ej)

= Ωj
i (Em, El) + !ki (El)!

k
j (Em)− !ki (Em)!kj (El)

= !ki (Em)!jk(El)− !
k
i (El)!

j
k(Em) + Ωj

i (Em, El)

= (!ki ∧ !
j
k + Ωj

i )(Em, El).

∙ In two dimensional case,

Ω1
2(E1, E2) = g(R(E1, E2)E2, E1) = sec,

thus

Ω1
2 = sec ⋅ dvol.

2.16 Show that a Riemannian manifold with parallel Ricci curvature has

constant scalar curvature. In Chapter 3, it will be shown that the

converse is not true, and also that a metric with parallel Ricci curvature

doesn’t have to be Einstein.
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Proof. ∙ dscal = 2divRic.

We calculate at a fixed point p ∈M , choose a normal orthonormal

frame E1, ⋅ ⋅ ⋅ , En at p, i.e. ∇Ei(p) = 0. For ∀X ∈ X (M),

dscal(X) = X(g(Ric(Ei), Ei))

= X(g(R(Ei, Ej)Ej, Ei))

= g((∇XR)(Ei, Ej)Ej, Ei)

= −g((∇Ei
R)(Ej, X)Ej, Ei)

−g((∇Ej
R)(X,Ei)Ej, Ei)

= g((∇Ei
R)(X,Ej)Ej, Ei)

+g((∇Ej
R)(X,Ei)Ei, Ej)

= 2g((∇Ei
R)(X,Ej)Ej, Ei)

= 2g(∇Ei
(Ric(X))−Ric(∇Ei

X), Ei)

= 2g((∇Ei
Ric)X), Ei)

= 2(divRic)(X).

∙ ∇Ric = 0⇒ dscal = 0⇒ scal is constant.

2.17 Show that if R is the (1−3)-curvature tensor and Ric is the (0, 2)-Ricci

tensor, then

(divR)(X, Y, Z) = (∇XRic)(Y, Z)− (∇YRic)(X,Z).

Conclude that divR = 0 if ∇Ric = 0. Then show that divR = 0 iff the

(1, 1)-Ricci tensor satisfies:

(∇XRic)(Y ) = (∇YRic)(X), ∀ X, Y ∈ X (M).
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Proof. ∙ (divR)(X, Y, Z) = (∇XRic)(Y, Z)− (∇YRic)(X,Z).

(divR)(X, Y, Z)

= g((∇Ei
R)(X, Y, Z), Ei)

= −g((∇XR)(Y,Ei, Z), Ei)− g((∇YR)(Ei, X, Z), Ei)

= −X(g(R(Y,Ei)Z,Ei))

+g(R(∇XY,Ei)Z,Ei) + g(R(Y,Ei)∇XZ,Ei)

+ ⋅ ⋅ ⋅

= X(Ric(Y, Z))−Ric(∇XY, Z)−Ric(Y,∇XZ) + ⋅ ⋅ ⋅

= (∇XRic)(Y, Z)− (∇YRic)(X,Z).

∙ ∇Ric = 0⇒ divR = 0.

∙ divR = 0⇔ [(∇XRic)(Y ) = (∇YRic)(X), ∀ X, Y ∈ X (M).]

Just note that

g((∇XRic)Y, Z)

= X(Ric(Y, Z))−Ric(∇XY, Z)−Ric(Y,∇XZ)

= (∇XRic)(Y, Z).

2.20 Suppose we have two Riemannian manifolds (M, gM) and (N, gN).

Then the product has a natural product metric (M × N, gM + gN).

Let X be a vector field on M and Y one on N , show that if we re-

gard these as vector fields on M × N , then ∇XY = 0. Conclude that

sec(X, Y ) = 0. This means that product metrics always have many

curvatures that are zero.
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Proof. ∙ ∇XY = 0.

This is easily done by Koszul forumla. Indeed, for any Z ∈

X (M),W ∈ X(N),

2g(∇XY, Z) = X ⟨Y, Z⟩+ Y ⟨Z,X⟩ − Z ⟨X, Y ⟩

− ⟨X, [Y, Z]⟩+ ⟨Y, [Z,X]⟩+ ⟨Z, [X, Y ]⟩

= 0,

2g(∇XY,W ) = ⋅ ⋅ ⋅ = 0.

