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1 Riemannian Metrics

1.1 On product manifolds M x N one has special product metrics g =

gum + gn, where g7, gn are metrics on M, N respectively.

e Show that (R", can) = (R, dt?) x --- x (R, dt?).

e Show that the flat square torus

1\? 1\?
T° =R?/7? = (51, (—) d92> X (51, (—) d92) .
2w 2
e Show that
1 . .
F(6,0,) = 2—((:03 01,sin 0y, cos Oy, sin O5)
T

is a Riemannian embedding: 72 — R*.

n

Proof. e cangn = Z(d:z;i)2.
i=1
e Note that

() o ()= (o (32)) + ((32))

where 6,6, € [0, 27).

e - F'isinjective.
sinf; = sin 6y, cos 1 = cos bty = 0 = 0.
% dF is injective.

1
dF(0y,) = ﬂ(_ sin 6y, cos 64,0, 0),
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Figure 1: The isometry between T" and S* with metric above

1
dF (Dp,) = %(0, 0, —sin 6, cos 6).

dF(a891+ﬁ892):O:>a:0:ﬁ.
% F'is a Riemannian embedding.

Just note that

1 2
F*CCLHR4 = <d (—00801>) + ...
2

_ (i)2 ((d6,)? + (d6,)?) .

2T

1.5 Let G be a Lie group.

e Show that G admits a bi-invariant metric, i.e. both right and left

translation are isometries.
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e Show that the inner automorphism Ady,(x) = hozh™! is a Rieman-
nian isometry. Conclude that its differential at + = e denoted by
the same letters

Ady, g — g
is a linear isometry with respect to g.

e Use this to show that the adjoint action

ady g,
CLdU(X) = [U,X]

is skew-symmetric, i.e.,

g([U, X]vY) = —g(X, [U7Y])'

Proof. e Let g, be a left-invariant metric, i.e.

gr(v,w) = gr((dLy-1)2(v), (dLy-1)z(w)),
VoweTl,G, €.

Let Ey, - - -, E, the left-invariant orthonormal vector fields, o', - - , o

the dual 1-forms. Thus the volume form

Define

We have

n
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% ¢ is left-invariant.

4(DL,).(v). (DL,)o(w))

%— Ve(®), (DR,), o (DLy).(w))o
L

Jw

R

y=1Ly,0R,)

DL,)

f oo

/ (), (DLy), 0 (DRy).(w))e
7—/ R.).(w))

(g1 is left-invariant)

g(v,

w), Yv,weT.G; yeG.

% ¢ is right-invariant.

=
=

(DRy)e(v), (DRy)e(w))
9L((DRy)y o (DRy)c(v), (DR;), o (DRy).(w))w

/
[ (DR, (DR, ()
/

1
Jw
1
Jw
7L 91 ((DR.).(v), (DR.). (1))

( change of variables: z = yx )

= g(v,w), Vv,weT.G; yeq.

e Indeed,
Adh = Lh o Rh—l,

thus its differential

D(Adh) = (DLh) o) (DRhfl),
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and

9(Ady(v), Adp(w))

= g(D(Adp)c(v), D(Adp)e(w))

= 9((Dn)an-1 © (DRp—1)x(v), (Dp)an-1 © (DRp—1)x(w))
= g(v,w), Yv,weT.M,

i.e. Adj, is a linear isometry w.r.t. g.

e By the second assertion,
9(Adeapn X, AdezpunY) = 9(X,Y), VX, Y € g.
Differentiating the above equality at t = 0, we get
g(adyX,Y) 4+ g(X,adyY) =0,

1.e.

g([U, X]vY) = —g(X, [U7Y])'

]

1.6 Let V' be a n-dimensional vector space with a symmetric nondegenerate

bilinear form g of index p.

e Show that there exists a basis ey, -+ , e, such that g(e;,e;) =0
if 1 # 7, gles,e;) = —1if i = 1,--- p and g(e;,e;) = 1if i =
p+1,---,n. Thus V is isometric to RPY .

e Show that for any v we have the expansion

n 4 D n
=Y. e = neset 3 st

9 i=1 i=p+1
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2.1

2.2

e Let L :V — V be a linear operator. Show that
& g(L(€Z>7 ei)
tr(L) = e
( ) ; g(ei7ei)
Proof. Indeed, nothing need to show if one is familiar with the theory

of quadratic forms! n

Curvature

Show that the connection on Euclidean space is the only affine connec-

tion such that VX = 0 for all constant vector fields X.
Proof. If VX =0, V X = a'0;, with a* constant, then for V7,

0 = VyX = Vaj(ai@)
= (8jai)3i + aivajﬁj = aiVajai
= aifﬁﬁk,
ie.
Il =0, Vijk,
the connection is flat. [
If FF: M — M is a diffeomorphism, then the push-forward of a vector

field is defined as
(FiX)]p = DF(X|p-1()).

Let F' be a isometry on (M, g).

e Show that F,(VxY) = Vg xF.Y for all vector fields.
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o If (M,g9) = (R,can), then isometries are of the form F(x)
Oz + b, where O € O(n) and b € R™.

Proof. e By Koszul formula, we have for VZ € X (M),

9(F(VxXY), F.Z)o F = (F"g)(VxY, Z)
= % [(X((Fg)(Y. 2)) + Y ((F"g)(Z, X)) = Z((F"g)(X,Y))
+H(F9)(Z,[X,Y]) + (Fg)(Y,[Z, X]) — (Fg)(X, [Y. Z])]
= % [X(g(F.Y,F.Z) o F) +Y(g(F.Z, F.X) o F)
—Z(g(F.X,F.Y) o F)
+g(F.Z,[F.X,F.Y])o F+ g(E.Y,|F,F.Z, F.X]) o F
+9(F.X,[F.Y,F.Z)]) o F]

= g(VpxF.Y,F.Z)oF.
o If (M, g) = (R™ can), and F is an isometry, then due to
0 = F.(V5,0;) = Vo, F.0;,
we have
VF.0; =0.
Thus

O0*F;

W :0, VZ,j,k
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While, F' is an isometry implies

0ij = (0:,0;)

i.e.

