Exercises of Petersen's Riemannian Geometry Peter Petersen

Zujin Zhang

January 14, 2010

To my parents, Jihe Zhang and Yulan Ouyang

Contents

1	Riemannian Metrics	2
2	Curvature	7
3	Examples	29
4	Hypersurfaces	34
5	Geodesics and Distance	38
6	Sectional Curvature Comparison I	43

1 Riemannian Metrics

1.1 On product manifolds $M \times N$ one has special product metrics $g = g_M + g_N$, where g_M, g_N are metrics on M, N respectively.

- Show that $(\mathbb{R}^n, can) = (\mathbb{R}, dt^2) \times \cdots \times (\mathbb{R}, dt^2)$.
- Show that the flat square torus

$$T^2 = \mathbb{R}^2/\mathbb{Z}^2 = \left(S^1, \left(\frac{1}{2\pi}\right)^2 d\theta^2\right) \times \left(S^1, \left(\frac{1}{2\pi}\right)^2 d\theta^2\right).$$

• Show that

$$F(\theta_1, \theta_2) = \frac{1}{2\pi} (\cos \theta_1, \sin \theta_1, \cos \theta_2, \sin \theta_2)$$

is a Riemannian embedding: $T^2 \to \mathbb{R}^4$.

Proof.
$$\bullet$$
 $can_{\mathbb{R}^n} = \sum_{i=1}^n (dx^i)^2$.

• Note that

$$\left(\frac{1}{2\pi}\right)d(\theta_1)^2 + \left(\frac{1}{2\pi}\right)d(\theta_2)^2 = \left(d\left(\frac{\theta_1}{2\pi}\right)\right)^2 + \left(d\left(\frac{\theta_1}{2\pi}\right)\right)^2,$$
where $\theta_1, \theta_2 \in [0, 2\pi)$.

• \star F is injective.

$$\sin \theta_1 = \sin \theta_2, \cos \theta_1 = \cos \theta_2 \Rightarrow \theta = 0.$$

 \bigstar dF is injective.

$$dF(\partial_{\theta_1}) = \frac{1}{2\pi} (-\sin \theta_1, \cos \theta_1, 0, 0),$$

Figure 1: The isometry between T^1 and S^1 with metric above

$$dF(\partial_{\theta_2}) = \frac{1}{2\pi}(0, 0, -\sin\theta_2, \cos\theta_2).$$

$$dF(\alpha\partial_{\theta_1} + \beta\partial_{\theta_2}) = 0 \Rightarrow \alpha = 0 = \beta.$$

 \bigstar F is a Riemannian embedding.

Just note that

$$F^*can_{\mathbb{R}^4} = \left(d\left(\frac{1}{2\pi}cos\theta_1\right)\right)^2 + \cdots$$
$$= \left(\frac{1}{2\pi}\right)^2 \left((d\theta_1)^2 + (d\theta_2)^2\right).$$

1.5 Let G be a Lie group.

• Show that G admits a bi-invariant metric, i.e. both right and left translation are isometries.

• Show that the inner automorphism $Ad_h(x) = hxh^{-1}$ is a Riemannian isometry. Conclude that its differential at x = e denoted by the same letters

$$Ad_h:\mathfrak{g}\to\mathfrak{g}$$

is a linear isometry with respect to g.

• Use this to show that the adjoint action

$$ad_U$$
 : $\mathfrak{g} \to \mathfrak{g}$, $ad_U(X) = [U, X]$

is skew-symmetric, i.e.,

$$g([U, X], Y) = -g(X, [U, Y]).$$

Proof. • Let g_L be a left-invariant metric, i.e.

$$g_L(v, w) = g_L((dL_{x^{-1}})_x(v), (dL_{x^{-1}})_x(w)),$$

 $\forall v, w \in T_x G, x \in G.$

Let E_1, \dots, E_n the left-invariant orthonormal vector fields, $\sigma^1, \dots, \sigma^n$ the dual 1-forms. Thus the volume form

$$\omega = \sigma^1 \wedge \dots \wedge \sigma^n.$$

Define

$$g(v, w) = \frac{1}{\int \omega} \int g_L(DR_x(v), DR_x(w))\omega.$$

We have

 \star g is left-invariant.

$$g((DL_y)_e(v), (DL_y)_e(w))$$

$$= \frac{1}{\int \omega} \int g_L((DR_x)_y \circ (DL_y)_e(v), (DR_x)_y \circ (DL_y)_e(w))\omega$$

$$= \frac{1}{\int \omega} \int g_L((DL_y)_x \circ (DR_x)_e(v), (DL_y)_x \circ (DR_x)_e(w))\omega$$

$$(R_x \circ L_y = L_y \circ R_x)$$

$$= \frac{1}{\int \omega} \int g_L((DR_x)_e(v), (DR_x)_e(w))\omega$$

$$(g_L \text{ is left-invariant})$$

$$= g(v, w), \ \forall \ v, w \in T_eG; \ y \in G.$$

 \star g is right-invariant.

$$g((DR_y)_e(v), (DR_y)_e(w))$$

$$= \frac{1}{\int \omega} \int g_L((DR_x)_y \circ (DR_y)_e(v), (DR_x)_y \circ (DR_y)_e(w))\omega$$

$$= \frac{1}{\int \omega} \int g_L((DR_{yx})_e(v), (DR_{yx})_e(w))\omega$$

$$= \frac{1}{\int \omega} \int g_L((DR_z)_e(v), (DR_z)_e(w))\omega$$
(change of variables: $z = yx$)
$$= g(v, w), \ \forall \ v, w \in T_eG; \ y \in G.$$

• Indeed,

$$Ad_h = L_h \circ R_{h^{-1}}$$

thus its differential

$$D(Ad_h) = (DL_h) \circ (DR_{h^{-1}}),$$

6

and

$$g(Ad_{h}(v), Ad_{h}(w))$$

$$= g(D(Ad_{h})_{e}(v), D(Ad_{h})_{e}(w))$$

$$= g((D_{h})_{xh^{-1}} \circ (DR_{h^{-1}})x(v), (D_{h})_{xh^{-1}} \circ (DR_{h^{-1}})x(w))$$

$$= g(v, w), \ \forall \ v, w \in T_{e}M,$$

i.e. Ad_h is a linear isometry w.r.t. g.

• By the second assertion,

$$g(Ad_{exp(tU)}X, Ad_{exp(tU)}Y) = g(X, Y), \ \forall X, Y \in \mathfrak{g}.$$

Differentiating the above equality at t=0, we get

$$g(ad_UX, Y) + g(X, ad_UY) = 0,$$

i.e.

$$g([U, X], Y) = -g(X, [U, Y]).$$

- 1.6 Let V be a n-dimensional vector space with a symmetric nondegenerate bilinear form g of index p.
 - Show that there exists a basis e_1, \dots, e_n such that $g(e_i, e_j) = 0$ if $i \neq j$, $g(e_i, e_i) = -1$ if $i = 1, \dots, p$ and $g(e_i, e_i) = 1$ if $i = p + 1, \dots, n$. Thus V is isometric to $\mathbb{R}^{p,q}$.
 - \bullet Show that for any v we have the expansion

$$v = \sum_{i=1}^{n} \frac{g(v, e_i)}{g(e_i, e_i)} e_i = -\sum_{i=1}^{p} g(v, e_i) e_i + \sum_{i=p+1}^{n} g(v, e_i) e_i.$$

• Let $L: V \to V$ be a linear operator. Show that

$$tr(L) = \sum_{i=1}^{n} \frac{g(L(e_i), e_i)}{g(e_i, e_i)}.$$

Proof. Indeed, nothing need to show if one is familiar with the theory of quadratic forms! \Box

2 Curvature

2.1 Show that the connection on Euclidean space is the only affine connection such that $\nabla X = 0$ for all constant vector fields X.

Proof. If $\nabla X = 0$, $\forall X = a^i \partial_i$, with a^i constant, then for $\forall j$,

$$0 = \nabla_{\partial_j} X = \nabla_{\partial_j} (a^i \partial_i)$$
$$= (\partial_j a^i) \partial_i + a^i \nabla_{\partial_j} \partial_j = a^i \nabla_{\partial_j} \partial_i$$
$$= a^i \Gamma^k_{ii} \partial_k,$$

i.e.

$$\Gamma^k_{ij} = 0, \ \forall \ i, j, k,$$

the connection is flat.

2.2 If $F:M\to M$ is a diffeomorphism, then the push-forward of a vector field is defined as

$$(F_*X)|_p = DF(X|_{F^{-1}(p)}).$$

Let F be a isometry on (M, g).

• Show that $F_*(\nabla_X Y) = \nabla_{F_*X} F_* Y$ for all vector fields.

• If $(M,g)=(\mathbb{R},can)$, then isometries are of the form F(x)=Ox+b, where $O\in O(n)$ and $b\in\mathbb{R}^n$.

