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Interacting human activities underlie the patterns of many social,
technological, and economic phenomena. Here we present clear
empirical evidence from Short Message correspondence that
observed human actions are the result of the interplay of three
basic ingredients: Poisson initiation of tasks and decision making
for task execution in individual humans as well as interaction
among individuals. This interplay leads to new types of interevent
time distribution, neither completely Poisson nor power-law, but
a bimodal combination of them. We show that the events can be
separated into independent bursts which are generated by fre-
quent mutual interactions in short times following random initia-
tions of communications in longer times by the individuals. We
introduce aminimal model of two interacting priority queues incor-
porating the three basic ingredients which fits well the distribu-
tions using the parameters extracted from the empirical data.
The model can also embrace a range of realistic social interacting
systems such as e-mail and letter communications when taking the
time scale of processing into account. Our findings provide insight
into various human activities both at the individual and network
level. Our analysis and modeling of bimodal activity in human
communication from the viewpoint of the interplay between
processes of different time scales is likely to shed light on bimodal
phenomena in other complex systems, such as interevent times in
earthquakes, rainfall, forest fire, and economic systems, etc.

human dynamics ∣ Poisson process ∣ power-law ∣ priority-queue ∣
waiting time

Humans participate in various activities every day in an appar-
ently random manner. By assuming that human actions are

Poisson processes (1, 2) in which independent events occur at a
constant rate λ and the interevent time τ between two consecutive
actions of an individual follows an exponential distribution
PðτÞ ¼ λe−λτ, one could perform a quantitative analysis of collec-
tive social activities as diverse as disease spreading, emergency
response, or resource allocation, in particular phone line avail-
ability or bandwidth allocation in the case of Internet or Web use.

Recent evidence from various deliberate human activity pat-
terns, such as e-mail and letter communications and Web surfing,
has shown that human activities are nonPoissonian (3–14), with
bursts of frequent actions separated by long periods of inactivity,
leading to power-law heavy tails in the distributions of interevent
time (e.g., interval between sending two consecutive e-mails) or
waiting times (e.g., the interval between receiving and replying
to an e-mail), PðτÞ ∝ τ−γ . This nonPoissonian activity should
significantly change the quantitative understanding of collective
social dynamics, especially when taking into account complex net-
work structures in social interactions (15–17), if those observed
nonPoisson activities are solely the behavior of individual agents.
Several mechanisms proposed to explain the origin of bursts and
heavy tails, including priority-queuing processes driven by human
decision making (3, 5, 8, 9, 13), Poisson processes modulated by
circadian and weekly cycles (10, 11), adaptive interests (13, 18),
and preferential linking (13), have mainly focused on separated

individuals. While the power-law waiting time has been regarded
as the result of the priority-queuing mechanism of decision mak-
ing in individuals (3–7), the interevent time of a certain type of
activity of an individual, such as the interval between sending two
consecutive e-mails, is influenced by the actions of this agent
and the other communication partners. The impact of interaction
between individuals on human dynamics is, however, still poorly
understood.

We can distinguish at least two types of communications: (i)
initiation by the individual and (ii) response to other interacting
individuals. Therefore, to distinguish, when possible, what are
the properties of separated individuals and what are the conse-
quences of the interactions among individuals, is of paramount
importance to elucidate the challenging problem of mutual inter-
play between individual and collective human dynamics. In
particular, are there Poisson processes at all in individual activity,
and how do they express themselves when interacting with the
decision-making mechanism of individuals and the interaction
among individuals? Unfortunately, previously examined data
often do not allow us to evaluate precisely both the waiting times
and the interevent times, and a detailed analysis of the relationship
between individual and collective human activities is still lacking
apart of some simple models of coupled priority-queues (19, 20).