Thus Taylor’s expansion tells us
F=0x+0b,

with O € O(n),b € R™.

]

2.4 Show that if X is a vector field of constant length on a Riemannian

manifold, then V,X is always perpendicular to X.
Proof.
0= Dvg(X’X) = QQ(VUX’X)‘
[
2.5 For any p € (M,g) and orthonormal basis ey, - ,e, for T,M, show

that there is an orthonormal frame Fy,--- , E, in a neighborhood of p

such that E; = e; and (VE)|, = 0.
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2.7

Proof. Fix an orthonormal frame E; near p € M with E;(p) = e;. If
we define F; = of E;, where [o (x)] € SO(n) and o} (p) = &/, then this

will yield the desired frame provided that the D,, o/ are prescribed as

0= D, (c!E;) =D, alE; +a!D,FE;.

(]

]

Let M be a n-dimensional submanifold of R™* with the induced met-
ric and assume that we have a local coordinate system given by a
parametrization z%(u',--- ,u"),s = 1,--- ,n + m. Show that in these

coordinates we have:

n+m
ox?® 0x*

- out w

gij =

S=

n+m
x® 0%x®

— ouF Ouious”

Lijr =
® R;ji; depends only on the first and second partials of z°.

Proof. e

S a S a
oo = o0 (5) 2 (50))

B ox* 0 0zt 0
= (aua—%%)
_ Oz® Ox
T Ouiouw !

oz® 0z®

(9ui 8uj .
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I
Pije = Ui

1
= §(ajgik + 0;9k — OkGij)

1

= 5 [@(dscsakxs) + @(@xsﬁkxs) — 8k(8z:csajxs)]
1

= (@0t + 0t Pa)

_ s$s02 .S

Riju = Q(R(ai, aj)aka al)
= 9(Va,Va,0r — Vo, Vo, k — Vs, 0,0k O)
= g(vi(rgkap) -V; (kaap)7 )

= @kagpz + F?krqugql - 3jf§ik9pl - karg‘pgqlv
while the terms involving third partials of z* offset:

8px88i(82kx8) — apﬁsaj(akas) =0.

J

2.8 Show that Hessf = Vdf.

11
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Proof.

Hessf(X,Y) = g(VxV/£Y)
= Xg(VSY)=g(V[, VxY)
= Vx(df(Y)) - df(VxY)
= (Vxdf)(Y)
= (Vdf)(X,Y).

]

2.10 Let (M, g) be oriented and define the Riemannian volume form dvol as

follows:
dvol(ey, - - ,e,) = det(g(e;, e;)) =1,
where e, -+ , e, is a positively oriented orthonormal basis for 7,,M.
e Show that if vy, - v, is positively oriented, then

dvol(vy, - -+ ,v,) = y/det(g(vi,v;)).

e Show that the volume form is parallel.

e Show that in positively oriented coordinates,

dvol = \/det(gy;)dz' A -+ A dx™.

e If X is a vector field, show that

Lxdvol = div(X)dvol.
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e Conclude that the Laplacian has the formula:

1
=90 det(g;, k) ) .
U det(gij) k ( € (9 ])9 U

Given that the coordinates are normal at p we get as in Euclidean

space that

Proof. e Let v; = agej, then

dvol(vy, -+ ,v,) = Zazf---a;"det(eil,--- ,€i)

= y/deto! - deto@
= y/det(akFal)

= det(g(’l]“v])
e By Exercise 5, 3 local orthonormal frame (E;) around p, such that
Then for any X € X(M), X = X'FE;, we have

(Vxdvol)(Ey, -+, Ey,)
= X(dvol(Ey, -+, E,)) = > wvol(Ey,--- ,VxE;,-- E,)

d
= 0.

e This is just a direct consequence of the first assertion, i.e.

dvol(0y, - -+ ,0n) = 1/det(gi;)
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implies that

dvol = y/det(gi;)dz' A -+ A dz™.

(Lxdvol)(Ey,--- , E,)
= Lx(dvol(Ey, -, Ey)) — Z dvol(En, -+, LxEi, -+, By)
= (divX)dvol(Ey, -, E,),

where we use the fact

LxE; = [X,B| =VxE —VgX = -V, X = —(Ve,X")e;

Au - dvol = div(Vu)dvol = Ly,dvol = Lgkig,,s, dvol

implies that

Au - dvol(0y, - -+, 0y)

— (L klaluakdv0l>(al7 , n)
= g"ou(Ly,dvol) (0, - ,0,)
+d(g"Ou) (0 )dvol (D, - -+, Ok, - -+, Oy)

= gklﬁluak\/det(gij)+8k(gkl85u) det(g;)

= 3k< det(gij)gklalu)

1
= —a dt 7 kla )d l&,"',an,
T k<\/e<g3>g ) dvol (0, )
Au = dt ” kLo .
v= it (Ve on )

1.e.
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In normal coordinates around p,

Au=>"0:0:f.