Proof. • By Koszul formula, we have for $\forall Z \in \mathcal{X}(M)$,

$$\begin{split} g(F_*(\nabla_X Y), F_* Z) \circ F &= (F^*g)(\nabla_X Y, Z) \\ &= \frac{1}{2} \left[X((F^*g)(Y, Z)) + Y((F^*g)(Z, X)) - Z((F^*g)(X, Y)) \right. \\ &+ (F^*g)(Z, [X, Y]) + (F^*g)(Y, [Z, X]) - (F^*g)(X, [Y, Z]) \right] \\ &= \frac{1}{2} \left[X(g(F_*Y, F_*Z) \circ F) + Y(g(F_*Z, F_*X) \circ F) \right. \\ &- Z(g(F_*X, F_*Y) \circ F) \\ &+ g(F_*Z, [F_*X, F_*Y]) \circ F + g(F_*Y, [F_*F_*Z, F_*X]) \circ F \\ &+ g(F_*X, [F_*Y, F_*Z]) \circ F \right] \\ &= g(\nabla_{F_*X} F_*Y, F_*Z) \circ F. \end{split}$$

• If $(M,g)=(\mathbb{R}^n,can)$, and F is an isometry, then due to

$$0 = F_*(\nabla_{\partial_i}\partial_j) = \nabla_{F_*\partial_i}F_*\partial_j,$$

we have

$$\nabla F_* \partial_j = 0.$$

Thus

$$\frac{\partial^2 F_i}{\partial x^j \partial x^k} = 0, \ \forall \ i, j, k.$$

While, F is an isometry implies

$$\begin{split} \delta_{ij} &= \langle \partial_i, \partial_j \rangle \\ &= \langle F_* \partial_i, F_* \partial_j \rangle \\ &= \left\langle \frac{\partial F_i}{\partial x_k} \partial_k, \frac{\partial F_j}{\partial x_l} \partial_l \right\rangle \\ &= \sum_k \frac{\partial F_i}{\partial x_k} \frac{\partial F_j}{\partial x_k}. \end{split}$$

i.e.

$$\left[\frac{\partial F_i}{\partial x_j}\right] \in O(n).$$

Thus Taylor's expansion tells us

$$F = Ox + b,$$

with $O \in O(n), b \in \mathbb{R}^n$.

9

2.4 Show that if X is a vector field of constant length on a Riemannian manifold, then $\nabla_v X$ is always perpendicular to X.

Proof.

$$0 = D_v g(X, X) = 2g(\nabla_v X, X).$$

2.5 For any $p \in (M, g)$ and orthonormal basis e_1, \dots, e_n for T_pM , show that there is an orthonormal frame E_1, \dots, E_n in a neighborhood of p such that $E_i = e_i$ and $(\nabla E)|_p = 0$.

Proof. Fix an orthonormal frame \overline{E}_i near $p \in M$ with $\overline{E}_i(p) = e_i$. If we define $E_i = \alpha_i^j \overline{E}_j$, where $[\alpha_i^j(x)] \in SO(n)$ and $\alpha_i^j(p) = \delta_i^j$, then this will yield the desired frame provided that the $D_{e_k}\alpha_i^j$ are prescribed as

$$0 = D_{e_k}(\alpha_i^j \overline{E}_i) = D_{e_k}\alpha_i^j \overline{E}_i + \alpha_i^j D_{e_k} \overline{E}_i.$$

2.7 Let M be a n-dimensional submanifold of \mathbb{R}^{n+m} with the induced metric and assume that we have a local coordinate system given by a parametrization $x^s(u^1, \dots, u^n), s = 1, \dots, n+m$. Show that in these coordinates we have:

•

$$g_{ij} = \sum_{s=1}^{n+m} \frac{\partial x^s}{\partial u^i} \frac{\partial x^s}{u^j}.$$

•

$$\Gamma_{ij,k} = \sum_{s=1}^{n+m} \frac{\partial x^s}{\partial u^k} \frac{\partial^2 x^s}{\partial u^i \partial u^j}.$$

• R_{ijkl} depends only on the first and second partials of x^s .

Proof. •

$$g_{ij} = g\left(dx^{s}\left(\frac{\partial}{\partial u^{i}}\right), dx^{s}\left(\frac{\partial}{\partial u^{j}}\right)\right)$$

$$= g\left(\frac{\partial x^{s}}{\partial u^{i}}\frac{\partial}{\partial x^{s}}, \frac{\partial x^{t}}{\partial u^{j}}\frac{\partial}{\partial x^{t}}\right)$$

$$= \frac{\partial x^{s}}{\partial u^{i}}\frac{\partial x^{t}}{\partial u^{j}}\delta_{st}$$

$$= \frac{\partial x^{s}}{\partial u_{i}}\frac{\partial x^{s}}{\partial u_{j}}.$$

•

$$\begin{split} \Gamma_{ij,k} &= \Gamma^l_{ij} g_{lk} \\ &= \frac{1}{2} (\partial_j g_{ik} + \partial_i g_{jk} - \partial_k g_{ij}) \\ &= \frac{1}{2} \left[\partial_j (\partial_i x^s \partial_k x^s) + \partial_i (\partial_j x^s \partial_k x^s) - \partial_k (\partial_i x^s \partial_j x^s) \right] \\ &= \frac{1}{2} (\partial^2_{ij} x^s \partial_k x^s + \partial_k x^s \partial^2_{ij} x^s) \\ &= \partial_k x^s \partial^2_{ij} x^s. \end{split}$$

•

$$R_{ijkl} = g(R(\partial_i, \partial_j)\partial_k, \partial_l)$$

$$= g(\nabla_{\partial_i} \nabla_{\partial_j} \partial_k - \nabla_{\partial_j} \nabla_{\partial_i} k - \nabla_{[\partial_i, \partial_j]} \partial_k, \partial_l)$$

$$= g(\nabla_i (\Gamma^p_{jk} \partial_p) - \nabla_j (\Gamma^p_{ik} \partial_p), \partial_l)$$

$$= \partial_i \Gamma^p_{jk} g_{pl} + \Gamma^p_{jk} \Gamma^q_{ip} g_{ql} - \partial_j \Gamma^p_{jik} g_{pl} - \Gamma^p_{ik} \Gamma^q_{jp} g_{ql},$$

while the terms involving third partials of x^s offset:

$$\partial_p x^s \partial_i (\partial_{ik}^2 x^s) - \partial_p x^s \partial_i (\partial_{ik}^2 x^s) = 0.$$

2.8 Show that $Hess f = \nabla df$.

12

Proof.

$$\begin{aligned} Hessf(X,Y) &= g(\nabla_X \nabla f, Y) \\ &= Xg(\nabla f, Y) - g(\nabla f, \nabla_X Y) \\ &= \nabla_X (df(Y)) - df(\nabla_X Y) \\ &= (\nabla_X df)(Y) \\ &= (\nabla df)(X, Y). \end{aligned}$$

2.10 Let (M, g) be oriented and define the Riemannian volume form dvol as follows:

$$dvol(e_1, \cdots, e_n) = \det(g(e_i, e_j)) = 1,$$

where e_1, \dots, e_n is a positively oriented orthonormal basis for T_pM .

• Show that if v_1, \dots, v_n is positively oriented, then

$$dvol(v_1, \dots, v_n) = \sqrt{\det(g(v_i, v_j))}.$$

- Show that the volume form is parallel.
- Show that in positively oriented coordinates,

$$dvol = \sqrt{\det(g_{ij})} dx^1 \wedge \cdots \wedge dx^n.$$

• If X is a vector field, show that

$$L_X dvol = div(X) dvol.$$

• Conclude that the Laplacian has the formula:

$$\triangle u = \frac{1}{\sqrt{\det(g_{ij})}} \partial_k \left(\sqrt{\det(g_{ij})} g^{kl} \partial_l u \right).$$

Given that the coordinates are normal at p we get as in Euclidean space that

$$\triangle f(p) = \sum_{i=1}^{n} \partial_i \partial_i f.$$

Proof. • Let $v_i = \alpha_i^j e_j$, then

$$dvol(v_1, \dots, v_n) = \sum_{i=1}^{n} \alpha_1^{i_1} \dots \alpha_n^{i_n} \det(e_{i_1}, \dots, e_{i_n})$$

$$= \sum_{i=1}^{n} sgn(i_1, \dots, i_n) \alpha_1^{i_1} \dots \alpha_n^{i_n}$$

$$= \det_i \alpha_i^j$$

$$= \sqrt{\det_i \alpha_i^j \cdot \det_i \alpha_j^j}$$

$$= \sqrt{\det(\alpha_i^k \alpha_k^j)}$$

$$= \sqrt{\det(g(v_i, v_j))}.$$

• By Exercise 5, \exists local orthonormal frame (E_i) around p, such that

$$E_i(p) = e_i, \quad \nabla E_i(p) = 0.$$

Then for any $X \in \mathcal{X}(M)$, $X = X^i E_i$, we have

$$(\nabla_X dvol)(E_1, \dots, E_n)$$

$$= X(dvol(E_1, \dots, E_n)) - \sum_d vol(E_1, \dots, \nabla_X E_i, \dots, E_n)$$

$$= 0.$$

• This is just a direct consequence of the first assertion, i.e.

$$dvol(\partial_1, \cdots, \partial_n) = \sqrt{\det(g_{ij})}$$

implies that

$$dvol = \sqrt{\det(g_{ij})} dx^1 \wedge \cdots \wedge dx^n.$$

ullet

$$(L_X dvol)(E_1, \dots, E_n)$$

$$= L_X (dvol(E_1, \dots, E_n)) - \sum dvol(E_1, \dots, L_X E_i, \dots, E_n)$$

$$= (divX)dvol(E_1, \dots, E_n),$$

where we use the fact

$$L_X E_i = [X, E_i] = \nabla_X E_i - \nabla_{E_i} X = -\nabla_{e_i} X = -(\nabla_{e_i} X^i) e_i.$$