Here we address this important problem from both data ana-
lysis and modeling. The system we consider is Short Message
(SM) correspondence, one of the most frequently used commu-
nication systems in modern society. Usually, people can only send
e-mails when sitting before the computer. In contrast, people can
send and receive SMs almost any time and anywhere. The time
required to composite a SM is usually much shorter than other
tasks, such as writing an e-mail or letter, making it quite possible
to get a prompt response. But it is also flexible, that a SM can
be totally ignored with no response given or can be put onto a
waiting list as a task with lower priority. These features imply a
nontrivial interplay between the activity of single individuals and
the interaction with the network neighbors in SMs communica-
tion. The system thus provides a very attractive proxy for studying
the interaction of human activity. Here we show that this inter-
action will lead to new types of human activity pattern. The
interevent time distribution is a bimodal combination of Poisson
and power-law. We demonstrate that the events can be separated
into independent bursts; the Poisson and the power-law distribu-
tions can be associated to different modes of communication,
namely, random initiation of bursts and frequent mutual commu-
nication within the bursts, respectively. We propose a minimal
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model incorporating these ingredients with a decision-making
mechanism which clearly explains the empirical observations.

Interestingly, a bimodal distribution of interevent time seems
quite universal in a wide range of complex systems, including
human dialogue (21), trading (22), and financial activity (23)
in social systems, but also tsunami (24), rainfall (25), forest fires
(26), earthquakes (27, 28), and neuronal avalanches (29), etc. in
nature. Here we show that in human communication, bimodal
pattern can be attributed to the interplay of various processes
at different time scales. Such an approach could shed light on
various other bimodal phenomena as well.

Empirical Patterns
We study a database of SMs records from three different compa-
nies over a month period (see data description in Materials and
Methods). While the degree, the number of partners of a user can
be quite heterogeneous in SMs networks (30), we have found that
many users mainly have heavy communication with just one of
their friends. In particular, about 50% of the users sent more than
90% of the messages to one partner (see Fig. S1). Therefore in
this work we will mainly focus on such pairs of users, with a typical
one shown in Fig. 1. At a first glance, the burst-silence patterns in
the individuals (Fig. 1A) are similar to many other human activ-
ities (3–9). However, the distributions PðτÞ of the interevent time
τ, the interval between sending two consecutive messages, are bi-
modal rather than power-law (Fig. 1 C and D): they are power-
law in the range of 2–20 min, followed by an exponential tail ex-
tending to 5–6 h, which can be well described as:

PðτÞ¼
�
τ−γ ; τ<τ0
e−βτ; τ>τ0

: [1]

In this bimodal distribution, the exponential tail is connected
to the power-law with a hump well above the straight line extra-
polation of the power-law. It is important that this feature is sig-
nificantly different from the usually truncated power-law with the
form τ−γe−βτ, where the exponential tail is below the straight line
of the power-law and is often considered as finite size effects (5).
Note that in a recent report of SM statistics (31), the distributions
have been regarded as power-law for the tails also, without paying
special attention to the humps and the underlying mechanisms.
We can see that the burst-silence patterns of the two users appear
to be synchronized (Fig. 1A). A clear pattern of sending-response
is observed by alternating colors when we join the events of both
users (Fig. 1B), and we obtain the waiting time τw between two
consecutive events marked with different colors. Similar to the
interevent time τ, the distributions of τw also display pronounced
bimodal features (Fig. 1 E and F), in contrast to the prediction
of power-law tails of waiting times from the priority-queuing
mechanism (3, 5).

The bimodal feature of the distribution is found to be general
(see Fig. S2), including those users with many active partners. The
exponents γ, γw, and β, βw differ from user to user, with γ cen-
tered around 1.5, γw around 2.0, and β and βw around 3.0 × 10−4