∙ sec(X, Y ) = 0.

sec(X, Y ) =
g(R(X, Y )Y,X)

∣X∣2∣Y ∣2

=
g(∇X∇Y Y −∇Y∇XY −∇[X,Y ]Y,X)

∣X∣2∣Y ∣2
= 0.

2.24 The Einstein tensor on a Riemannian manifold is defined as

G = Ric− scal

2
⋅ I.

Show that G = 0 in dimension 2 and that divG = 0 in higher dimen-

sions. This tensor is supposed to measure the mass/engery distribution.

The fact that it is divergence free tells us that energy and momentum

are conserved. In a vacuum, one therefore imagines that G = 0. Show

that this happens in dimensions> 2 iff the metric is Ricci flat.

Proof. ∙ In dimension 2,

sec(e1, e2) = R1221 = ⟨Ric(e1), e1⟩ = ⟨Ric(e2), e2⟩ ,
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scal = ⟨Ric(e1), e1⟩+ ⟨Ric(e2), e2⟩ = 2R1221,

where e1, e2 orthonormal at a given point p of M .

Thus

G(e1) = Ric(e1)−
scal

2
e1 = R1221e1 −R1221e1 = 0,

G(e2) = ⋅ ⋅ ⋅ = 0.

∙ In dimensions ≥ 3,

divG = divRic− div
(
scal

2
⋅ I
)

=
dscal

2
− dscal

2
= 0.

Indeed,

div(scal ⋅ I)(ei) =
∑
j

〈
∇ej(scal ⋅ I), ej

〉
(ei)

=
∑
j

〈(
∇ej(scal ⋅ I)

)
ei, ej

〉
=

∑
j

〈
∇ej(scal ⋅ ei), ej

〉
=

∑
j

〈
(∇ejscal)ei, ej)

〉
= ∇eiscal = dscal(ei).

Note that we calculate at a normal neighborhood at a given point.

∙ G = 0⇔ Ric = 0 if n ≥ 3.

Indeed, if G = 0, then Ric = scal
2
⋅ I, taking contractions imply

that

scal =
n

2
scal,

thus if n ≥ 3, scal = 0, Ric = scal
2
⋅ I = 0.
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2.25 This exercise will give you a way of finding the curvature tensor from

the sectional s curvatures. Using the Bianchi identity show that

−6R(X, Y, Z,W ) =
∂2

∂s∂t
∣s=t=0 {R(X + sZ, Y + tW, Y + tW,X + sZ)

−R(X + sW, Y + tZ, Y + tZ,X + sW )} . (2.1)

Proof. Since

R(X + sZ, Y + tW, Y + tW,X + sZ)

= st {R(Z,W, Y,X) +R(Z, Y,W,X) +R(X,W, Y, Z) +R(X, Y,W,Z)}

+ ⋅ ⋅ ⋅

= −2stR(X, Y,W,Z) + 2stR(Z, Y,W,X) + ⋅ ⋅ ⋅ ,

we have

∂2

∂s∂t
∣s=t=0R(X + sZ, Y + tW, Y + tW,X + sZ)

= −2R(X, Y,W,Z) + 2R(Z, Y,W,X).

Thus

R.H.S. of Eq. (2.1) = −2R(X, Y,W,Z) + 2R(Z, Y,W,X)

+2R(X, Y, Z,W )− 2R(W,Y, Z,X)

= −4R(X, Y, Z,W )

+2 (R(Z, Y,W,X) +R(Y,W,Z,X))

= −6R(X, Y, Z,W )

= L.H.S. of Eq. (2.1).
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3 Examples

3.4 The Heisenberg group with its Lie algebra is

G =

⎧⎨⎩
⎡⎢⎢⎢⎣

1 a c

0 1 b

0 0 1

⎤⎥⎥⎥⎦ : a, b, c ∈ ℝ

⎫⎬⎭ ,

g =

⎧⎨⎩
⎡⎢⎢⎢⎣

0 x z

0 0 y

0 0 0

⎤⎥⎥⎥⎦ : x, y, z ∈ ℝ

⎫⎬⎭ .