•

$$\triangle u \cdot dvol = div(\nabla u)dvol = L_{\nabla u}dvol = L_{g^{kl}\partial_l u\partial_k}dvol$$

implies that

$$\Delta u \cdot dvol(\partial_{1}, \dots, \partial_{n})$$

$$= (L_{g^{kl}\partial_{l}u\partial_{k}}dvol)(\partial_{1}, \dots, \partial_{n})$$

$$= g^{kl}\partial_{l}u(L_{\partial_{k}}dvol)(\partial_{1}, \dots, \partial_{n})$$

$$+d(g^{kl}\partial_{l}u)(\partial_{m})dvol(\partial_{1}, \dots, \partial_{k}, \dots, \partial_{n})$$

$$= g^{kl}\partial_{l}u\partial_{k}\sqrt{\det(g_{ij})} + \partial_{k}(g^{kl}\partial_{l}u)\sqrt{\det(g_{ij})}$$

$$= \partial_{k}\left(\sqrt{\det(g_{ij})}g^{kl}\partial_{l}u\right)$$

$$= \frac{1}{\sqrt{\det(g_{ij})}}\partial_{k}\left(\sqrt{\det(g_{ij})}g^{kl}\partial_{l}u\right)dvol(\partial_{1}, \dots, \partial_{n}),$$

i.e.

$$\Delta u = \frac{1}{\sqrt{\det(g_{ij})}} \partial_k \left(\sqrt{\det(g_{ij})} g^{kl} \partial_l u \right).$$

In normal coordinates around p,

$$\triangle u = \sum \partial_i \partial_i f.$$

2.11 Let (M, g) be a oriented Riemannian manifold with volume form dvol as above.

ullet If f has compact support, then

$$\int_{M} \triangle f \cdot dvol = 0.$$

• Show that

$$div(f \cdot X) = g(\nabla f, X) + f \cdot div X.$$

• Establish the integration by parts formula for functions with compact support:

$$\int_{M} f_{1} \cdot \triangle f_{2} \cdot dvol = -\int_{M} g(\nabla f_{1}, \nabla f_{2}) \cdot dvol.$$

• Conclude that if f is sub- or superharmonic (i.e. $\triangle f \ge 0$ or $\triangle f \le 0$) then f is constant. This result is known as the weak maximum principle. More generally, one can show that any subharmonic (respectively superharmonic) function that has a global maximum (respectively minimum) must be constant. This result is usually referred to as the strong maximum principle.

Proof.

•

$$\int_{M} \triangle f \cdot dvol = \int_{M} L_{\nabla f} dvol$$

$$= \int_{M} i_{\nabla f} d(dvol) + d(i_{\nabla f} dvol)$$

$$= 0.$$

•

$$div(f \cdot X)$$

$$= div(f \cdot X)dvol(e_1, \dots, e_n)$$

$$= (L_{f \cdot X}dvol)(E_1, \dots, E_n)$$

$$= f(L_Xdvol)(E_1, \dots, E_n) + df(E_i)dvol(E_1, \dots, X, \dots, E_n)$$

$$= f(divX)dvol(E_1, \dots, E_n) + g(\nabla f, E_i)g(X, E_i)$$

$$= f \cdot divX + g(\nabla f, X).$$

•

$$\triangle(f_1 \cdot f_2) = div(\nabla(f_1 \cdot f_2))$$

$$= div(f_1 \cdot \nabla f_2 + f_2 \cdot \nabla f_1)$$

$$= f_1 \triangle f_2 + g(\nabla f_1, \nabla f_2) + f_2 \triangle f_1 + g(\nabla f_2, \nabla f_1)$$

$$= f_1 \triangle f_2 + 2g(\nabla f_1, \nabla f_2) + f_2 \triangle f_1.$$

•

$$\int_{M} f_{1} \cdot \triangle f_{2} \cdot dvol = \int_{M} f_{1} \cdot div(\nabla f_{2}) \cdot dvol$$

$$= \int_{M} (div(f_{1} \cdot \nabla f_{2}) - g(\nabla f_{1}, \nabla f_{2})) \cdot dvol$$

$$= -\int_{M} g(\nabla f_{1}, \nabla f_{2}) \cdot dvol.$$

• If $\triangle f \geq 0$, then

$$0 = \int_{M} \triangle f \cdot dvol \ge 0,$$

this implies

$$\triangle f = 0.$$

And hence

$$0 = \int_{M} f \cdot \triangle f \cdot dvol = -\int_{M} g(\nabla f, \nabla f) \cdot dvol,$$
$$\nabla f = 0,$$

i.e. f is constant.

For the proof of the strong maximum principle, see P280 of the book.

2.13 Let X be a unit vector field on (M, g) such that $\nabla_X X = 0$.

- \bullet Show that X is locally the gradient of a distance function iff the orthogonal distribution is integrable.
- Show that X is the gradient of a distance function in a neighborhood of $p \in M$ iff the orthogonal distribution has an integral submanifold through p.
- Find X with the given conditions so that it is not a gradient field.

Proof. • Let X, Y_2, \dots, Y_n be orthonormal frame on M, and θ_X be defined as

$$\theta_X(Y) = g(X, Y), \quad \forall \ Y \in \mathcal{X}(M),$$

be the 1-form dual to X. \Rightarrow : If X is locally the gradient of a distance function, i.e. $X = \nabla r$ for some $r: U(\subset M) \to \mathbb{R}$. Then

$$\theta_X(Y) = g(X, Y) = g(\nabla r, Y) = dr(Y), \quad \forall Y \in \mathcal{X}(M),$$

i.e. $\theta_X = dr, d\theta_X = d \circ dr = 0$. Hence

$$0 = d\theta_X(Y_i, Y_j)$$

$$= Y_i(\theta_X(Y_j)) - Y_j(\theta_X(Y_i)) - \theta_X([Y_i, Y_j])$$

$$= -g(X, [Y_i, Y_i]),$$

i.e.

$$[Y_i, Y_j] = \sum_{k} c_{ij}^k Y_k$$
, for some c_{ij}^k .

 \Leftarrow : If the distribution $Y = \{Y_2, \dots, Y_n\}$ is integrable, then

$$g([Y_i, Y_j], X) = 0.$$

We claim that $d\theta_X = 0$ then.

√

$$d\theta_X(X,X) = X\theta_X(X) - X\theta_X(X) - \theta_X([X,X]) = 0,$$

 \checkmark

$$d\theta_X(X, Y_i) = X\theta_X(Y_i) - Y_i\theta_X(X) - \theta_X(X, Y_i)$$

$$= Xg(X, Y_i) - Yg(X, X) - g(X, [X, Y])$$

$$= g(\nabla_X X, Y_i) + g(X, \nabla_X Y_i)$$

$$-g(\nabla_{Y_i} X, X) - g(X, \nabla_{Y_i} X)$$

$$-g(X, [X, Y_i])$$

$$= g(\nabla_X X, Y) - \frac{1}{2}Yg(X, X)$$

$$= 0,$$

 \checkmark

$$d\theta_X(Y_i, Y_j) = Y_i \theta_X(Y_j) - Y_j \theta_X(Y_i) - \theta_X([Y_i, Y_j]) = 0.$$

Next, we shall show $X = \nabla r$ for some $r: U(\subset M) \to \mathbb{R}$.

Indeed, in local coordinates, written $X = X^i \partial_i$, we have

$$0 = d\theta_X(\partial_i, \partial_j)$$
$$= \partial_i g(X, \partial_j) - \partial_j g(X, \partial_i)$$
$$= \partial_i (X^k g_{kj}) - \partial_j (X^k g_{ki}).$$

Then a simple mathematical analysis leads to the fact that

$$X^k g_{ki} = \partial_i r, i = 1, 2, \cdots, n,$$

for some $r: U(\subset M) \to \mathbb{R}$. Hence

$$X = X^i \partial_i = g^{ij} \partial_j r \partial_i = \nabla r,$$

as desired.

- This is just a consequence of the first assertion and the Frobenius integrability Theorem for vector fields.
- We consider $S^3 = SU(2)$ with bi-invariant metric, so that

$$g(X_i, X_j) = \delta_{ij},$$

where

$$X_1 = \begin{bmatrix} i & 0 \\ 0 & -1 \end{bmatrix}, \quad X_2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad X_3 = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}.$$

Our claim is then that $\nabla_{X_1}X_1=0$ while $[X_2,X_3]=2X_1$. Thus X_1 is not locally a gradient field.

$$\checkmark \ [X_2,X_3]=2X_1.$$
 Indeed, $[X_i,X_{i+1}]=2X_i$ (indices are mod 3).

$$\checkmark \nabla_{X_1} X_1 = 0.$$

This follows from the Koszul Formula and the Lie bracket just determined.

20

2.14 Given an orthonormal frame E_1, \dots, E_n on (M, g), define the structure constants c_{ij}^k by $[E_i, E_j] = c_{ij}^k E_k$. Then define the Γ s and Rs as

$$\nabla_{E_i} E_j = \Gamma_{ij}^k E_k,$$

$$R(E_i, E_j)E_k = R_{ijk}^l E_l$$

and compute them in terms of cs. Notice that on Lie groups with left-invariant metrics the structure constants can be assumed to be constant. In this case, computations simplify considerably.