]

2.11 Let (M, g) be a oriented Riemannian manifold with volume form dvol

as above.

e If f has compact support, then

/ Af - dvol = 0.
M

e Show that
div(f-X)=g(Vf,X)+ f-divX.

e Establish the integration by parts formula for functions with com-

pact support:

/Mf1'Afg'dvol——/Mg(Vfl,Vf2)~dvol.

e Conclude that if f is sub- or superharmonic (i.e. Af > 0or Af <
0) then f is constant. This result is known as the weak maximum
principle. More generally, one can show that any subharmonic
(respectively superharmonic) function that has a global maximum
(respectively minimum) must be constant. This result is usually

referred to as the strong maximum principle.

Proof.
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vadUOl

o

/ Af - dvol =
M

= iv rd(dvol) + d(iv sdvol)
M

Il
=

div(f - X)
= div(f - X)dvol(ey, - ,ep)

= (Lyxdvol)(Ey, -, E,)

= f(Lxdvol)(Ey, -, Ey) + df (E;)dvol(Ey,- - , X, -, E,)
= f(diwX)dvol(Ey, -+, E) + g(Vf, E)g(X, )

= f-divX +g(Vf, X).

Alfi- f2) = div(V(fi- f2))

div(fi-Vfa+ fo-Vfi)

= [ilf2+9(V[1,V ) + 2L +9(V 2, Vi)
= [ilDf+29(V 1, V) + LAf

/ fi- ONfy-dvol = / fi-div(V fy) - dvol
M M
— [ @iv(si V) - 9V V£e) - duol
M
= —/ Q(Vf1,Vf2) - dvol.
M
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o If Af >0, then
0:/ Af - dvol >0,
M

this implies

Af =0.

And hence

O:/Mf-Afdvol:—/Mg(Vf,Vf)-dvol,

Vf=0,
i.e. f is constant.

For the proof of the strong maximum principle, see P280 of the book.

O

2.13 Let X be a unit vector field on (M, g) such that VxX = 0.

e Show that X is locally the gradient of a distance function iff the

orthogonal distribution is integrable.

e Show that X is the gradient of a distance function in a neigh-
borhood of p € M iff the orthogonal distribution has an integral
submanifold through p.

e Find X with the given conditions so that it is not a gradient field.

Proof. e Let X,Y5,--- .Y, be orthonormal frame on M, and 0y be
defined as

Ox(Y)=g(X,)Y), VY € X(M),
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be the 1-form dual to X. =: If X is locally the gradient of a
distance function, i.e. X = Vr for some r: U(C M) — R. Then
Ox(Y)=9g(X,)Y)=g(Vr,Y)=dr(Y), VY € X(M),

ie. Ox =dr,ddx = dodr =0. Hence
0 = dix(¥.,Y))

= Yi(0x(Y)) — Y;(0x (V7)) — Ox([¥3, Y5))

= —9(X,[Yi, Yj]),
ie.

Y, Y] = Z cijk, for some cfj
<: If the distribution Y = {Y5,--- Y, } is integrable, then
9([¥i, ¥;], X) = 0.

We claim that dfx = 0 then.

v

dfx(X,X) = X0x(X) — X0x(X) — 0x([X, X]) =0,

dix(X,Y;) = X0x(Y;) — Yif0x(X) — 0x(X,Y))
= Xg(X,Y;) = Yyg(X, X) — g(X,[X,Y])
= g(VxX,Y;) 4+ g(X,VxY;)

—9(Vy, X, X) — g(X, Vy,X)

—9(X, [X,Y])
= G(VXX.Y)— V(X X)

= 0,
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v
A0x(Y;, ) = Yibx () = Yi0x (YD) = (Y3, Yi]) = 0.
Next, we shall show X = Vr for some r: U(C M) — R.
Indeed, in local coordinates, written X = X'9;, we have
0 = dbx(0;,0;)
= 0i9(X,0;) — 9;9(X,0))
= 0i(X*gr;) — 05(X"gri).
Then a simple mathematical analysis leads to the fact that
Xt =0, i=1,2,-- n,
for some r : U(C M) — R. Hence
X =X, = gijajrﬁi =Vr,
as desired.

e This is just a consequence of the first assertion and the Frobenius

integrability Theorem for vector fields.

e We consider S? = SU(2) with bi-invariant metric, so that
9(Xi, X;j) = by,

where

1 0 0 1 0 ¢
X, = Xy = Xy =
0 —1 -1 0 1 0
Our claim is then that Vx, X; = 0 while [X5, X3] = 2X;. Thus

Xj is not locally a gradient field.
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v [Xo, X3] = 2X).
Indeed, [X;, X;11] = 2X; ( indices are mod 3 ).

\/ VX1 X1 - O
This follows from the Koszul Formula and the Lie bracket just
determined.
m
2.14 Given an orthonormal frame Fy,--- | E, on (M, g), define the structure

constants ¢}; by [E;, Ej] = ¢};Ej. Then define the I's and Rs as
Vi E; =T} Ey,
R(E;, E;)Ey, = R, E,

and compute them in terms of cs. Notice that on Lie groups with
left-invariant metrics the structure constants can be assumed to be

constant. In this case, computations simplify considerably.

Proof. e Fi?‘j is just computed by Koszul Formula.

2TY = 29(VgE;, Ey)
= FEig(E;, Ey) + Ejg(Ey, E;) — Evg(E;, E;)

ok ' i
= G +y — Cik-

Ry = 9T — 0T} + T4, — T5It,

ijk



Zujin Zhang 21
O

2.15 There is yet another effective method for computing the connection and
curvatures, namely, the Cartan formalism. Let (M, ¢g) be a Riemannian

manifold. Given a frame Fy,--- , E,, the connection can be written

VEZ = ngj,

J

where w; are 1-forms. Thus,

V,E; = w!(v)E;.