(see Fig. S3).
These results are significantly different from previous observa-

tions of power-law heavy tails in other human dynamics, such as
e-mail communication. The clearly distinguished distributions at
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Fig. 1. Typical patterns of SMs activity of a pair of users. The users send more than 95% of the messages to each other. (A) Succession of events by user A (blue)
and B (red). The horizontal axis denotes time (in 1 s) and each vertical line corresponds to an event of sending an SM. (B) An enlargement of a short period
where the events of A (blue) and B (red) are put together, showing clearly a sending-response pattern by the alternating blue and red colors. The interval
between two consecutive lines with the same color is the interevent time τ and that between two consecutive lines with different colors is the waiting time τw .
(C) and (D) are the distributions PðτÞ of the interevent times for the users A and B, respectively. PðτÞ is binned in the log-log scale. The upper inset displays the
corresponding accumulative distribution FðτÞ. The vertical dotted line indicates τ0 ¼ 780, which is used to separate the event sequence into independent bursts
(see Materials and Methods and SI Text). The lower inset shows the exponential tails of PðτÞ in the linear-log plot. The straight lines are the power-law and
exponential fitting functions, which are correspondingly shown by the red line and red curve in the upper inset. The exponents are: γA ¼ 1.79� 0.01, βA ¼
ð3.78� 0.02Þ × 10−4 and γB ¼ 1.93� 0.05, βA ¼ ð3.90� 0.03Þ × 10−4. (E) and (F) as (C) and (D), but for the distributions Pðτw Þ of the waiting times τw . The
exponents are γwA ¼ 2.12� 0.01, βwA ¼ ð4.34� 0.04Þ × 10−4 and γwB ¼ 1.90� 0.02 , βwB ¼ ð3.63� 0.03Þ × 10−4. All the exponents in this work are obtained by
the least square method.
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small and large intervals imply that there are different processes
underlying the observed patterns. Fig. 1B shows that a burst is
initiated by one of the users, which is then followed by frequent
mutual communications. SMs or e-mails suggest that quite likely
the initiation of communication over a topic could require a few
dense mutual responses. The pronounced exponential tails in the
distributions imply that the initiation of communication of the
two users could be regarded as independent Poisson processes,
which is consistent with the intuition of initiating relatively inde-
pendent topics of communications in a random manner.

Indeed, we can heuristically separate the events into indepen-
dent bursts with a crossover time τ0 even though we have no
access to the contents of the communication (see Materials
and Methods and more details in SI Text). Basically, two conse-
cutive messages are considered to be in a burst if the interval τ ≤
τ0 and are regarded as correlated passivity messages, while those
messages leading the bursts are regarded as the initiative mes-
sages. Firstly, we can take τ0 somewhat arbitrarily around the
crossover between the power-law and exponential parts in the
distribution PðτÞ and separate the event sequence into bursts.
We can identify the number of bursts whose ith message is sent
by user A or B, and represents them by bars with different colors
(Fig. 2A). The decaying of the bars contains the information of
the response probabilities PA and PB of the two users A and B to
the other, which is very insensitive to τ0 (see Fig. S4 and SI Text).
Secondly, we obtain the rates λA and λB of initiating communi-
cations by the user A and B, respectively. Here we assume that
the initiations of communication by the two users are indepen-
dent Poisson processes described by the relationships δA ¼ λAþ
PAλB and δB ¼ λB þ PBλA, where δA is the rate of bursts in the
event sequence of user A, including those initiated by A himself
( λA) and the response to the initiation of B ( λB) with the prob-
ability PA, and similarly for δB. Now a special τ0 is chosen such
that the separated bursts are best described by independent Pois-
son processes, quantified by a minimal deviation from the above
relationships (Fig. 2B). With τ0 chosen, λA, λB are also deter-
mined, see more details in SI Text. Poisson processes of initiation
of communication are confirmed by the exponential distribution
of the corresponding intervals (Fig. 3A). The size nb of a burst,
the number of messages sent by a user in the burst, is determined
by the response probabilities PA and PB . When user A sends a
message, B replies with probability PB and A sends back again
with probability PA. Thus in one individual the probability of
sending another message after the previous one is P ¼ PAPB.
Consequently, the probability to send messages in a burst by
one individual is

QðnbÞ ∝ ðPAPBÞnb , which predicts precisely that
the distribution of nb follows an exponential function (Fig. 3B),
with the average size estimated as n̄b ≈ 1∕ð1 − PAPBÞ for both
users. The waiting time τw only considering the mutual commu-
nication within the bursts very nicely follows power-law distribu-
tions (Fig. 3 C and D), suggesting that the mechanism of priority-

queuing and decision making is involved in SM communication.
The exponential tails in the waiting time distribution PðτwÞ (Fig. 1
E and F) are naturally removed, since the last message of a burst
and the first message of the next burst by different users that gen-
erate these long intervals are no longer considered as a sending-
response pair, but as independent actions.