Proof. • Γ_{ij}^k is just computed by Koszul Formula.

$$2\Gamma_{ij}^{k} = 2g(\nabla_{E_{i}}E_{j}, E_{k})$$

$$= E_{i}g(E_{j}, E_{k}) + E_{j}g(E_{k}, E_{i}) - E_{k}g(E_{i}, E_{j})$$

$$+g(E_{k}, [E_{i}, E_{j}]) + g(E_{j}, [E_{k}, E_{i}]) - g(E_{i}, [E_{j}, E_{k}])$$

$$= c_{ij}^{k} + c_{ki}^{j} - c_{jk}^{i}.$$

 $R_{ijk}^{l} = \partial_{i}\Gamma_{ik}^{l} - \partial_{j}\Gamma_{ik}^{l} + \Gamma_{ik}^{s}\Gamma_{is}^{l} - \Gamma_{ik}^{s}\Gamma_{is}^{l}$

2.15 There is yet another effective method for computing the connection and curvatures, namely, the Cartan formalism. Let (M, g) be a Riemannian manifold. Given a frame E_1, \dots, E_n , the connection can be written

$$\nabla E_i = \omega_i^j E_j,$$

where ω_i^j are 1-forms. Thus,

$$\nabla_v E_i = \omega_i^j(v) E_j.$$

Suppose now that the frame is orthonormal and let ω^i be the dual coframe, i.e. $\omega^i(E_j) = \delta^i_j$. Show that the connection forms satisfy

$$\omega_i^j = -\omega_j^i,$$

$$d\omega^i = \omega^j \wedge \omega^i_j.$$

These two equations can, conversely, be used to compute the connection forms given the the orthonormal frame. Therefore, if the metric is given by declaring a certain frame to be orthonormal, then this method can be very effective in computing the connection.

If we think of $[\omega_i^j]$ as a matrix, then it represents 1-form with values in the skew-symmetric $n \times n$ matrices, or in other words, with values n the Lie algebra $\mathfrak{so}(n)$ for O(n).

The curvature forms Ω_i^j are 2-forms with values in $\mathfrak{so}(n)$. They are defined as

$$R(\cdot,\cdot)E_i = \Omega_i^j E_j.$$

Show that they satisfy

$$d\omega_i^j = \omega_i^k \wedge \omega_k^j + \Omega_i^j.$$

When reducing to Riemannian metrics on surfaces we obtain for an orthonormal frame E_1, E_2 with coframe ω^1, ω^2

$$\begin{split} d\omega^1 &= \omega^2 \wedge \omega_2^1, \\ d\omega^2 &= -\omega^1 \wedge \omega_2^1, \\ d\omega_2^1 &= \Omega_2^1, \\ \Omega_2^1 &= \sec \cdot dvol. \end{split}$$

Proof.

$$\omega_i^k = \omega_i^j g_{jk} = g(\nabla E_i, E_k) = -g(E_i, \nabla E_k) = -g_{il}\omega_k^l = -\omega_k^i.$$

•

$$d\omega^{i}(X,Y) = X(\omega^{i}(Y)) - Y(\omega^{i}(X)) - \omega^{i}([X,Y])$$

$$= X(g(E_{i},Y)) - Yg(E_{i},X)) - g(E_{i},[X,Y])$$

$$= g(\nabla_{X}E_{i},Y) + g(E_{i},\nabla_{X}Y)$$

$$-g(\nabla_{Y}E_{i},X) - g(E_{i},\nabla_{Y}X)$$

$$-g(E_{i},[X,Y])$$

$$= g(\nabla_{X}E_{i},Y) - g(\nabla_{Y}E_{i},X)$$

$$= \omega^{j}(X)g(E_{j},Y) - \omega^{j}(Y)g(E_{j},X)$$

$$= \omega^{j}(X)\omega^{i}_{j}(Y) - \omega^{j}(Y)\omega^{i}_{j}(X)$$

$$= (\omega^{j} \wedge \omega^{i}_{j})(X,Y).$$

23

• One may calculate as before, but here we note that both sides of

$$d\omega_i^j = \omega_i^k \wedge \omega_k^j + \Omega_i^j$$

are tensors. We need only to check

$$d\omega_{i}^{j}(E_{m}, E_{l}) = E_{m}(\omega_{i}^{j}(E_{l})) - E_{l}(\omega_{i}^{j}(E_{m}))$$

$$= E_{m}(g(\nabla_{E_{l}}E_{i}, E_{j})) - E_{l}(g(\nabla_{E_{m}}E_{i}, E_{j}))$$

$$= g(\nabla_{E_{m}}\nabla_{E_{l}}E_{i}, E_{j}) + g(\nabla_{E_{l}}E_{i}, \nabla_{E_{m}}E_{j})$$

$$-g(\nabla_{E_{l}}\nabla_{E_{m}}E_{i}, E_{j}) - g(\nabla_{E_{m}}E_{i}, \nabla_{E_{l}}E_{j})$$

$$= g(R(E_{m}, E_{l})E_{i}, E_{j})$$

$$+g(\nabla_{E_{l}}E_{i}, \nabla_{E_{m}}E_{j}) - g(\nabla_{E_{m}}E_{i}, \nabla_{E_{l}}E_{j})$$

$$= \Omega_{i}^{j}(E_{m}, E_{l}) + \omega_{i}^{k}(E_{l})\omega_{j}^{k}(E_{m}) - \omega_{i}^{k}(E_{m})\omega_{j}^{k}(E_{l})$$

$$= \omega_{i}^{k}(E_{m})\omega_{k}^{j}(E_{l}) - \omega_{i}^{k}(E_{l})\omega_{k}^{j}(E_{m}) + \Omega_{i}^{j}(E_{m}, E_{l})$$

$$= (\omega_{i}^{k} \wedge \omega_{k}^{j} + \Omega_{i}^{j})(E_{m}, E_{l}).$$

• In two dimensional case,

$$\Omega_2^1(E_1, E_2) = g(R(E_1, E_2)E_2, E_1) = sec,$$

thus

$$\Omega_2^1 = sec \cdot dvol.$$

2.16 Show that a Riemannian manifold with parallel Ricci curvature has constant scalar curvature. In Chapter 3, it will be shown that the converse is not true, and also that a metric with parallel Ricci curvature doesn't have to be Einstein.

Proof. \bullet dscal = 2divRic.

We calculate at a fixed point $p \in M$, choose a normal orthonormal frame E_1, \dots, E_n at p, i.e. $\nabla E_i(p) = 0$. For $\forall X \in \mathcal{X}(M)$,

$$dscal(X) = X(g(Ric(E_i), E_i))$$

$$= X(g(R(E_i, E_j)E_j, E_i))$$

$$= g((\nabla_X R)(E_i, E_j)E_j, E_i)$$

$$= -g((\nabla_{E_i} R)(E_j, X)E_j, E_i)$$

$$-g((\nabla_{E_j} R)(X, E_i)E_j, E_i)$$

$$= g((\nabla_{E_i} R)(X, E_j)E_j, E_i)$$

$$+g((\nabla_{E_j} R)(X, E_i)E_i, E_j)$$

$$= 2g((\nabla_{E_i} R)(X, E_j)E_j, E_i)$$

• $\nabla Ric = 0 \Rightarrow dscal = 0 \Rightarrow scal$ is constant.

2.17 Show that if R is the (1-3)-curvature tensor and Ric is the (0,2)-Ricci tensor, then

$$(divR)(X,Y,Z) = (\nabla_X Ric)(Y,Z) - (\nabla_Y Ric)(X,Z).$$

Conclude that divR = 0 if $\nabla Ric = 0$. Then show that divR = 0 iff the (1,1)-Ricci tensor satisfies:

$$(\nabla_X Ric)(Y) = (\nabla_Y Ric)(X), \quad \forall \ X, Y \in \mathcal{X}(M).$$

Proof. •
$$(divR)(X,Y,Z) = (\nabla_X Ric)(Y,Z) - (\nabla_Y Ric)(X,Z)$$
.
 $(divR)(X,Y,Z)$
 $= g((\nabla_{E_i}R)(X,Y,Z), E_i)$
 $= -g((\nabla_X R)(Y,E_i,Z), E_i) - g((\nabla_Y R)(E_i,X,Z), E_i)$
 $= -X(g(R(Y,E_i)Z,E_i))$
 $+g(R(\nabla_X Y,E_i)Z,E_i) + g(R(Y,E_i)\nabla_X Z,E_i)$
 $+\cdots$
 $= X(Ric(Y,Z)) - Ric(\nabla_X Y,Z) - Ric(Y,\nabla_X Z) + \cdots$
 $= (\nabla_X Ric)(Y,Z) - (\nabla_Y Ric)(X,Z)$.

- $\nabla Ric = 0 \Rightarrow divR = 0$.
- $divR = 0 \Leftrightarrow [(\nabla_X Ric)(Y) = (\nabla_Y Ric)(X), \ \forall \ X, Y \in \mathcal{X}(M).]$ Just note that

$$g((\nabla_X Ric)Y, Z)$$

$$= X(Ric(Y, Z)) - Ric(\nabla_X Y, Z) - Ric(Y, \nabla_X Z)$$

$$= (\nabla_X Ric)(Y, Z).$$

2.20 Suppose we have two Riemannian manifolds (M, g_M) and (N, g_N) . Then the product has a natural product metric $(M \times N, g_M + g_N)$. Let X be a vector field on M and Y one on N, show that if we regard these as vector fields on $M \times N$, then $\nabla_X Y = 0$. Conclude that sec(X,Y) = 0. This means that product metrics always have many curvatures that are zero.