A basis for the Lie algebra is:

X =

⎡⎢⎢⎢⎣
0 1 0

0 0 0

0 0 0

⎤⎥⎥⎥⎦ , Y =

⎡⎢⎢⎢⎣
0 0 0

0 0 1

0 0 0

⎤⎥⎥⎥⎦ , Z =

⎡⎢⎢⎢⎣
0 0 1

0 0 0

0 0 0

⎤⎥⎥⎥⎦ .
∙ Show that the only nonzero bracket are

[X, Y ] = −[Y,X] = Z.

Now introduce a left-invariant metric on G such that X, Y, Z form

an orthonormal frame.

∙ Show that the Ricci tensor has both negative and positive eigen-

values.

∙ Show that the scalar curvature is constant.

∙ Show that the Ricci tensor is not parallel.

Proof. Due to the fact

A ∈ g⇔ etA ∈ G,
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we have the elements of g are upper triangle matrices.

∙ Since XY = Z, Y X = 0;XZ = 0, ZX = 0;Y Z = 0, ZY = 0; we

deduce that

[X, Y ] = −[Y,X] = Z,

while other brackets being zero.

∙ Applying Koszul formula, we have

∇XY = Z;∇XZ = ∇ZX = −Y ;∇YZ = ∇ZY = X;

while other connections being zero.

Hence

Ric(X) = R(X, Y )Y +R(X,Z)Z = −2X +X = −X;

Ric(Y ) = R(Y,X)X +R(Y, Z)Z = −Y + Y = 0;

Ric(Z) = Ric(Z,X)X +R(Z, Y )Y = Z + 0 = Z.

Thus the eigenvalues of Ric are −1, 0, 1.

∙ scal = Ric(X,X)+Ric(Y, Y )+Ric(Z,Z) = −1+0+1 = 0. Aha,

the Heisenberg group is scalar flat.

∙ Since

(∇XRic)(Y, Z) = ∇X(Ric(Y, Z))−Ric(∇XY, Z)−Ric(Y,∇XZ)

= 0− 1− 0 = −1,

we gather that ∇Ric ∕= 0, the Ricci tensor is not parallel.
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3.5 Let g̃ = e2 g be a metric conformally equivalent to g. Show that

∙

∇̃XY = ∇XY + ((DX )Y + (DY  )X − g(X, Y )∇ ).

∙ If X, Y are orthonormal with respect to g, then

e2 s̃ec(X, Y ) = sec(X, Y )−Hess (X,X)−Hess (Y, Y )

−∣∇ ∣2 + (DX )2 + (DY  )2.

Proof. ∙ Again, we invoke the Koszul formula,

2g̃(∇̃XY, Z) = Xg̃(Y, Z) + ⋅ ⋅ ⋅ − g̃(X, [Y, Z]) + ⋅ ⋅ ⋅

= X(e2 g(Y, Z)) + ⋅ ⋅ ⋅ − e2 g(X, [Y, Z]) + ⋅ ⋅ ⋅

= 2(∇X )g̃(Y, Z) + 2(∇Y  )g̃(Y, Z) + ⋅ ⋅ ⋅

−e2 g(X, [Y, Z]) + ⋅ ⋅ ⋅

= 2(∇X )̃̃g(Y, Z) + 2(∇Y  )g̃(Z,X)− 2(∇Z )g̃(X, Y )

+g̃(∇XY, Z)

= 2g̃((∇X )Y + (∇Y  )Z − g(X, Y )∇ +∇XY, Z),

where in the last inequality, we use the following fact:

∇Z = d (Z) = g(∇ ,Z),

and

(∇Z )g̃(X, Y ) = g(∇ ,Z)g̃(X, Y )

= g̃(∇ ,Z)g(X, Y ) = g̃(g(X, Y )∇ ,Z).
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∙ Note that if X, Y are orthonormal w.r.t. g, then

s̃ec(X, Y ) =
g̃(R̃(X, Y )Y,X)

g̃(X,X)g̃(Y, Y )
= e−2 g(R̃(X, Y )Y,X),

i.e.

e2 s̃ec(X, Y ) = g(R̃(X, Y )Y,X)

= g(∇̃X∇̃Y Y − ∇̃Y ∇̃XY − ∇̃[X,Y ]Y,X).(3.1)

We just need to calculate each term on the R.H.S. of Eq. (3.1).

★ Calculation of g(∇̃X∇̃Y Y,X).