Model
These empirical results provide clear evidence that there are
three important ingredients in human communication dynamics:
independent random Poisson processes to initiate the communi-
cation, decision making based on a priority-queuing mechanism,
and the interaction among individuals. Here we propose a model
of interacting priority queues to obtain more insight into the
interplay of these ingredients.

The investigation of human interaction, in particular its effects
on the waiting time patterns, started only very recently in models
by coupling the priority queues proposed in (3). It has been shown
in (19, 20) that interaction between priority queues can change
the exponent of the power-law distribution of the waiting time.
The priority queues and the schemes of interaction in these
models, however, are highly simplifed and could be reasonable
only for some special interaction processes in human society. In
particular, a list of two tasks of different types, interacting (I) and
noninteracting (O), is considered. Two types of interaction
schemes are proposed: (i) AND-types where the interaction oc-
curs when two individuals pick up at the same time the interacting
I-tasks. This scheme could be used to describe common activities
such as a meeting. (ii) OR-types where the execution of the I-task
by one individual will force the other interacting individuals
to execute the I-task also, overriding the original priority of
the I-task in the waiting list. This OR-protocol of interaction is
reasonable for activities such as a phone call. In spite of these
preliminary theoretical analyses, the interplay between the indi-
vidual human activity and the communication among them is still

0 10 20
0

100

200

i

n i

600 700 800 900

0.05

0.1

0.15

τ
0

E

A to B

B to A

A B

Fig. 2. Separation of bursts and estimation of parameters from data. (A)
Communication patterns within the separated bursts (obtained at certain τ0)
that are initiated by user A. The index i denotes the position of themessage in
a burst, and theheight of the bar (ni) is thenumberof bursts having amessage
at position i by user A (blue) or user B (red). (B) Relative error Eðτ0Þ (see Eq. S2
for definition) displays a minimum where the initiations of bursts in the two
users are best approximated by independent Poisson random processes.

10000 20000 30000
10

−3

10
−2

10
−1

10
0

τ

F
(τ

)

0 10 20 30 40
10

−3

10
−2

10
−1

10
0

n
b

P
(n

b)

10
1

10
2

10
3

10
−5

10
−3

τ
W

P
(τ

W
)

10
1

10
2

10
3

10
−5

10
−3

τ
W

A

B

fitting

λ
A

λ
B

δ
A

δ
B

user A
user B

Fig. 3. Separation of the initiative and passivity messages with the most
suitable τ0. (A) Accumulative distributions FðτÞ for the interval between
two consecutive bursts that are initiated by the same user A (with rate
λA) and the interval between two consecutive bursts that can be either in-
itiated by A or the response to an initiative message of B (with rate δA). These
rates of the two users satisfy the relationships δA ¼ λA þ PAλB and
δB ¼ λB þ PBλA, implying that the initiation of communications in the two
users are independent Poisson processes. (B) The distribution of the size
nb of the separated bursts, i.e., the number of messages sent by a user within
a burst. The solid line is the exponential fitting ðPAPBÞnb . (C, D) Distributions
Pðτw Þ of the waiting time τw obtained only from the messages within the
separated bursts, for the user A and B, respectively. The solid lines are the
power-law fitting with γwA ¼ 2.05� 0.01, γwB ¼ 1.89� 0.01.

Wu et al. PNAS Early Edition ∣ 3 of 6

SO
CI
A
L
SC

IE
N
CE

S
EN

V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1013140107/-/DCSupplemental/pnas.1013140107_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1013140107/-/DCSupplemental/pnas.1013140107_SI.pdf?targetid=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1013140107/-/DCSupplemental/pnas.1013140107_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1013140107/-/DCSupplemental/pnas.1013140107_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1013140107/-/DCSupplemental/pnas.1013140107_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1013140107/-/DCSupplemental/pnas.1013140107_SI.pdf?targetid=STXT


largely unexplored, especially, little empirical evidence has been
collected.