Proof. $\bullet \nabla_X Y = 0.$

This is easily done by Koszul forumla. Indeed, for any $Z \in \mathcal{X}(M), W \in X(N)$,

$$2g(\nabla_X Y, Z) = X \langle Y, Z \rangle + Y \langle Z, X \rangle - Z \langle X, Y \rangle$$
$$- \langle X, [Y, Z] \rangle + \langle Y, [Z, X] \rangle + \langle Z, [X, Y] \rangle$$
$$= 0,$$
$$2g(\nabla_X Y, W) = \dots = 0.$$

• sec(X,Y) = 0.

$$\begin{split} sec(X,Y) &= \frac{g(R(X,Y)Y,X)}{|X|^2|Y|^2} \\ &= \frac{g(\nabla_X \nabla_Y Y - \nabla_Y \nabla_X Y - \nabla_{[X,Y]} Y,X)}{|X|^2|Y|^2} = 0. \end{split}$$

2.24 The Einstein tensor on a Riemannian manifold is defined as

$$G = Ric - \frac{scal}{2} \cdot I.$$

Show that G = 0 in dimension 2 and that divG = 0 in higher dimensions. This tensor is supposed to measure the mass/engery distribution. The fact that it is divergence free tells us that energy and momentum are conserved. In a vacuum, one therefore imagines that G = 0. Show that this happens in dimensions > 2 iff the metric is Ricci flat.

Proof. • In dimension 2,

$$sec(e_1, e_2) = R_{1221} = \langle Ric(e_1), e_1 \rangle = \langle Ric(e_2), e_2 \rangle$$

$$scal = \langle Ric(e_1), e_1 \rangle + \langle Ric(e_2), e_2 \rangle = 2R_{1221},$$

where e_1, e_2 orthonormal at a given point p of M.

Thus

$$G(e_1) = Ric(e_1) - \frac{scal}{2}e_1 = R_{1221}e_1 - R_{1221}e_1 = 0,$$

 $G(e_2) = \dots = 0.$

• In dimensions ≥ 3 ,

$$divG = divRic - div\left(\frac{scal}{2} \cdot I\right) = \frac{dscal}{2} - \frac{dscal}{2} = 0.$$

Indeed,

that

$$div(scal \cdot I)(e_i) = \sum_{j} \left\langle \nabla_{e_j}(scal \cdot I), e_j \right\rangle (e_i)$$

$$= \sum_{j} \left\langle \left(\nabla_{e_j}(scal \cdot I) \right) e_i, e_j \right\rangle$$

$$= \sum_{j} \left\langle \nabla_{e_j}(scal \cdot e_i), e_j \right\rangle$$

$$= \sum_{j} \left\langle (\nabla_{e_j}scal) e_i, e_j \right\rangle$$

$$= \nabla_{e_j}scal = dscal(e_i).$$

Note that we calculate at a normal neighborhood at a given point.

• $G = 0 \Leftrightarrow Ric = 0$ if $n \ge 3$. Indeed, if G = 0, then $Ric = \frac{scal}{2} \cdot I$, taking contractions imply

 $scal = \frac{n}{2}scal,$

thus if $n \geq 3$, scal = 0, $Ric = \frac{scal}{2} \cdot I = 0$.

2.25 This exercise will give you a way of finding the curvature tensor from the sectional s curvatures. Using the Bianchi identity show that

$$-6R(X, Y, Z, W) = \frac{\partial^2}{\partial s \partial t}|_{s=t=0} \left\{ R(X + sZ, Y + tW, Y + tW, X + sZ) - R(X + sW, Y + tZ, Y + tZ, X + sW) \right\}. \tag{2.1}$$

Proof. Since

$$R(X + sZ, Y + tW, Y + tW, X + sZ)$$
= $st \{R(Z, W, Y, X) + R(Z, Y, W, X) + R(X, W, Y, Z) + R(X, Y, W, Z)\}$
+ \cdots
= $-2stR(X, Y, W, Z) + 2stR(Z, Y, W, X) + \cdots$,

we have

$$\frac{\partial^2}{\partial s \partial t}|_{s=t=0} R(X+sZ,Y+tW,Y+tW,X+sZ)$$

$$= -2R(X,Y,W,Z) + 2R(Z,Y,W,X).$$

Thus

R.H.S. of Eq. (2.1) =
$$-2R(X, Y, W, Z) + 2R(Z, Y, W, X)$$

+ $2R(X, Y, Z, W) - 2R(W, Y, Z, X)$
= $-4R(X, Y, Z, W)$
+ $2(R(Z, Y, W, X) + R(Y, W, Z, X))$
= $-6R(X, Y, Z, W)$
= L.H.S. of Eq. (2.1).

3 Examples

3.4 The Heisenberg group with its Lie algebra is

$$G = \left\{ \begin{bmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} : a, b, c \in \mathbb{R} \right\},$$

$$\mathfrak{g} = \left\{ \begin{bmatrix} 0 & x & z \\ 0 & 0 & y \\ 0 & 0 & 0 \end{bmatrix} : x, y, z \in \mathbb{R} \right\}.$$

A basis for the Lie algebra is:

$$X = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, Y = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, Z = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

• Show that the only nonzero bracket are

$$[X,Y] = -[Y,X] = Z.$$

Now introduce a left-invariant metric on G such that X, Y, Z form an orthonormal frame.

- Show that the Ricci tensor has both negative and positive eigenvalues.
- Show that the scalar curvature is constant.
- Show that the Ricci tensor is not parallel.

Proof. Due to the fact

$$A \in \mathfrak{g} \Leftrightarrow e^{tA} \in G,$$

we have the elements of \mathfrak{g} are upper triangle matrices.

• Since XY=Z,YX=0;XZ=0,ZX=0;YZ=0,ZY=0; we deduce that

$$[X,Y] = -[Y,X] = Z,$$

while other brackets being zero.

• Applying Koszul formula, we have

$$\nabla_X Y = Z; \nabla_X Z = \nabla_Z X = -Y; \nabla_Y Z = \nabla_Z Y = X;$$

while other connections being zero.

Hence

$$Ric(X) = R(X,Y)Y + R(X,Z)Z = -2X + X = -X;$$

 $Ric(Y) = R(Y,X)X + R(Y,Z)Z = -Y + Y = 0;$
 $Ric(Z) = Ric(Z,X)X + R(Z,Y)Y = Z + 0 = Z.$

Thus the eigenvalues of Ric are -1, 0, 1.

- scal = Ric(X, X) + Ric(Y, Y) + Ric(Z, Z) = -1 + 0 + 1 = 0. Aha, the Heisenberg group is scalar flat.
- Since

$$(\nabla_X Ric)(Y, Z) = \nabla_X (Ric(Y, Z)) - Ric(\nabla_X Y, Z) - Ric(Y, \nabla_X Z)$$
$$= 0 - 1 - 0 = -1,$$

we gather that $\nabla Ric \neq 0$, the Ricci tensor is not parallel.

3.5 Let $\tilde{g} = e^{2\psi}g$ be a metric conformally equivalent to g. Show that

ullet

$$\tilde{\nabla}_X Y = \nabla_X Y + ((D_X \psi)Y + (D_Y \psi)X - g(X, Y)\nabla\psi).$$

• If X, Y are orthonormal with respect to g, then

$$e^{2\psi}\widetilde{sec}(X,Y) = sec(X,Y) - Hess\psi(X,X) - Hess\psi(Y,Y)$$

 $-|\nabla\psi|^2 + (D_X\psi)^2 + (D_Y\psi)^2.$

Proof. • Again, we invoke the Koszul formula,

$$\begin{split} 2\tilde{g}(\tilde{\nabla}_XY,Z) &= X\tilde{g}(Y,Z) + \dots - \tilde{g}(X,[Y,Z]) + \dots \\ &= X(e^{2\psi}g(Y,Z)) + \dots - e^{2\psi}g(X,[Y,Z]) + \dots \\ &= 2(\nabla_X\psi)\tilde{g}(Y,Z) + 2(\nabla_Y\psi)\tilde{g}(Y,Z) + \dots \\ &- e^{2\psi}g(X,[Y,Z]) + \dots \\ &= 2(\nabla_X\psi)\tilde{g}(Y,Z) + 2(\nabla_Y\psi)\tilde{g}(Z,X) - 2(\nabla_Z\psi)\tilde{g}(X,Y) \\ &+ \tilde{g}(\nabla_XY,Z) \\ &= 2\tilde{g}((\nabla_X\psi)Y + (\nabla_Y\psi)Z - g(X,Y)\nabla\psi + \nabla_XY,Z), \end{split}$$

where in the last inequality, we use the following fact:

$$\nabla_Z \psi = d\psi(Z) = q(\nabla \psi, Z),$$

and

$$\begin{split} (\nabla_Z \psi) \tilde{g}(X,Y) &= g(\nabla \psi, Z) \tilde{g}(X,Y) \\ &= \tilde{g}(\nabla \psi, Z) g(X,Y) = \tilde{g}(g(X,Y) \nabla \psi, Z). \end{split}$$

• Note that if X, Y are orthonormal w.r.t. g, then

$$\widetilde{sec}(X,Y) = \frac{\widetilde{g}(\widetilde{R}(X,Y)Y,X)}{\widetilde{g}(X,X)\widetilde{g}(Y,Y)} = e^{-2\psi}g(\widetilde{R}(X,Y)Y,X),$$

i.e.

$$\begin{split} e^{2\psi}\widetilde{sec}(X,Y) &= g(\tilde{R}(X,Y)Y,X) \\ &= g(\tilde{\nabla}_X\tilde{\nabla}_YY - \tilde{\nabla}_Y\tilde{\nabla}_XY - \tilde{\nabla}_{[X,Y]}Y,X).(3.1) \end{split}$$

We just need to calculate each term on the R.H.S. of Eq. (3.1).