Suppose now that the frame is orthonormal and let w® be the dual

coframe, i.e. w'(E;) = 5; Show that the connection forms satisfy

w: = —W.-

J i
? 3

dw' = w’? /\w;.

These two equations can, conversely, be used to compute the connection
forms given the the orthonormal frame. Therefore, if the metric is given
by declaring a certain frame to be orthonormal, then this method can

be very effective in computing the connection.

If we think of [wf | as a matrix, then it represents 1-form with values in
the skew-symmetric n X n matrices, or in other words, with values n

the Lie algebra so(n) for O(n).

The curvature forms €/ are 2-forms with values in so(n). They are
defined as
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Show that they satisfy
dw! = Wk A wl + Q.

When reducing to Riemannian metrics on surfaces we obtain for an

orthonormal frame E;, E, with coframe w!, w?

dw' = w? A wy,
dw?® = —w' Awy,
dws = Q4

Q) = sec - dvol.
Proof. e

wy ngjk = g(VE;, Ey) = —g(E;, VE,) = —guwé = —w,i.

P =

d'(X,Y) = X(w'(Y)) = Y(w'(X)) - w'([X,Y])
= X(g(E:,Y)) —Yg(E;, X)) — g(E;, [X,Y])
= g(VxE.,Y)+g(E;,VxY)
—9(Vy Ei, X) — g(E;, Vy X)
—9(E;, [X,Y])
= 9(VxE;,Y) = g(VyE;, X)
= W(X)g(E;,Y) = w(Y)g(E;, X)
= W(X)wy(Y) — o’ (Y)w}(X)

= (W AWH(X,Y).
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e One may calculate as before, but here we note that both sides of
dw! = Wk A wl +Q
are tensors. We need only to check

dwl (B, Br) = En(W](E)) = Ei(w](En))

= En(9(VEEi, E)) — E(9(VE, Ei, Ej))

= 9(Ve, Vg Ei, E;) + 9(VE Ei, Vi, Ej)
—9(VE Ve, Ei, Ej) — 9(VE, Ei, Vi Ej)

= g(R(En, B1)E;, Ej)
+9(VEEi, VE, Ej) = 9(VE, Ei, Vi Ej)

= Q(En, B) + Wi (B)wy (Ep) — wf (B (EY)

= W (En)wf(Br) = Wi (B)(Em) + Q (B, Br)

= (WA wi + Qg)(Em, E).
e In two dimensional case,
Q;(El, Eg) = g(R(El, EQ)EQ, E1> = SE€C,

thus

Q) = sec - dvol.
O

2.16 Show that a Riemannian manifold with parallel Ricci curvature has
constant scalar curvature. In Chapter 3, it will be shown that the
converse is not true, and also that a metric with parallel Ricci curvature

doesn’t have to be Einstein.
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Proof. e dscal = 2divRic.

We calculate at a fixed point p € M, choose a normal orthonormal
frame Ey,--- , E, at p, i.e. VE;(p) =0. For VX € X (M),
dscal(X) = X(g(Ric(E;), E;))
= X(9(R(E;, E;)Ej, Ei))
= 9(VxR)(E;, E;)Ej, Ey)
= —9((VeR)(E;, X)E;, E))
—9((Ve, R)(X, E})E;, ;)
= 9((VeR)(X, E;)E;, Ey)
+9((Vg,R)(X, E;)E;, E;)
= 29((Ve R)(X, E;)Ej, E;)
= 29(Vg,(Ric(X)) — Ric(Vg,X), E;)
= 2¢((Vg,Ric)X), E;)
= 2(divRic)(X).
e VRic =0 = dscal =0 = scal is constant.

]

2.17 Show that if R is the (1 —3)-curvature tensor and Ric is the (0, 2)-Ricci

tensor, then
(divR)(X,Y,Z) = (VxRic)(Y,Z) — (VyRic)(X, Z).

Conclude that divR = 0 if VRic = 0. Then show that divR = 0 iff the

(1, 1)-Ricci tensor satisfies:

(VxRic)(Y) = (VyRic)(X), ¥ X,Y € X(M).
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Proof. e (divR)(X,Y,Z) = (VxRic)(Y,Z) — (VyRic)(X, Z).

(divR)(X,Y, Z)
= 9((VeR)(X,Y,Z),E)
= —g(VxR)(Y, E;, Z), E;) — g(VyR)(E, X, Z), E;)
= —X(9(R(Y, E;)Z, Ey))

+9(R(VxY, E)Z, E) + g(R(Y, E)Vx Z, E;)

L.
= X(Ric(Y,Z)) — Ric(NxY, Z) — Ric(Y,VxZ) + - --
= (VxRic)(Y,Z) — (VyRic)(X, Z).

e VRic=0= divR = 0.
e divR=0<«< [(VxRic)(Y) = (VyRic)(X), VX, Y € X(M).]
Just note that
g((VxRic)Y, Z)
= X(Ric(Y,Z)) — Ric(VxY,Z) — Ric(Y,VxZ)
= (VxRico)Y, Z).

]

2.20 Suppose we have two Riemannian manifolds (M, gy) and (N, gn).
Then the product has a natural product metric (M x N, gy + gn).
Let X be a vector field on M and Y one on N, show that if we re-
gard these as vector fields on M x N, then VxY = 0. Conclude that
sec(X,Y) = 0. This means that product metrics always have many

curvatures that are zero.
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Proof. e VxY =0.
This is easily done by Koszul forumla. Indeed, for any Z €
X (M), W € X(N),
2(VxY,Z) = X(Y,Z)+Y (Z,X)—Z(X,Y)

= 0,
29(VxY, W) =---=0.
e sec(X,Y)=0.
g(R(X, Y)Y, X)
sec(X,Y) = XEVE
g(VXVyY - VyVXY - V[X,Y]Y7 X)

= = 0.
XTIV

2.24 The Einstein tensor on a Riemannian manifold is defined as

G:Rz‘c—%al-f.