∇̃Y Y = ∇Y Y + 2(∇Y  )Y −∇ ;

∇̃X∇̃Y Y = ∇X (∇Y Y + 2(∇Y  )Y −∇ )

+(∇X ) (∇Y Y + 2(∇Y  )Y −∇ )(
∇∇Y Y+2(∇Y  )Y−∇  

)
X

−g(X,∇Y Y + 2(∇Y  )Y −∇ ) ;

g(∇̃X∇̃Y Y,X)

= g(∇X∇Y Y,X) + 2(∇Y  )g(∇XY,X)− g(∇X∇ ,X)

+(∇X )g(∇Y Y,X)− ∣∇X ∣2

+g(∇Y Y,∇ ) + 2∣∇Y  ∣2 − ∣∇ ∣2

−g(X,∇Y Y )(∇X ) + ∣∇X ∣2

= g(∇X∇Y Y,X) + 2(∇Y  )g(∇XY,X)−Hess (X,X)

+ (∇Y∇Y  −Hess (Y, Y ))− ∣∇ ∣2 + 2∣∇Y  ∣2. (3.2)
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★ Calculation of g(∇̃Y ∇̃XY,X).

∇̃XY = ∇XY + (∇X )Y + (∇Y  )X;

∇̃Y ∇̃XY = ∇Y (∇XY + (∇X )Y + (∇Y  )X)

+(∇Y  ) (∇XY + (∇X )Y + (∇Y  )X)

+
(
∇∇XY+(∇X )Y+(∇Y  )X 

)
Y

−g(Y,∇XY + (∇X )Y + (∇Y  )X)∇ ;

g(∇̃Y ∇̃XY,X)

= (g(∇Y∇XY,X) + (∇X )g(∇Y Y,X)

+∇Y∇Y  + (∇X )g(∇YX,X))

+(∇Y  )g(∇XY,X) + ∣∇Y  ∣2

−g(Y,∇XY )(∇X )− ∣∇X ∣2

= g(∇Y∇XY,X) + (∇X )g(∇Y Y,X) +∇Y∇Y  

+(∇Y  )g(∇XY,X) + ∣∇Y  ∣2

−∣∇X ∣2. (3.3)(
g(Y,∇XY ) =

1

2
X∣Y ∣2 = 0; g(∇YX,X) = ⋅ ⋅ ⋅ = 0

)
★ Calculation of g(∇̃[X,Y ]Y,X).

∇̃[X,Y ]Y = ∇[X,Y ]Y + (∇[X,Y ] )Y

+(∇Y  )[X, Y ]− g([X, Y ], Y )∇ ;
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g(∇̃[X,Y ]Y,X)

= g(∇[X,Y ]Y,X)

+(∇Y  )g(∇XY,X)− (∇Y  )g(∇YX,X)

−(∇X )g(∇XY, Y ) + (∇X )g(∇YX, Y )

= g(∇[X,Y ]Y,X) + (∇Y  )g(∇XY,X) + (∇X )g(∇YX, Y )

(3.4)

Combining Eqs. (3.2),(3.3), (3.4), and substituting into Eq.

(3.1), we gather that

e2 s̃ec(X, Y ) = sec(X, Y )−Hess (X,X)−Hess (Y, Y )

−∣∇ ∣2 + (DX )2 + (DY  )2,

as required.

4 Hypersurfaces

4.4 Let (M, g) be a closed Riemannian manifold, and suppose that there is

a Riemannian embedding into ℝn+1. Show that there must be a point

p ∈M where the curvature operator ℜ : ∧2TpM → ∧TpM is positive.

Proof. This is geometrically obvious, but the analytical proof is as fol-

lows.

Let

f : ℝn → ℝ

x 7→ ∣x∣2.
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Figure 2: Curvature comparison between M and Sn

Then since M is closed, f ∣M attains its maximum at p ∈M .

Claim x ⊥ TpM .

Indeed, by Exercise 5.9,

0 = ⟨∇f, v⟩ = ⟨Df, v⟩ = 2 ⟨x, v⟩ , ∀ v ∈ TpM.

Here and thereafter, we use the notation:

★ ∇: the connection on M ,

★ D: the connection on ℝn.