The model we propose here differs significantly from these
previous models of interacting queues. When considering two
users as motivated by the empirical observation, it is a minimal
model that incorporates the three basic ingredients we observed
in the data. The model consists of two main parts: (i) Priority
queuing of tasks of individuals. A list of tasks are executed one
by one with the probability

Q ¼ xα, where the random number
x ∈ ð0;1Þ is the priority of the task and α is a tuneable parameter
that controls the power-law exponent γw in the waiting times (3).
This standard model of priority queues is extended in several
ways. (1) We introduce a time scale in terms of the processing
time tp and tasks are removed and added to the list every tp sec-
onds. (2) We distinguish interacting tasks (I-tasks) from the other
tasks (O-tasks), similar to (19, 20); and (3) the I-tasks are added
to the task list randomly with a small rate λp ¼ λtp at each
processing step to incorporate the Poisson initiation of tasks ob-
served in the data. (ii) The interaction between individuals. This
interaction occurs when agent A (B) executes an I-task, which
will add an I-task to the list of B (A) with a probability
PBðPAÞ, i.e., the response rate of B (A). All the I-tasks randomly
initiated by an individual and responding to the other will be
put onto the waiting list with a random priority x, competing
for the execution with the O-tasks. There are three important
parameters for each user, λi, αi, and Piði ¼ A;BÞ, related to
the Poisson process, decision making, and interaction, respec-
tively. More details of the model are presented in SI Text.

The model well reproduces all empirical observations with the
introduction of the time scale tp. Note that previous analysis and
modeling of e-mail communication took the sampling unit (1 s)
just as the unit of actions (3, 5), which is obviously not realistic.
The processing times vary for different tasks, but for simplicity we
assume it takes tp seconds to finish each action. The rates for the
users to add a new I-task (SMs) in the new time scale is then tpλi.
We simulate the model using the parameters λA, λB, PA, and PB
extracted from the data by separating the events into independent
bursts. For the parameters αi used in priority queues, we take
αi ¼ 1∕ðγwi − 1Þ, where γw is the exponent in the power-law dis-
tribution of the waiting time τw within the bursts in the data
(Fig. 3 C andD). This relation is based on the theoretical formula
γw ¼ 1þ 1∕α developed in (3) for this priority-queue model. We
simulate the model with different tp and monitor the relative
difference E between the cumulative distributions FðτÞ of the
interevent times from the model and the data (see SI Text). E has
a minimum at tp ∼ 10, where the model fits well the distributions
of the interevent and waiting times from the data (Fig. 4).

In the following we present a more detailed analysis of the
model in order to understand the bimodal interevent time distri-
butions, mainly focusing on the effect of interaction between
individuals. Without loss of generality and for simplicity of discus-
sion, we assume that the parameters of the two queues are the
same, in particular, PA ¼ PB ¼ P1. We also take tp ¼ 1 for
the simulations of the model below.

Fig. 5 shows the distribution of interevent time τ for various P1

when the other two parameters λ and α are fixed. In the extreme
case P1 ¼ 1, the process happens as follows: A sends a message,
B receives it and waits for a time τwB to reply to A, and then A
waits for a time τwA to send back again. The time interval be-
tween sending two SMs by A (or B), i.e., the interevent time,
is τ ¼ τwA þ τwB. Here each of the priority-queue of A or B is
the same as the original model (3) where the waiting time is a
power-law PðτwiÞ ∝ τ−γwiwi . The distribution of the interevent time
τ as a sum of the two queues is also a power-law, taking the form
PðτÞ ¼ τ−γmin , where γmin is the smaller value of the exponents
γwA and γwB in the queues A and B (32). Here in our discussion,
the two queues are identical, so that PðτÞ ∝ τ−γ ( γ ¼ γw ¼ 1þ
1∕α). Since the I-tasks due to mutual communication are created

with a much higher probability than the Poisson rate λ, the pat-
tern of the interevent time will be dominated by the power-law, as
seen clearly in Fig. 5. Note that the case of P1 ¼ 1 in our model
corresponds to a model previously proposed to explain the
power-law interevent times in e-mail communication from the
power-law waiting times due to priority-queuing mechanism
(5). In that model it was assumed that e-mail communication
is the process that A sends an e-mail to B as a response to an
e-mail B sends to A and vice versa in an endless manner (5). This
model is in contrast with the evident facts about e-mail commu-
nication where we do not reply to every e-mail (thus P1 < 1),
and we also initiate independent communications in addition
to passive responses.
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Fig. 5. Effect of interaction on human activity patterns in the model. The
cumulative distribution FðτÞ of the interevent times obtained at various
response rates P1. The other parameters are fixed as λ ¼ 1.5 × 10−4,
α ¼ 1.0, and tp ¼ 1. The inset shows the exponential tails in the linear-logplot.
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It is important to emphasize that the activity patterns are very
sensitive to P1. As seen in Fig. 5, when P1 is only slightly smaller
than 1.0 (e.g., P1 ¼ 0.95), the distribution is no longer a complete
power-law, but clearly bimodal with a pronounced exponential
tail. This behavior happens because the frequent mutual commu-
nication will be terminated: the probability to get bursts of large
size decreases exponentially (