Show that G = 0 in dimension 2 and that divG = 0 in higher dimen-
sions. This tensor is supposed to measure the mass/engery distribution.
The fact that it is divergence free tells us that energy and momentum
are conserved. In a vacuum, one therefore imagines that G = 0. Show

that this happens in dimensions> 2 iff the metric is Ricci flat.

Proof. e In dimension 2,

sec(ey, e3) = Rigo1 = (Ric(ey), e1) = (Ric(es), ea) ,
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scal = (Ric(ey),e1) + (Ric(ez), e2) = 2R1991,

where ey, es orthonormal at a given point p of M.
Thus

scal

G(e1) = Ric(ey) — — = Riggier — Rigner =0,

Gles) = -+ = 0.

e In dimensions > 3,

dscal  dscal

2 2

divG = divRic — div <302al I) = — =0

Indeed,
div(scal - T)(e;) = j£:<<7%(scal-177€j>(eﬁ
— Z< J(scal - 1)) e;, e5)

= Z<vej (scal - €;),e;)

— Zj:«vejscal)ei,ej»

J
= V.scal = dscal(e;).

27

Note that we calculate at a normal neighborhood at a given point.

e G=0& Ric=0ifn > 3.

Indeed, if G = 0, then Ric = %‘1’ - I, taking contractions imply

that

scal = 2scal,
2

thusifnZB,scale,Ric:%‘”-Izo.
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2.25 This exercise will give you a way of finding the curvature tensor from

the sectional s curvatures. Using the Bianchi identity show that

82
~6R(X,Y.ZW) = 5o liro (R(X +ZY +tW.Y +1W.X + 52)

—R(X +sW)Y +tZ)Y +tZ, X +sW)}. (2.1)

Proof. Since

R(X +sZ)Y +tW,Y +tW, X + sZ)

= st{R(Z,W,Y,X)+ R(Z,Y,W,X)+ R(X,W,Y, Z)+ R(X,Y,W, Z)}
...

= —2stR(X,Y,W,Z)+2stR(Z,Y,W,X) +---,

we have
82
—— g R(X 7Y Y X A
Gepp ==V X+ SZY H WY + W, X + 57)
= 2R(X,Y,W,Z)+2R(Z,)Y, W, X).
Thus
R.H.S. of Eq. (2.1) = =2R(X,Y,W,Z)+2R(Z,Y, W, X)

+2R(X,Y,Z, W) — 2R(W,Y, Z, X)
= —4R(X,Y,Z,W)

+2(R(Z,Y,W, X) + R(Y,W, Z, X))
= —6R(X,Y,Z,W)
= L.HS. of Eq. (2.1).



Zujin Zhang 29

3 Examples

3.4 The Heisenberg group with its Lie algebra is

1 a c
G= 01 b|:abceRy,
0 01

0 =z =z
g= 00 yl|:ryzeR
0 0

e}

A basis for the Lie algebra is:

010 000 0 01
X=1000|[,Y=1001|:Z2=|000
000 000 000

e Show that the only nonzero bracket are
(X, Y] ==V, X|=Z
Now introduce a left-invariant metric on G such that X, Y, Z form
an orthonormal frame.

e Show that the Ricci tensor has both negative and positive eigen-

values.
e Show that the scalar curvature is constant.

e Show that the Ricci tensor is not parallel.

Proof. Due to the fact

Aegeted,
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we have the elements of g are upper triangle matrices.

e Since XY =ZYX=0XZ=0,ZX=0;YZ=0,ZY =0; we
deduce that
(X, Y] =-[Y,X]=Z,

while other brackets being zero.

e Applying Koszul formula, we have
VxY =7Z,VxZ=VzX=-Y;VyZ=VzY =X,

while other connections being zero.

Hence
Ric(X)=R(X,) Y)Y+ R(X,2)Z = 22X + X = —X;
RicY)=R(Y, X)X+ RY,2)Z =-Y +Y = 0;
Ric(Z) = Ric(Z, X)X+ R(Z)Y)Y =Z+0=Z.

Thus the eigenvalues of Ric are —1,0, 1.

o scal = Ric(X,X)+ Ric(Y,Y)+Ric(Z,Z) = —1+0+1 = 0. Aha,

the Heisenberg group is scalar flat.

e Since

(VxRic)Y,Z) = Vx(RiclY,Z)) — Ric(VxY,Z) — Ric(Y,VxZ)

= 0-1-0=—1,

we gather that V Ric # 0, the Ricci tensor is not parallel.
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3.5 Let § = e?¥¢ be a metric conformally equivalent to g. Show that

VxY = VxY + (Dx9)Y + (Dyy)X — g(X,Y) V).
e If XY are orthonormal with respect to g, then

esee(X,Y) = sec(X,Y)— Hessp(X,X) — Hessp(Y,Y)
—[Vo[* + (Dx)* + (Dyv)*.
Proof. e Again, we invoke the Koszul formula,
20(VxY.Z) = Xg(Y.Z)+ - = g(X,[Y. Z]) + -+

= XY Z) - (XY Z) 4

= 2Vx¥)g(Y,Z) +2(Vy)i(Y, Z) + - --
_€2¢9(X7 [Y7 Z]) +-

= 2AVxv)g(Y. Z) + 2Vy¥)i(Z, X) = 2(Vz1)3(X,Y)
+3(VxY, Z)

= 29((Vx0)Y + (Vy¥)Z — g(X,Y)VY + VY, Z),
where in the last inequality, we use the following fact:
Vzy = dip(Z) = g(V, Z),
and

(VZ@Z)) (X7Y) = g(V@/J,Z)g(X,Y)

Nt

= 9(V, 2)9(X,Y) = g(g(X, V)V, Z).
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e Note that if X,Y are orthonormal w.r.t. g, then

see(X,Y) = gg((]j(();;g ;()) = e g(R(X,Y)Y, X),

1.e.

see(X,Y) = g(R(X,Y)Y,X)
= g(@x@yy — @y@xy — @[Xy]Y, X).(?).l)

We just need to calculate each term on the R.H.S. of Eq. (3.1).