 \bigstar Calculation of $g(\tilde{\nabla}_X \tilde{\nabla}_Y Y, X)$.

$$\tilde{\nabla}_Y Y = \nabla_Y Y + 2(\nabla_Y \psi)Y - \nabla \psi;$$

$$\tilde{\nabla}_{X}\tilde{\nabla}_{Y}Y = \nabla_{X} (\nabla_{Y}Y + 2(\nabla_{Y}\psi)Y - \nabla\psi)
+ (\nabla_{X}\psi) (\nabla_{Y}Y + 2(\nabla_{Y}\psi)Y - \nabla\psi)
(\nabla_{\nabla_{Y}Y + 2(\nabla_{Y}\psi)Y - \nabla\psi}) X
- q(X, \nabla_{Y}Y + 2(\nabla_{Y}\psi)Y - \nabla\psi)\psi;$$

$$g(\tilde{\nabla}_{X}\tilde{\nabla}_{Y}Y, X)$$

$$= g(\nabla_{X}\nabla_{Y}Y, X) + 2(\nabla_{Y}\psi)g(\nabla_{X}Y, X) - g(\nabla_{X}\nabla\psi, X)$$

$$+(\nabla_{X}\psi)g(\nabla_{Y}Y, X) - |\nabla_{X}\psi|^{2}$$

$$+g(\nabla_{Y}Y, \nabla\psi) + 2|\nabla_{Y}\psi|^{2} - |\nabla\psi|^{2}$$

$$-g(X, \nabla_{Y}Y)(\nabla_{X}\psi) + |\nabla_{X}\psi|^{2}$$

$$= g(\nabla_{X}\nabla_{Y}Y, X) + 2(\nabla_{Y}\psi)g(\nabla_{X}Y, X) - Hess\psi(X, X)$$

$$+(\nabla_{Y}\nabla_{Y}\psi - Hess\psi(Y, Y)) - |\nabla\psi|^{2} + 2|\nabla_{Y}\psi|^{2}. (3.2)$$

 \bigstar Calculation of $g(\tilde{\nabla}_Y \tilde{\nabla}_X Y, X)$.

$$\tilde{\nabla}_X Y = \nabla_X Y + (\nabla_X \psi) Y + (\nabla_Y \psi) X;$$

$$\begin{split} \tilde{\nabla}_{Y}\tilde{\nabla}_{X}Y &= \nabla_{Y}\left(\nabla_{X}Y + (\nabla_{X}\psi)Y + (\nabla_{Y}\psi)X\right) \\ &+ (\nabla_{Y}\psi)\left(\nabla_{X}Y + (\nabla_{X}\psi)Y + (\nabla_{Y}\psi)X\right) \\ &+ \left(\nabla_{\nabla_{X}Y + (\nabla_{X}\psi)Y + (\nabla_{Y}\psi)X}\psi\right)Y \\ &- g(Y,\nabla_{X}Y + (\nabla_{X}\psi)Y + (\nabla_{Y}\psi)X)\nabla\psi; \end{split}$$

$$g(\tilde{\nabla}_{Y}\tilde{\nabla}_{X}Y, X)$$

$$= (g(\nabla_{Y}\nabla_{X}Y, X) + (\nabla_{X}\psi)g(\nabla_{Y}Y, X)$$

$$+\nabla_{Y}\nabla_{Y}\psi + (\nabla_{X}\psi)g(\nabla_{Y}X, X))$$

$$+(\nabla_{Y}\psi)g(\nabla_{X}Y, X) + |\nabla_{Y}\psi|^{2}$$

$$-g(Y, \nabla_{X}Y)(\nabla_{X}\psi) - |\nabla_{X}\psi|^{2}$$

$$= g(\nabla_{Y}\nabla_{X}Y, X) + (\nabla_{X}\psi)g(\nabla_{Y}Y, X) + \nabla_{Y}\nabla_{Y}\psi$$

$$+(\nabla_{Y}\psi)g(\nabla_{X}Y, X) + |\nabla_{Y}\psi|^{2}$$

$$-|\nabla_{X}\psi|^{2}. \qquad (3.3)$$

$$\left(g(Y, \nabla_{X}Y) = \frac{1}{2}X|Y|^{2} = 0; g(\nabla_{Y}X, X) = \dots = 0\right)$$

 \bigstar Calculation of $g(\tilde{\nabla}_{[X,Y]}Y,X)$.

$$\tilde{\nabla}_{[X,Y]}Y = \nabla_{[X,Y]}Y + (\nabla_{[X,Y]}\psi)Y
+ (\nabla_{Y}\psi)[X,Y] - g([X,Y],Y)\nabla\psi;$$

$$g(\tilde{\nabla}_{[X,Y]}Y, X)$$

$$= g(\nabla_{[X,Y]}Y, X)$$

$$+(\nabla_{Y}\psi)g(\nabla_{X}Y, X) - (\nabla_{Y}\psi)g(\nabla_{Y}X, X)$$

$$-(\nabla_{X}\psi)g(\nabla_{X}Y, Y) + (\nabla_{X}\psi)g(\nabla_{Y}X, Y)$$

$$= g(\nabla_{[X,Y]}Y, X) + (\nabla_{Y}\psi)g(\nabla_{X}Y, X) + (\nabla_{X}\psi)g(\nabla_{Y}X, Y)$$

$$(3.4)$$

Combining Eqs. (3.2),(3.3), (3.4), and substituting into Eq. (3.1), we gather that

$$e^{2\psi}\widetilde{sec}(X,Y) = sec(X,Y) - Hess\psi(X,X) - Hess\psi(Y,Y)$$

 $-|\nabla\psi|^2 + (D_X\psi)^2 + (D_Y\psi)^2,$

as required.

4 Hypersurfaces

4.4 Let (M,g) be a closed Riemannian manifold, and suppose that there is a Riemannian embedding into \mathbb{R}^{n+1} . Show that there must be a point $p \in M$ where the curvature operator $\mathfrak{R} : \wedge^2 T_p M \to \wedge T_p M$ is positive.

Proof. This is geometrically obvious, but the analytical proof is as follows.

Let

$$f: \quad \mathbb{R}^n \quad \to \quad \mathbb{R}$$
$$x \mapsto \quad |x|^2.$$

Figure 2: Curvature comparison between M and S^n

Then since M is closed, $f|_M$ attains its maximum at $p \in M$.

Claim $x \perp T_p M$.

Indeed, by Exercise 5.9,

$$0 = \langle \nabla f, v \rangle = \langle Df, v \rangle = 2 \langle x, v \rangle, \ \forall \ v \in T_p M.$$

Here and thereafter, we use the notation:

 \bigstar ∇ : the connection on M,

 \bigstar D: the connection on \mathbb{R}^n .

Now, choose an orthonormal basis $\{e_i\}$ of T_pM such that

$$D_{e_i} \frac{x}{|x|} = S(e_i) = \lambda_i e_i,$$

and let E_i be the orthonormal extension on M of e_i around p.

Differentiating

$$\langle \nabla, E_i \rangle = \langle Df, E_i \rangle = 2 \langle x, E_i \rangle$$

in the direction E_i , we obtain

$$\langle \nabla_{E_i} \nabla f, E_i \rangle + \langle \nabla f, \nabla_{E_i} E_i \rangle = 2 \langle D_{E_i} X, E_i \rangle + 2 \langle X, D_{E_i} E_i \rangle. \tag{4.1}$$

While at $p \in M$,

L.H.S. of Eq. (4.1) =
$$Hessf(E_i, E_i) \leq 0$$
;

R.H.S. of Eq. (4.1)
$$= 2\left\langle D_{E_i}\left(\frac{x}{|x|}|x|\right), E_i\right\rangle - 2\left\langle x, \nabla_{E_i}^{S^n(|x|)} E_i - D_{E_i} E_i\right\rangle$$

$$= 2|x|\left\langle D_{e_i}\frac{x}{|x|}, E_i\right\rangle - 2|0p|\left\langle \frac{x}{|x|}, II^{S^n(|x|)}(E_i, E_i)\right\rangle$$

$$= 2|x|\left\langle S(E_i), E_i\right\rangle + 2|x|\left\langle S^{S^n(|op|)}(E_i), E_i\right\rangle$$
(Here we use the notation as in Exercise 5.8)
$$= 2|x|\lambda_i + 2|x| \cdot \frac{1}{|x|}$$

$$= 2(|x|\lambda_i + 1).$$

Thus we gather that

$$\lambda_i \le -\frac{1}{|op|},$$

$$sec(e_i, e_j) = \langle S(e_i), e_i \rangle \langle S(e_j), e_j \rangle - |\langle S(E_i), E_j \rangle|^2$$

$$= \lambda_i \lambda_j$$

$$\geq \frac{1}{|op|^2} > 0.$$

4.5 Suppose (M, g) is immersed as a hypersurface in \mathbb{R}^{n+1} , with shape operator S.

• Using the Codazzi-Mainardi equations, show that

$$divS = d(trS).$$

- Show that if $S = f(x) \cdot I$ for some function f, then f must be a constant and the hypersurface must have constant curvature.
- Show that $S = \lambda \cdot Ric$ iff the metric has constant curvature.