Now, choose an orthonormal basis {ei} of TpM such that

Dei

x

∣x∣
= S(ei) = �iei,

and let Ei be the orthonormal extension on M of ei around p.
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Differentiating

⟨∇, Ei⟩ = ⟨Df,Ei⟩ = 2 ⟨x,Ei⟩

in the direction Ei, we obtain

⟨∇Ei
∇f, Ei⟩+ ⟨∇f,∇Ei

Ei⟩ = 2 ⟨DEi
X,Ei⟩+ 2 ⟨X,DEi

Ei⟩ . (4.1)

While at p ∈M ,

L.H.S. of Eq. (4.1) = Hessf(Ei, Ei) ≤ 0;

R.H.S. of Eq. (4.1)

= 2

〈
DEi

(
x

∣x∣
∣x∣
)
, Ei

〉
− 2

〈
x,∇Sn(∣x∣)

Ei
Ei −DEi

Ei

〉
= 2∣x∣

〈
Dei

x

∣x∣
, Ei

〉
− 2∣0p∣

〈
x

∣x∣
, IIS

n(∣x∣)(Ei, Ei)

〉
= 2∣x∣ ⟨S(Ei), Ei⟩+ 2∣x∣

〈
SS

n(∣op∣)(Ei), Ei
〉

( Here we use the notation as in Exercise 5.8 )

= 2∣x∣�i + 2∣x∣ ⋅ 1

∣x∣
= 2 (∣x∣�i + 1) .

Thus we gather that

�i ≤ −
1

∣op∣
,

sec(ei, ej) = ⟨S(ei), ei⟩ ⟨S(ej), ej⟩ − ∣⟨S(Ei), Ej⟩∣2

= �i�j

≥ 1

∣op∣2
> 0.
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4.5 Suppose (M, g) is immersed as a hypersurface in ℝn+1, with shape

operator S.

∙ Using the Codazzi-Mainardi equations, show that

divS = d(trS).

∙ Show that if S = f(x) ⋅ I for some function f , then f must be a

constant and the hypersurface must have constant curvature.

∙ Show that S = � ⋅Ric iff the metric has constant curvature.

Proof. ∙ We calculate in a normal neighborhood as:

(divS)(Ei) =
∑
j

〈
∇Ej

S,Ej
〉

(Ei) =
∑
j

〈
(∇Ej

S)(Ei), Ej
〉

=
∑
j

⟨(∇Ei
S)(Ej), Ej⟩ =

∑
j

⟨∇Ei
(S(Ej)), Ej⟩

=
∑
j

∇Ei
⟨S(Ej), Ej⟩ = ∇Ei

trS = d(trS)(Ei).

∙ If S = f(x) ⋅ I, then

df = divS = d(trS) = d(nf).

Thus (n− 1)df = 0. Since n > 1 ( we consider this case ), df = 0,

f ≡ const. And S = const ⋅ I,

sec(Ei, Ej) = ⟨R(Ei, Ej)Ej, Ei⟩

= ⟨S(Ei, Ei⟩ ⟨S(Ej), Ej⟩ − ⟨S(Ei), Ej⟩ ⟨S(Ej), Ei⟩

= const2.
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∙ ⇒ If S = � ⋅ Ric, by Codazzi-Mainardi equations and Exercise

2.17, we have divR = 0, thus

⇐ If (M, g) has constant curvature, then by Exercise 2.17 again,

(∇XRic)(Y ) = (∇YRic)(X). (4.2)

We now have another identity:

⟨R(X, Y )Z,W ⟩ = �2 ⟨Ric(X),W ⟩ ⟨Ric(Y ), Z⟩

−�2 ⟨Ric(X), Z⟩ ⟨Ric(Y ),W ⟩ , (4.3)

for some constant � ∈ ℝ.

A tedious calculation may verify, using the polarization identity

like Exercise 2.25.

Now, the fundamental theorem of Hypersurface theory tells us (

by Eqs. (4.2), (4.3) ) that � ⋅Ric = S ′ for some shape operator of

M , but M is already immersed in ℝn+1, we have

� ⋅Ric = S ′ = S.

5 Geodesics and Distance

5.2 A Riemannian manifold is said to be homogeneous if the isometry group

acts transitively. Show that homogeneous manifolds are geodesically

complete.
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Proof. For any p ∈ M , v ∈ TpM with ∣v∣ = 1, let 
 be the geodesic

with data (p, v). Denote by T ∗ the maximal existence time for 
. Then

we have the

Claim T ∗ =∞.