% Calculation of g(@X@yY, X).

VyY = VyY +2(Vy))Y — Vi

VxVyY = Vx(VyY +2(Vy)Y — Vi)
+(Vxtp) (VyY +2(Vy))Y — Vi)

(Voyvromypy-vet) X
—g9(X, VyY + 2(Vy9)Y — Vi),

9(VxVyY, X)

= g(VxVyY, X) +2(Vy)g(VxY, X) — g(Vx Vi, X)
+H(Vx1)g(VyY, X) — [Vx1)]?
+9(VyY, Vi) + 2| Vy9|* — [V ?
—g(X, VyY)(Vx¢) + Vx|

= g(VxVyY, X) +2(Vy)g(VxY, X) — Hessp(X, X)
+(VyVyy — Hessp(Y,Y)) — [Vo|? + 2| Vy 9 *. (3.2)
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* Calculation of g(VyVxY, X).

VxY = VxY + (Vx¥)Y + (Vy¥) X;

VyVxY = Vy (VxY + (Vx)Y + (Vy)X)
+(Vy) (VxY + (Vx9)Y + (Vy) X)

+ (Voav+@xe)y+@ynx®) Y
—g(Y,VxY + (Vx)Y + (Vy) X))V,

g(VyVxY, X)
= (9(VyVxY, X) + (Vx¢)g(VyY, X)
+Vy Vv + (Vx¢)g(Vy X, X))
+(Vy¥)g(VxY, X) + [Vyt|?
—g(Y,VxY)(Vx¢) = [Vxtf?
= 9(VyVxY, X) + (Vx¢)g(VyY, X) + VyVy¢
+H(Vy)g(VxY, X) + [Vy o
—|Vxil. (3.3)
(g(Y, VxY) = %XlYlQ = 0;9(Vy X, X) =--- = 0)

* Calculation of g(VixyY, X).

VixylY = VY + (Vixy)Y
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g(@[x,y] Y, X)
= g(v[X,Y]Y7X)
+(Vyy)g(VxY, X) — (Vy)g(Vy X, X)
—(Vx¥)g(VxY)Y) + (Vxv)g(Vy X, Y)
= 9(VixnY, X) + (Vy¥)g(VxY, X) + (Vx¢)g(Vy X, Y)
(3.4)
Combining Egs. (3.2),(3.3), (3.4), and substituting into Eq.
(3.1), we gather that
e?sec(X,Y) = sec(X,Y) — Hesst)(X,X) — Hessp(Y,Y)

— V]2 4+ (Dx)? + (Dy9)?,

as required.

4 Hypersurfaces

4.4 Let (M, g) be a closed Riemannian manifold, and suppose that there is
a Riemannian embedding into R™*!. Show that there must be a point

p € M where the curvature operator R : A*T,M — AT, M is positive.

Proof. This is geometrically obvious, but the analytical proof is as fol-

lows.

Let
f: R — R

T |z|?
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Figure 2: Curvature comparison between M and S"

Then since M is closed, f|y attains its maximum at p € M.
Claim z | T,M.
Indeed, by Exercise 5.9,

0=(Vf,u)=(Df,v) =2(x,v), YveT,M
Here and thereafter, we use the notation:

% V: the connection on M,

% D: the connection on R™.

Now, choose an orthonormal basis {e;} of T,M such that

X
D.. ol

and let F; be the orthonormal extension on M of e; around p.

= S(ei) = \ie;,

35



Zujin Zhang

36

Differentiating

(V,E;) = (Df, E;) = 2(x, E)

in the direction E;, we obtain

While at p € M,

Thus we

L.HS. of Eq. (4.1) = Hessf(E;, E;) <0;

R.H.S. of Eq. (4.1)

— 2 <DEZ, (%m) E> —9 <x v g, - DEl.EZ->

z| ||

= 20| (S(E), ) + 2|x| (S5"1PD(E), ;)

( Here we use the notation as in Exercise 5.8 )

1
= 2|z|\ + 2|z g

gather that

secere;) = (S(es) e (S(ej),e5) — (S(Ey), By
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4.5 Suppose (M, g) is immersed as a hypersurface in R""! with shape

operator S.

e Using the Codazzi-Mainardi equations, show that
divS = d(trS).

e Show that if S = f(z) - I for some function f, then f must be a

constant and the hypersurface must have constant curvature.

e Show that S = )\ - Ric iff the metric has constant curvature.

Proof. e We calculate in a normal neighborhood as:

J

= Y ((VuS)E).E)) = Z (VE(S(E))), Ej)

= Y Vi (S(E)), E;) = VitrS = d(trS)(E).

(divS)(E;) = Z(ijs,Ej>(Ei>:Z((ijS)(Ei),Ej>

o If S= f(x)-1, then
df = divS =d(trS) = d(nf).