QðnbÞ ∝ P2nb
1 ). This result means

that the mechanism of mutual response as proposed in (5) cannot
explain the power-law behavior in the e-mail communication
when P1 is not exactly 1.0. As discussed in more detail in the
SI Text, our model with the processing time tp provides an alter-
native, more natural explanation which allows us to generate a
power-law distribution with P1 < 1 (see Fig. S5).

A value of P1 close to but less than 1.0 is important for a
pronounced bimodal distribution. The bursts have an average size
n̄b ¼ 1∕ð1 − P2

1Þ. Here a large number of SMs are replied, but
they are put onto the waiting list with a random priority x,
and the interevent time for these events follows a power-law dis-
tribution PðτÞ ∝ τ−γ . The power-law distribution is cut off by the
finite number of messages n̄b within bursts, leading to a crossover
waiting time τ0. n̄b and τ0 are related as ∫ ∞

τ0P
PðτÞdτ ¼ 1∕n̄b,

where τ0p ¼ τ0∕tp is the cut-off in the unit of processing step.
Putting PðτÞ ∝ τ−γ , we get

τ0∝ tpðn̄bÞ1∕ðγ−1Þ∝ tpð1−P2
1Þ−1∕ðγ−1Þ: [2]

Thus the crossover time τ0 is on average larger if P1 is closer to
1.0 because there will be a larger number of SMs in a burst. As a
result we observe a regime of power-law distribution of the intere-
vent time: there are many more short and intermediate intervals
than we can expect from the Poisson processes only. The bursts
and the power-law regime will not be clearly observable when P1

becomes smaller, since n̄b ¼ 1∕ð1 − P2
1Þ becomes too small and

the distribution is dominated by the exponential function. This
situation happens already for relatively large response rates,
e.g., when P1 ¼ 0.8 we have n̄b < 3.

As seen from the inset of Fig. 5, the interevent time distribu-
tions display pronounced exponential tails when λ ≪ 1, with
the exponent β depending on the value of P1 < 1. This result
can be understood as follows: (i) The two users initiate commu-
nications independently with the rate λ, and respond to each
other with the probability P1. Consequently in the event se-
quence of an individual, we observe independent bursts either
initiated by the individual or the response to the other with
the rate δ ¼ λþ P1λ, and the interval between the first message
of two consecutive bursts is τδ. In the interevent distribution
PðτÞ, the tail corresponds to long intervals between the last mes-
sage of one burst and the first message of the next burst, τ ¼
τδ − τb, where τb is the total time spent in the first burst. The
interval within the burst follows a power-law distribution, and
we have τb ¼ nb∫ τ0PðτÞτdτ ∼ τ0. As a result, for those long inter-
vals we get τ ≈ τδ, corresponding to the exponential tails with the
exponent β ≈ δ ¼ λþ Pλ when P1 < 1.

The analysis of the model reveals the importance of the inter-
play among three ingredients in human communication patterns.
The communication cannot continue without random initiation
of I-tasks; and if all the messages are replied ( P1 ¼ 1) after the
first initiation, the communication almost cannot stop to allow
the initiation of new I-tasks. Such situations are not realistic. If
there is not the ingredient of interaction ( P1 ¼ 0), each indivi-
dual only sends SMs initiated randomly without getting a re-
sponse. For these randomly initiated I-tasks, the time spent on
the waiting list is small compared to the average Poisson interval
1∕λ because the newly added task has higher priority on average
compared to the other tasks still on the waiting list. As a result,
the interevent time is close to the Poisson distribution (Fig. 5).
Finally, if there is not a mechanism of priority-queuing, e.g.,

the tasks are randomly selected for execution when α ¼ 0, we
cannot expect a regime of power-law interevent time.