Proof. • We calculate in a normal neighborhood as:

$$(divS)(E_i) = \sum_{j} \langle \nabla_{E_j} S, E_j \rangle (E_i) = \sum_{j} \langle (\nabla_{E_j} S)(E_i), E_j \rangle$$
$$= \sum_{j} \langle (\nabla_{E_i} S)(E_j), E_j \rangle = \sum_{j} \langle \nabla_{E_i} (S(E_j)), E_j \rangle$$
$$= \sum_{j} \nabla_{E_i} \langle S(E_j), E_j \rangle = \nabla_{E_i} trS = d(trS)(E_i).$$

• If $S = f(x) \cdot I$, then

$$df = divS = d(trS) = d(nf).$$

Thus (n-1)df = 0. Since n > 1 (we consider this case), df = 0, $f \equiv const$. And $S = const \cdot I$,

$$sec(E_i, E_j) = \langle R(E_i, E_j) E_j, E_i \rangle$$

$$= \langle S(E_i, E_i) \langle S(E_j), E_j \rangle - \langle S(E_i), E_j \rangle \langle S(E_j), E_i \rangle$$

$$= const^2.$$

• \Rightarrow If $S=\lambda \cdot Ric$, by Codazzi-Mainardi equations and Exercise 2.17, we have divR=0, thus

 \Leftarrow If (M, g) has constant curvature, then by Exercise 2.17 again,

$$(\nabla_X Ric)(Y) = (\nabla_Y Ric)(X). \tag{4.2}$$

We now have another identity:

$$\langle R(X,Y)Z,W\rangle = \lambda^2 \langle Ric(X),W\rangle \langle Ric(Y),Z\rangle -\lambda^2 \langle Ric(X),Z\rangle \langle Ric(Y),W\rangle, \quad (4.3)$$

for some constant $\lambda \in \mathbb{R}$.

A tedious calculation may verify, using the polarization identity like Exercise 2.25.

Now, the fundamental theorem of Hypersurface theory tells us (by Eqs. (4.2), (4.3)) that $\lambda \cdot Ric = S'$ for some shape operator of M, but M is already immersed in \mathbb{R}^{n+1} , we have

$$\lambda \cdot Ric = S' = S$$
.

5 Geodesics and Distance

5.2 A Riemannian manifold is said to be homogeneous if the isometry group acts transitively. Show that homogeneous manifolds are geodesically complete.

Proof. For any $p \in M$, $v \in T_pM$ with |v| = 1, let γ be the geodesic with data (p, v). Denote by $\mathcal{T}*$ the maximal existence time for γ . Then we have the

Claim $\mathcal{T}^* = \infty$.

Indeed, if $\mathcal{T}^* < \infty$, let

• $\varepsilon > 0$ be such that

$$\exp_p : \overline{B(0, 2\varepsilon)} \subset T_pM \to \overline{B_{2\varepsilon}(0)} \subset M$$

is a diffeomorphism,

• $F \in Iso(M, g)$ with

$$F(p) = \gamma(\mathcal{T}^* - \varepsilon), \ w \triangleq (dF^{-1})_{\gamma(\mathcal{T}^* - \varepsilon)}\dot{\gamma}(\mathcal{T}^* - \varepsilon).$$

Now since

$$|w| = |\dot{\gamma}(\mathcal{T}^* - \varepsilon)| = |\dot{\gamma}(0)| = |v| = 1,$$

there is a geodesic $\tilde{\gamma}:[0,2\varepsilon]\to M$ with data (p,w). Hence $F(\tilde{\gamma})$ is a geodesic with data $(\gamma(\mathcal{T}^*-\varepsilon),\dot{\gamma}(\mathcal{T}^*-\varepsilon))$. Indeed,

$$0 = \left(DF(\nabla_{\dot{\tilde{\gamma}}}\dot{\tilde{\gamma}}) = \nabla_{(F(\tilde{\gamma}))'}F(\tilde{\gamma}) \right)$$

While uniqueness of ode tells us that

$$\sigma = \begin{cases} \gamma, & \text{on } [0, \mathcal{T}^* - \varepsilon], \\ F(\tilde{\gamma}), & \text{on } [\mathcal{T}^* - \varepsilon, \mathcal{T}^* + \varepsilon], \end{cases}$$

is a geodesic with data (p, v). This contradicts the definition of \mathcal{T}^* .

Finally the proof is complete if we invoke the classical Hopf-Rinow theorem and notice the homogeneity of geodesics. \Box

Figure 3: the composed geodesic

5.8 Let $N \subset (M,g)$ be a submanifold. Let ∇^N denote the connection on N that comes from the metric induced by g. Define the second fundamental form of N in M by

$$II(X,Y) = \nabla_X^N Y - \nabla_X Y.$$

- Show that II(X,Y) is symmetric and hence tensorial in X and Y.
- Show that II(X,Y) is always normal to N.
- Show that II = 0 on N iff N is totally geodesic.
- If \mathbb{R}^N is the curvature form of N, then

$$g(R(X,Y)Z,W) = g(R^{N}(X,Y)Z,W)$$
$$-g(II(Y,Z),II(X,W)) + g(II(X,Z),II(Y,W)).$$

Proof. • Due to the fact

$$II(X,Y) = \nabla_X^N Y - \nabla_X Y = ([X,Y] + \nabla_Y^N X) - ([X,Y] + \nabla_Y X)$$
$$= \nabla_Y^N X - \nabla_Y X = II(Y,X),$$

we see that II is symmetric. And by definition of the connection, II is tensorial in X, thus tensorial in Y as

$$II(X, fY_1 + gY_2) = II(fY_1 + gY_2, X)$$

= $fII(Y_1, X) + gII(Y_2, X) = fII(X, Y_1) + gII(X, Y_2).$

• Indeed, Koszul formula tells us that $\nabla_X^N Y = (\nabla_X Y)^\top$, where \top is the projection from TM to TN, thus

$$II(X,Y) = (\nabla_X Y)^{\top} - \nabla_X Y = (\nabla_X Y)^{\perp},$$

which is normal to N.

• Recall that N is totally geodesic in M iff any geodesic in N is a geodesic in M. Now we prove the assertion.

 \Rightarrow If II=0 and γ is a geodesic in N, then $\nabla^N_{\dot{\gamma}}\dot{\gamma}=0$, thus $\nabla_{\dot{\gamma}}\dot{\gamma}=0$, γ is a geodesic.

 \Leftarrow By the formula

$$II(X,Y) = \frac{1}{2} [II(X+Y,X+Y) - II(X,X) - II(Y,Y)],$$

we need only to show that $II(X,X)=0, \forall X \in \mathcal{X}(M)$. But II is tensorial, we are redirected to prove that

$$II(v,v) = 0, \ \forall \ v \in T_pN, \forall \ p \in N.$$

This is obviously true. In fact, for any $p \in N$, $v \in T_pN$, let γ be the geodesic in N with initial data (p, v), then $\nabla^N_{\dot{\gamma}}\dot{\gamma} = 0$, and by hypothesis, $\nabla_{\dot{\gamma}}\dot{\gamma} = 0$, II(v, v) = 0.

42

5.9 Let $f:(M,g)\to\mathbb{R}$ be a smooth function on a Riemannian manifold.

- If $\gamma:(a,b)\to M$ is a geodesic, compute the first and second derivative of $f\circ\gamma$.
- Use this to show that at a local maximum (or minimum) for f the gradient is zero and the Hessian nonpositive (or nonnegative).
- Show that f has everywhere nonnegative Hessian iff $f \circ \gamma$ is convex for all geodesics γ in (M, g).

Proof.

• We omit the subscript for simplicity.

$$\frac{d}{ds}(f \circ \gamma) = Df(\dot{\gamma}) = df(\dot{\gamma}) = D_{\dot{\gamma}}f = g(\nabla f, \dot{\gamma}),$$

$$\frac{d^2}{ds^2}(f \circ \gamma) = \frac{d}{ds}\left(\frac{d}{ds}(f \circ \gamma)\right) = D_{\dot{\gamma}}(D_{\dot{\gamma}}f) = D_{\dot{\gamma}}(Df(\dot{\gamma}))$$

$$= (D_{\dot{\gamma}}(Df))(\dot{\gamma}) + Df(D_{\dot{\gamma}}\dot{\gamma})$$

$$= (D(Df))(\dot{\gamma}, \dot{\gamma}) = D^2f(\dot{\gamma}, \dot{\gamma}).$$

• We consider the case when f attains its local minimum at $p \in M$. Then for $\forall v \in T_pM$, let γ be the geodesic with initial data (p, v), we have

$$0 = \frac{d}{ds}(f \circ \gamma) = g(\nabla f, \dot{\gamma}) = g(\nabla f, v),$$

and

$$0 \ge \frac{d^2}{ds^2}(f \circ \gamma) = Hessf(\dot{\gamma}, \dot{\gamma}) = Hessf(v, v),$$

at p. Hence the conclusion.

• We just take the following equiv.:

$$\begin{split} Hessf(v,v) &\geq 0, \ \forall \ v \in T_pM \\ \Leftrightarrow \ \frac{d^2}{ds^2}(f \circ \gamma) &\geq 0, \ \forall \ \gamma \ \text{geodesic} \\ \Leftrightarrow \ f \circ \gamma \ \text{is convex}, \forall \ \gamma \ \text{geodesic}. \end{split}$$

5.12 Compute the cut locus on a sphere and real projective space with constant curvature metrics.

Proof. We consider the case $(S^n, can_{\mathbb{R}^n}|_{S^n})$ with curvature 1. For any $p \in S^n$, $cut(p) = \{-p\}$. While for $\mathbb{R}P^n$ (What's the meaning of the problem? Is it mean that $\mathbb{R}P^n$ is given a metric so that it is of constant curvature or ...), cut([p]) =the equator.

6 Sectional Curvature Comparison I

6.1 Show that in even dimension the sphere and real projective space are the only closed manifolds with constant positive curvature.