Thus (n —1)df = 0. Since n > 1 ( we consider this case ), df =0,
f =const. And S = const - I,

SGC(EZ‘,E]‘) = <R(EZ,E]>EJ7EZ>
= (S(Ei, Ei) (S(E)), Ej) = (S(Ei), Ej) (S(Ej), Ex)

= const®.
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e = If S = X\. Ric, by Codazzi-Mainardi equations and FExercise
2.17, we have divR = 0, thus

< If (M, g) has constant curvature, then by Exercise 2.17 again,
(VxRic)(Y) = (VyRic)(X). (4.2)
We now have another identity:

(R(X,Y)Z,W) = X {(Ric(X), W) (Ric(Y), Z)
X (Ric(X), Z) (Ric(Y), W), (4.3)

for some constant A € R.
A tedious calculation may verify, using the polarization identity

like Exercise 2.25.

Now, the fundamental theorem of Hypersurface theory tells us (
by Egs. (4.2), (4.3) ) that A- Ric = S’ for some shape operator of

M, but M is already immersed in R*"!, we have

A Ric=8=285.

5 Geodesics and Distance

5.2 A Riemannian manifold is said to be homogeneous if the isometry group
acts transitively. Show that homogeneous manifolds are geodesically

complete.
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Proof. For any p € M, v € T,M with |v| = 1, let v be the geodesic
with data (p, v). Denote by T * the maximal existence time for 7. Then

we have the
Claim 7* = oo.

Indeed, if T* < oo, let

e £ > 0 be such that

exp, : B(0,2¢) C T,M — By.(0) C M

is a diffeomorphism,

o F e Iso(M,g) with

Now since
jwl = 13T =)l = [7(0)] = [v] = 1,
there is a geodesic 7 : [0,2¢] — M with data (p,w). Hence F(7) is a
geodesic with data (y(7* —¢),(7T* —¢)). Indeed,
0= (DF(V37) = Ve F()
While uniqueness of ode tells us that

7, on [0,7T* —¢],
F(®), on[T*—e,T*+¢],
is a geodesic with data (p,v). This contradicts the definition of 7.

Finally the proof is complete if we invoke the classical Hopf-Rinow

theorem and notice the homogeneity of geodesics. O



Zujin Zhang 40

Figure 3: the composed geodesic

5.8 Let N C (M,g) be a submanifold. Let V¥ denote the connection
on N that comes from the metric induced by g. Define the second

fundamental form of N in M by

I(X,Y)=VYY — VyY.

Show that I1(X,Y) is symmetric and hence tensorial in X and
Y.

Show that 17(X,Y) is always normal to N.

Show that I =0 on N iff N is totally geodesic.

If RY is the curvature form of N, then

g(R(X,Y)Z, W) = g(RN(X,Y)Z, W)
—g(II(Y, Z2), I1(X,W)) + g(II(X, Z), II(Y,W)).
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Proof. e Due to the fact

II(X,)Y) = VYY —VyY = ([X,Y]+ V{X) — ([X,Y] + VyX)
= VX —VyX =I1I(Y,X),

we see that I is symmetric. And by definition of the connection,

11 is tensorial in X, thus tensorial in Y as

H(X, Y1+ gYo) = TI(fY1 + gYs, X)

= FII(Y1,X) +glI(Ys, X) = fII(X, V) + gII(X.Ya).

e Indeed, Koszul formula tells us that VY = (VxY)", where T is
the projection from T'M to T'N, thus

II(X,)Y)=(VxY)" —=VxY = (VxY)F,

which is normal to N.

e Recall that N is totally geodesic in M iff any geodesic in N is a
geodesic in M. Now we prove the assertion.
= If I = 0 and 7 is a geodesic in NN, then Vévﬁ = 0, thus
Vsy =0, v is a geodesic.
< By the formula

II(X,Y) = % II(X+Y,X+Y)—I1I(X,X)—II(Y,Y)],

we need only to show that I1(X,X) =0,V X € X(M). But I/

is tensorial, we are redirected to prove that

II(v,v) =0,V veT,N,VpeN.
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This is obviously true. In fact, for any p € N, v € T, N, let v be
the geodesic in N with initial data (p,v), then nyvf'y =0, and by
hypothesis, V4 =0, I1(v,v) = 0.

O

5.9 Let f: (M, g) — R be a smooth function on a Riemannian manifold.

o If v : (a,b) - M is a geodesic, compute the first and second

derivative of f o~.

e Use this to show that at a local maximum (or minimum) for f the

gradient is zero and the Hessian nonpositive (or nonnegative).

e Show that f has everywhere nonnegative Hessian iff fo~ is convex

for all geodesics v in (M, g).

Proof.

e We omit the subscript for simplicity.
d

—(fo) =Df(3) =df () = Dsf = g(V £, %),

o = 4 (506n) = DD = Di(DI )
= (D5(Df)() + Df(Ds7)
— (DDA = D)

e We consider the case when f attains its local minimum at p € M.
Then for V v € T,M, let v be the geodesic with initial data (p,v), we

have

0= 2(for) = 4(VF.4) = o(V1.0),
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and
2
0> %(foy) = Hessf(7,7) = Hessf(v,v),

at p. Hence the conclusion.
o We just take the following equiv.:

Hessf(v,v) >0, VveT,M
2

d
& @(f o7) >0, Vv geodesic

&< foryis convex,V vy geodesic.

O

5.12 Compute the cut locus on a sphere and real projective space with con-

6.1

stant curvature metrics.

Proof. We consider the case (S™, cangn

p € S™, cut(p) = {—p}. While for RP™ ( What’s the meaning of the

sn) with curvature 1. For any

problem? Is it mean that RP™ is given a metric so that it is of constant

curvature or ... ), cut([p]) =the equator.

Sectional Curvature Comparison I

Show that in even dimension the sphere and real projective space are

the only closed manifolds with constant positive curvature.