Indeed, if T ∗ <∞, let

∙ " > 0 be such that

expp : B(0, 2") ⊂ TpM → B2"(0) ⊂M

is a diffeomorphism,

∙ F ∈ Iso(M, g) with

F (p) = 
(T ∗ − "), w ≜ (dF−1)
(T ∗−")
̇(T ∗ − ").

Now since

∣w∣ = ∣
̇(T ∗ − ")∣ = ∣
̇(0)∣ = ∣v∣ = 1,

there is a geodesic 
̃ : [0, 2"] → M with data (p, w). Hence F (
̃) is a

geodesic with data (
(T ∗ − "), 
̇(T ∗ − ")). Indeed,

0 =
(
DF (∇ ˙̃


˙̃
) = ∇(F (
̃))′F (
̃)
)

While uniqueness of ode tells us that

� =

⎧⎨⎩ 
, on [0, T ∗ − "],

F (
̃), on [T ∗ − ", T ∗ + "],

is a geodesic with data (p, v). This contradicts the definition of T ∗.

Finally the proof is complete if we invoke the classical Hopf-Rinow

theorem and notice the homogeneity of geodesics.
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Figure 3: the composed geodesic

5.8 Let N ⊂ (M, g) be a submanifold. Let ∇N denote the connection

on N that comes from the metric induced by g. Define the second

fundamental form of N in M by

II(X, Y ) = ∇N
XY −∇XY.

∙ Show that II(X, Y ) is symmetric and hence tensorial in X and

Y .

∙ Show that II(X, Y ) is always normal to N .

∙ Show that II = 0 on N iff N is totally geodesic.

∙ If ℝN is the curvature form of N , then

g(R(X, Y )Z,W ) = g(RN(X, Y )Z,W )

−g(II(Y, Z), II(X,W )) + g(II(X,Z), II(Y,W )).
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Proof. ∙ Due to the fact

II(X, Y ) = ∇N
XY −∇XY =

(
[X, Y ] +∇N

Y X
)
− ([X, Y ] +∇YX)

= ∇N
Y X −∇YX = II(Y,X),

we see that II is symmetric. And by definition of the connection,

II is tensorial in X, thus tensorial in Y as

II(X, fY1 + gY2) = II(fY1 + gY2, X)

= fII(Y1, X) + gII(Y2, X) = fII(X, Y1) + gII(X, Y2).

∙ Indeed, Koszul formula tells us that ∇N
XY = (∇XY )⊤, where ⊤ is

the projection from TM to TN , thus

II(X, Y ) = (∇XY )⊤ −∇XY = (∇XY )⊥,

which is normal to N .

∙ Recall that N is totally geodesic in M iff any geodesic in N is a

geodesic in M . Now we prove the assertion.

⇒ If II = 0 and 
 is a geodesic in N , then ∇N

̇ 
̇ = 0, thus

∇
̇ 
̇ = 0, 
 is a geodesic.

⇐ By the formula

II(X, Y ) =
1

2
[II(X + Y,X + Y )− II(X,X)− II(Y, Y )] ,

we need only to show that II(X,X) = 0, ∀ X ∈ X (M). But II

is tensorial, we are redirected to prove that

II(v, v) = 0, ∀ v ∈ TpN, ∀ p ∈ N.
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This is obviously true. In fact, for any p ∈ N , v ∈ TpN , let 
 be

the geodesic in N with initial data (p, v), then ∇N

̇ 
̇ = 0, and by

hypothesis, ∇
̇ 
̇ = 0, II(v, v) = 0.

5.9 Let f : (M, g)→ ℝ be a smooth function on a Riemannian manifold.

∙ If 
 : (a, b) → M is a geodesic, compute the first and second

derivative of f ∘ 
.

∙ Use this to show that at a local maximum (or minimum) for f the

gradient is zero and the Hessian nonpositive (or nonnegative).

∙ Show that f has everywhere nonnegative Hessian iff f ∘
 is convex

for all geodesics 
 in (M, g).

Proof.