Proof. If M is of even dimension, closed (compact and without boundary), and with positive curvature,

Figure 4: Cut locus of S^n and $\mathbb{R}P^n$

- in case M is orientable, then Synge theorem tells us that M is simple connected, thus M are spheres;
- in case M is non-orientable, then the orientable double covering of M are spheres, thus M are real projective spaces.

6.5 Let $\gamma:[0,1]\to M$ be a geodesic. Show that $\exp_{\gamma(0)}$ has a critical point at $t\dot{\gamma}(0)$ iff there is a Jacobi field J along γ such that J(0)=0, $\dot{J}(0)\neq 0$, and J(t)=0.

Proof. We assume w.l.o.g. that t = 1. First note that

 exp_p has a critical point at $\dot{\gamma}(0)$

$$\Leftrightarrow \exists 0 \neq w \in T_{\dot{\gamma}(0)}T_{\gamma(0)}M, s.t. (dexp_{\gamma(0)})_{\dot{\gamma}(0)}(w) = 0.$$

 \Rightarrow Let $J(t) = (dexp_{\gamma(0)})_{t\dot{\gamma}(0)}(tw)$, $t \in [0,1]$, then J is the Jacobi field we are chasing.

 \Leftarrow If we have a Jacobi field J(t) as in the problem, then

$$(dexp_{\gamma(0)})_{\dot{\gamma}(0)}(\dot{J}(0)) = J(1) = 0,$$

with
$$0 \neq \dot{J}(0) \in T_{\dot{\gamma}(0)}(T_{\gamma(0)}M)$$
.

6.8 Let γ be geodesic and X be a Killing field in a Riemannian manifold. Show that the restriction of X to γ is a Jacobi field.

Proof. Recall that

$$X$$
 Killing field $\Leftrightarrow L_X g = 0$.

Now let $\{e_1 = \dot{\gamma}, e_2, \dots, e_n\}$ be the parallel orthonormal vector fields along γ , then

$$0 = (L_X g)(\dot{\gamma}, e_i)$$

$$= D_X(g(\dot{\gamma}, e_i)) - g(L_X \dot{\gamma}, e_i) - g(\dot{\gamma}, L_X e_i)$$

$$= -g(\nabla_X \dot{\gamma}, e_i) + g(\nabla_{\dot{\gamma}} X, e_i) - g(\dot{\gamma}, \nabla_X e_i) + g(\dot{\gamma}, \nabla_{e_i} X)$$

$$= g(\nabla_{\dot{\gamma}} X, e_i) + g(\dot{\gamma}, \nabla_{e_i} X). \tag{6.1}$$

In particular,

$$g(\nabla_{\dot{\gamma}}X,\dot{\gamma}) = 0. \tag{6.2}$$

Now differentiating Eq. (6.1) w.r.t. $\dot{\gamma}$, we find that

$$0 = D_{\dot{\gamma}} (g(\nabla_{\dot{\gamma}} X, e_{i})) + D_{\dot{\gamma}} (g(\dot{\gamma}, \nabla_{e_{i}} X))$$

$$= g(\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} X, e_{i}) + g(\dot{\gamma}, \nabla_{\dot{\gamma}} \nabla_{e_{i}} X)$$

$$= g(\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} X, e_{i}) + g(\dot{\gamma}, \nabla_{\dot{\gamma}} \nabla_{e_{i}} X - \nabla_{e_{i}} \nabla_{\dot{\gamma}} X - \nabla_{[\dot{\gamma}, e_{i}]} X)$$
(6.3)
$$= g(\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} X, e_{i}) + g(R(\dot{\gamma}, e_{i}) X, \dot{\gamma})$$

$$= g(\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} X, e_{i}) + g(R(X, \dot{\gamma}) \dot{\gamma}, e_{i})$$

$$= g(\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} X + R(X, \dot{\gamma}) \dot{\gamma}, e_{i}).$$
(6.4)

Hence

$$\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} X + R(X, \dot{\gamma}) \dot{\gamma} = 0,$$

i.e. X is a Jacobi field along γ .

Note that in Eq. (6.3), we have used the following fact:

$$g(\dot{\gamma}, \nabla_{e_i} \nabla_{\dot{\gamma}} X + \nabla_{[\dot{\gamma}, e_i]} X)$$

$$= D_{e_i} \{ g(\dot{\gamma}, \nabla_{\dot{\gamma}} X) \} - g(\nabla_{e_i} \dot{\gamma}, \nabla_{\dot{\gamma}} X) - g(\dot{\gamma}, \nabla_{\nabla_{e_i} \dot{\gamma}} X)$$

$$= - \left(g(\nabla_{e_i} \dot{\gamma}, \nabla_{\dot{\gamma}} X) + g(\dot{\gamma}, \nabla_{\nabla_{e_i} \dot{\gamma}} X) \right) \text{ (by (6.2))}$$

$$= 0. \text{ (skew-symmetric property of Killing fields)}$$

6.21 (The Index Form) Below we shall use the second variation formula to prove several results established in Chapter 5. If V,W are vector fields along a geodesic $\gamma:[0,1]\to (M,g)$, then the index form is the symmetric bilinear form

$$I_0^1(V, W) = I(V, W) = \int_0^1 \left(g(\dot{V}, \dot{W}) - g(R(V, \dot{\gamma})\dot{\gamma}, W) \right) dt.$$

In case the vector fields come from a proper variation of γ this is equal to the second variation of energy. Assume below that $\gamma:[0,1]\to (M,g)$ locally minimize the energy functional. This implies that $I(V,V)\geq 0$ for all proper variations.

- If I(V, V) = 0 for a proper variation, then V is a Jacobi field.
- Let V and J are variational fields along γ such that V(0) = J(0) and V(1) = J(1). If J is a Jacobi field show that

$$I(V, J) = I(J, J).$$

- (The Index Lemma) Assume in addition that there are no Jacobi fields along γ that vanish at both end points. If V and J are both as above. Show that $I(V,V) \geq I(J,J)$ with equality holding only if V = J on [0,1].
- Assume that there is a nontrivial Jacobi field J that vanishes at 0 and 1. Show that $\gamma:[0,1+\varepsilon]\to M$ is not locally minimizing for $\varepsilon>0$.

Proof. Note that the vector fields we consider are all smooth.

 \bullet For any proper variational filed W (i.e. W(0)=0=W(1)),

$$0 \leq I(V + \varepsilon W, V + \varepsilon W)$$

$$= I(V, V) + 2\varepsilon I(V, W) + \varepsilon^{2} I(W, W)$$

$$= \varepsilon \left[2I(V, W) + \varepsilon I(W, W) \right].$$

Letting $\varepsilon \to 0^+, 0^-$, we get I(V, W) = 0. Thus

$$0 = I(V, W) = -\int_0^1 g\left(\ddot{V} + R(V, \dot{\gamma})\dot{\gamma}, W\right) dt,$$

and hence $\ddot{V} + R(V, \dot{\gamma})\dot{\gamma} = 0$, V is a Jacobi field.

• This follows from direct computation as

$$\begin{split} I(V-J,J) &= \int_0^1 \left(g(\dot{V}-\dot{J},\dot{J}) - g(R(V-J,\dot{\gamma})\dot{\gamma},J) \right) dt \\ &= -\int_0^1 \left(g(V-J,\ddot{J}) + g(V-J,R(J,\dot{\gamma})\dot{\gamma}) \right) dt \\ &\quad \quad \text{(Here we use the boundary conditions...)} \\ &= -\int_0^1 g\left(V-J,\ddot{J} + R(J,\dot{\gamma})\dot{\gamma} \right) dt = 0. \end{split}$$

• If $V \neq J$, then V - J is a proper variational field.

Claim
$$0 < I(V - J, V - J) = I(V, V) - I(J, J).$$

Indeed, if I(V-J, V-J), then the first assertion tells us that V-J is a nontrivial, proper Jacobi field, contradicting the hypotheses.

• See the figure attached and one may compute as

$$\begin{array}{ll} 0 & = & I_0^1(J,J) = I_0^{1+\varepsilon}(J,J) \\ \\ & = & I_0^{1-\varepsilon}(J,J) + I_{1-\varepsilon}^{1+\varepsilon}(J,J) \\ \\ & > & I_0^{1-\varepsilon}(J,J) + I_{1-\varepsilon}^{1+\varepsilon}(K,K) \\ \\ & \quad (\text{ Here we use the Index Lemma }) \\ \\ & = & I(V,V). \end{array}$$

Figure 5: the composed variational field

Concluding Remarks

Thanks to the inspiring and fantastic lectures of Professor Zhu, from whom the author learnt a lot.

But due to

- the author's limited knowledge,
- the fast process of this tedious work,

errors or even blunders may occur. So any comments, whether

- critical, i.e. the reference answer is wrong(?), not accurate(?), misprints(?), e.t.c.
- constructive, i.e. there are beautiful proofs, e.t.c.

is welcome.

The author's email is: uia.china@gmail.com.

Index

adjoint action, 4

bi-invariant metric, 3

Cartan formalism, 21

closed Riemannian manifold, 34

conformal metric, 31

critical point of exponential map, 44

Einstein tensor, 26

flat square torus, 2

Heisenberg group, 29

homogeneous manifolds, 38

Index Form, 46

Index Lemma, 47

inner automorphism, 4

integrable distribution, 17

integration by parts formulae, 15

Jacobi field, 45

Killing field, 45

Laplacian, 13

Lie group, 3

Minkowski space, 6

polarization of curvature, 28

product manifolds, 2

second fundamental form, 40

strong maximum principle, 15

structure constants, 20

Submanifolds of Euclidean space, 10

volume form, 12

weak maximum principle, 15