Proof. If M is of even dimension, closed ( compact and without bound-

ary ), and with positive curvature,
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Figure 4: Cut locus of S™ and RP"

e in case M is orientable, then Synge theorem tells us that M is

simple connected, thus M are spheres;

e in case M is non-orientable, then the orientable double covering

of M are spheres, thus M are real projective spaces.

O

6.5 Let v : [0,1] = M be a geodesic. Show that exp,) has a critical
point at ¢4(0) iff there is a Jacobi field J along v such that J(0) = 0,
J(0) # 0, and J(t) = 0.

Proof. We assume w.l.o.g. that ¢ = 1. First note that

exp, has a critical point at 4(0)

< 40 7é w e T"y(O)T'y(O)My s.t. (dea:pv(o));y(o) (w) =0.

= Let J(t) = (dexpy0))ey0)(tw), t € [0,1], then J is the Jacobi field

we are chasing.
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<« If we have a Jacobi field J(¢) as in the problem, then
(dexpy(0))50)(J(0)) = J (1) = 0,
with 0 # J(0) € Tyo)(Ty)M). O

6.8 Let v be geodesic and X be a Killing field in a Riemannian manifold.
Show that the restriction of X to v is a Jacobi field.

Proof. Recall that
X Killing field < Lxg = 0.

Now let {e; =%, e, - ,e,} be the parallel orthonormal vector fields

along v, then

0 = (Lxo)3e)
= Dx(9(%,€)) — 9(Lx%, ) — g(+, Lxe;)
= —g9(Vx¥,e) +9(Vs X, e:) — g(, Vxei) + g(¥, Ve, X)

= g(V&X, ez)—{—g(% VeiX). (61)
In particular,

9(V5X,4) =0, (6.2)
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Now differentiating Eq. (6.1) w.r.t. 4, we find that

0 = Dy(9(ViX,€)) + Dy (9(7, Ve, X))
9(1, V5V, X)
= 9(V5V3X,e) +9(7, V5V, X =V, Vi X — Vs 1 X) (6.3)
(R(Y, €)X, %)
9(R(X,7)7, )

= 9(V5V5X + R(X, 9)7, e).

Hence
ViV X + R(X, )y =0,
i.e. X is a Jacobi field along ~.
Note that in Eq. (6.3), we have used the following fact:
9(¥, Ve, V5 X 4+ Vi 00 X)

= D¢, {97, V5X)} = 9(Ve, 7, V5 X) — g(%, Vy, 1 X)

= —(9(Ve,3, V5X) +9(%, Vv, s X)) ( by (6.2) )

= 0.( skew-symmetric property of Killing fields )

]

6.21 ( The Index Form ) Below we shall use the second variation formula
to prove several results established in Chapter 5. If V, W are vector
fields along a geodesic 7 : [0,1] — (M, g), then the index form is the

symmetric bilinear form

LV, W) = I(V, W) = / (o7 W) = a(R(V.4)3. W) d.
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In case the vector fields come from a proper variation of v this is equal
to the second variation of energy. Assume below that ~y : [0, 1] — (M, g)
locally minimize the energy functional. This implies that I(V,V) > 0

for all proper variations.

e If I(V,V) =0 for a proper variation, then V' is a Jacobi field.

e Let VV and J are variational fields along « such that V(0) = J(0)
and V(1) = J(1). If J is a Jacobi field show that

I(V,J) = I(J,J).

e ( The Index Lemma ) Assume in addition that there are no Jacobi
fields along 7 that vanish at both end points. If V' and J are both
as above. Show that I(V, V') > I(J, J) with equality holding only
if V.=Jon [0,1].

e Assume that there is a nontrivial Jacobi field J that vanishes at

0 and 1. Show that v : [0,1 4 €] — M is not locally minimizing

for € > 0.

Proof. Note that the vector fields we consider are all smooth.
e For any proper variational filed W (i.e. W(0) =0=W(1) ),

0 < I(V+eW,V+eW)
= I(V,V)+2I(V,W) +2I(W, W)
= e2[(V,W) +el(W,W)].

Letting e — 07,07, we get I(V, W) = 0. Thus

0=1(V,W) = —/1g<V+R(V,7)7,W) dt,
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and hence V + R(V, %)% = 0, V is a Jacobi field.

e This follows from direct computation as
1 . . .
1V =20) = [ (o7 = Jd) = g(ROV = 23)5.0)) de
0

S /01 (g(v —J,J)+g(V = JR(J, 7)7)) dt

( Here we use the boundary conditions... )

_ _/1g<V—J,J+R(J,f'y)f'y>dt:O.
0

o If V # J, then V — J is a proper variational field.
Claim 0 < I(V—-JV —-J)=1V,V)—=1(J,J).
Indeed, if I(V —J,V —J), then the first assertion tells us that V' —.J

is a nontrivial, proper Jacobi field, contradicting the hypotheses.

e See the figure attached and one may compute as

0 = Ig(J,J)=1I"(J,J)
= I,°(J,J)+ [TE(J, )
> 1;7°(J,J) + [ (K, K)
( Here we use the Index Lemma )

= I(V,V).
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Figure 5: the composed variational field

Concluding Remarks

Thanks to the inspiring and fantastic lectures of Professor Zhu, from whom
the author learnt a lot.

But due to

e the author’s limited knowledge,

e the fast process of this tedious work,
errors or even blunders may occur. So any comments, whether

e critical, i.e. the reference answer is wrong(?), not accurate(?), mis-

prints(?), e.t.c.

e constructive, i.e. there are beautiful proofs, e.t.c.

is welcome.

The author’s email is: uia.china@gmail.com.
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