∙ We omit the subscript for simplicity.

d

ds
(f ∘ 
) = Df(
̇) = df(
̇) = D
̇f = g(∇f, 
̇),

d2

ds2
(f ∘ 
) =

d

ds

(
d

ds
(f ∘ 
)

)
= D
̇(D
̇f) = D
̇(Df(
̇))

= (D
̇(Df))(
̇) +Df(D
̇ 
̇)

= (D(Df))(
̇, 
̇) = D2f(
̇, 
̇).

∙ We consider the case when f attains its local minimum at p ∈ M .

Then for ∀ v ∈ TpM , let 
 be the geodesic with initial data (p, v), we

have

0 =
d

ds
(f ∘ 
) = g(∇f, 
̇) = g(∇f, v),
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and

0 ≥ d2

ds2
(f ∘ 
) = Hessf(
̇, 
̇) = Hessf(v, v),

at p. Hence the conclusion.

∙ We just take the following equiv.:

Hessf(v, v) ≥ 0, ∀ v ∈ TpM

⇔ d2

ds2
(f ∘ 
) ≥ 0, ∀ 
 geodesic

⇔ f ∘ 
 is convex,∀ 
 geodesic.

5.12 Compute the cut locus on a sphere and real projective space with con-

stant curvature metrics.

Proof. We consider the case (Sn, canℝn∣Sn) with curvature 1. For any

p ∈ Sn, cut(p) = {−p}. While for ℝP n ( What’s the meaning of the

problem? Is it mean that ℝP n is given a metric so that it is of constant

curvature or ... ), cut([p]) =the equator.

6 Sectional Curvature Comparison I

6.1 Show that in even dimension the sphere and real projective space are

the only closed manifolds with constant positive curvature.

Proof. If M is of even dimension, closed ( compact and without bound-

ary ), and with positive curvature,
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Figure 4: Cut locus of Sn and ℝP n

∙ in case M is orientable, then Synge theorem tells us that M is

simple connected, thus M are spheres;

∙ in case M is non-orientable, then the orientable double covering

of M are spheres, thus M are real projective spaces.

6.5 Let 
 : [0, 1] → M be a geodesic. Show that exp
(0) has a critical

point at t
̇(0) iff there is a Jacobi field J along 
 such that J(0) = 0,

J̇(0) ∕= 0, and J(t) = 0.

Proof. We assume w.l.o.g. that t = 1. First note that

expp has a critical point at 
̇(0)

⇔ ∃ 0 ∕= w ∈ T
̇(0)T
(0)M, s.t. (dexp
(0))
̇(0)(w) = 0.

⇒ Let J(t) = (dexp
(0))t
̇(0)(tw), t ∈ [0, 1], then J is the Jacobi field

we are chasing.
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⇐ If we have a Jacobi field J(t) as in the problem, then

(dexp
(0))
̇(0)(J̇(0)) = J(1) = 0,

with 0 ∕= J̇(0) ∈ T
̇(0)(T
(0)M).

6.8 Let 
 be geodesic and X be a Killing field in a Riemannian manifold.

Show that the restriction of X to 
 is a Jacobi field.

Proof. Recall that

X Killing field ⇔ LXg = 0.

Now let {e1 = 
̇, e2, ⋅ ⋅ ⋅ , en} be the parallel orthonormal vector fields

along 
, then

0 = (LXg)(
̇, ei)

= DX(g(
̇, ei))− g(LX 
̇, ei)− g(
̇, LXei)

= −g(∇X 
̇, ei) + g(∇
̇X, ei)− g(
̇,∇Xei) + g(
̇,∇eiX)

= g(∇
̇X, ei) + g(
̇,∇eiX). (6.1)

In particular,

g(∇
̇X, 
̇) = 0. (6.2)
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Now differentiating Eq. (6.1) w.r.t. 
̇, we find that

0 = D
̇ (g(∇
̇X, ei)) +D
̇ (g(
̇,∇eiX))

= g(∇
̇∇
̇X, ei) + g(
̇,∇
̇∇eiX)

= g(∇
̇∇
̇X, ei) + g(
̇,∇
̇∇eiX −∇ei∇
̇X −∇[
̇,ei]X) (6.3)

= g(∇
̇∇
̇X, ei) + g(R(
̇, ei)X, 
̇)

= g(∇
̇∇
̇X, ei) + g(R(X, 
̇)
̇, ei)

= g(∇
̇∇
̇X +R(X, 
̇)
̇, ei).

(6.4)

Hence

∇
̇∇
̇X +R(X, 
̇)
̇ = 0,

i.e. X is a Jacobi field along 
.

Note that in Eq. (6.3), we have used the following fact:

g(
̇,∇ei∇
̇X +∇[
̇,ei]X)

= Dei {g(
̇,∇
̇X)} − g(∇ei 
̇,∇
̇X)− g(
̇,∇∇ei 
̇
X)

= −
(
g(∇ei 
̇,∇
̇X) + g(
̇,∇∇ei 
̇

X)
)

( by (6.2) )

= 0.( skew-symmetric property of Killing fields )

6.21 ( The Index Form ) Below we shall use the second variation formula

to prove several results established in Chapter 5. If V,W are vector

fields along a geodesic 
 : [0, 1] → (M, g), then the index form is the

symmetric bilinear form

I10 (V,W ) = I(V,W ) =

∫ 1

0

(
g(V̇ , Ẇ )− g(R(V, 
̇)
̇,W )

)
dt.
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In case the vector fields come from a proper variation of 
 this is equal

to the second variation of energy. Assume below that 
 : [0, 1]→ (M, g)

locally minimize the energy functional. This implies that I(V, V ) ≥ 0

for all proper variations.

∙ If I(V, V ) = 0 for a proper variation, then V is a Jacobi field.

∙ Let V and J are variational fields along 
 such that V (0) = J(0)

and V (1) = J(1). If J is a Jacobi field show that

I(V, J) = I(J, J).

∙ ( The Index Lemma ) Assume in addition that there are no Jacobi

fields along 
 that vanish at both end points. If V and J are both

as above. Show that I(V, V ) ≥ I(J, J) with equality holding only

if V = J on [0, 1].

∙ Assume that there is a nontrivial Jacobi field J that vanishes at

0 and 1. Show that 
 : [0, 1 + "] → M is not locally minimizing

for " > 0.

Proof. Note that the vector fields we consider are all smooth.

∙ For any proper variational filed W ( i.e. W (0) = 0 = W (1) ),

0 ≤ I(V + "W, V + "W )

= I(V, V ) + 2"I(V,W ) + "2I(W,W )

= " [2I(V,W ) + "I(W,W )] .

Letting "→ 0+, 0−, we get I(V,W ) = 0. Thus

0 = I(V,W ) = −
∫ 1

0

g
(
V̈ +R(V, 
̇)
̇,W

)
dt,
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and hence V̈ +R(V, 
̇)
̇ = 0, V is a Jacobi field.

∙ This follows from direct computation as

I(V − J, J) =

∫ 1

0

(
g(V̇ − J̇ , J̇)− g(R(V − J, 
̇)
̇, J)

)
dt

= −
∫ 1

0

(
g(V − J, J̈) + g(V − J,R(J, 
̇)
̇)

)
dt

( Here we use the boundary conditions... )

= −
∫ 1

0

g
(
V − J, J̈ +R(J, 
̇)
̇

)
dt = 0.

∙ If V ∕= J , then V − J is a proper variational field.

Claim 0 < I(V − J, V − J) = I(V, V )− I(J, J).

Indeed, if I(V −J, V −J), then the first assertion tells us that V −J

is a nontrivial, proper Jacobi field, contradicting the hypotheses.

∙ See the figure attached and one may compute as

0 = I10 (J, J) = I1+"0 (J, J)

= I1−"0 (J, J) + I1+"1−" (J, J)

> I1−"0 (J, J) + I1+"1−" (K,K)

( Here we use the Index Lemma )

= I(V, V ).
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Figure 5: the composed variational field

Concluding Remarks

Thanks to the inspiring and fantastic lectures of Professor Zhu, from whom

the author learnt a lot.

But due to

∙ the author’s limited knowledge,

∙ the fast process of this tedious work,

errors or even blunders may occur. So any comments, whether

∙ critical, i.e. the reference answer is wrong(?), not accurate(?), mis-

prints(?), e.t.c.

∙ constructive, i.e. there are beautiful proofs, e.t.c.

is welcome.

The author’s email is: uia.china@gmail.com.
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