In summary, the model explains the empirical observations in
the following way. (i) The response rates PA and PB control the
average burst size n̄b ≈ 1∕ð1 − PAPBÞ. (ii) The power-law waiting
times τwA, τwB due to the priority-queuing mechanism lead to
power-law interevent times in the bursts ( τ ¼ τwA þ τwB), with
the exponent γ ¼ minðγwA;γwBÞ (32). (iii) However, this power-
law distribution cannot extend to large intervals, because there
is a cut-off τ0 due to the finite event size n̄b of the bursts,
τ0 ∼ tpð1 − PAPBÞ−1∕ðγ−1Þ. (iv) The distribution of τ displays a pro-
nounced bimodal feature if τ0 ≪ 1∕β, the characteristic interval
of the Poisson random actions.

Discussion
We emphasize that the three basic ingredients investigated in this
work are common in many other types of human communication
activity, such as instant chat in the internet (e.g., MSN, Google-
talk, and Skype, etc.), e-mail and letter communications, and
human dialogue, etc. Our model is readily applicable to these
situations. For instance, in e-mail and letter communications,
there are also passivity events of consecutive exchanges and
random initiation of the communication and clearly not all the
e-mails or letters receive a reply. In letter communication, the
waiting time distributions without separating the initiative and
passivity messages do show clear bimodal features with humps
in the exponential tails (4, 5), similar to Fig. 1 E and F in
SMs. The interevent time is found to follow an exponential dis-
tribution (5), which can be explained in our model by a relatively
small response rate (see SI Text). A close inspection of previously
published results of e-mails does indicate the bimodal nature of
the distributions of interevent times (5), but not as pronounced as
in SMs. In our framework, the distribution will shift gradually
from bimodal to a truncated power-law τ−γe−βτ when the cut-
off time τ0 becomes larger and comparable to the characteristic
interval of the Poisson initiation (see Fig. S5). Larger τ0 could be
attributed to longer processing time tp (and a smaller power-law
exponent γ as well), which is consistent with the e-mail commu-
nication.

Our findings reveal that there is a generic Poisson process
in individual human behavior which is connected to the
power-law-like bursts through the interaction with other indivi-
duals, resulting in the interplay between the cut-off time τ0 and
the characteristic Poisson interval 1∕β which are generally influ-
enced by the network topology and the processing time tp in
various human activities. This picture has significantly changed
the current competing views of human activity, either following
Poisson or power-law statistics. Our findings open a new perspec-
tive in understanding human behavior both at the individual and
network level which is of utmost importance in areas as diverse as
rumor and disease spreading, resource allocation and emergency
response, economics, and recommendation systems (33–36), etc.
For example, treating the events as independent bursts would
allow quantitative analysis of phone line availability and band-
width allocation in the case of Internet or Web use, which should
be significantly different from the assumption of power-law tails
which allow very long silent periods.

Bimodal distributions are not limited to human communica-
tions, but are also typical in other interacting social systems, such
as trading (22). With suitable modification, our model could be
applied to understand the bimodal interevent distribution of
these systems.

Bimodal interevent times are also widely observed in diverse
natural systems ranging from rainfall to earthquakes and neuro-
nal avalanches (24–29). The method of separation of the events
into independent bursts in this work should be useful for the
analysis of these bimodal natural phenomena. The origin of the
bimodal interevent times varies in different natural systems, but a
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common and general feature is that the distinct distributions
could be associated to processes of different temporal or/and
spatial scales. For example, in earthquakes, there is independent
seeding (background) activity at longer times that triggers corre-
lated aftershocks in short times due to time-dependent relaxation
of the crust (28). Therefore, a more comprehensive understand-
ing of various complex systems would require the investigation of
the interplay of various processes competing at different spatial/
temporal scales, as we demonstrated here for the human commu-
nication activity.

Materials and Methods
Data Description. The data investigated in this work were obtained from a
mobile phone operator. The data include three charging accountant bills
from three companies over 1 mo period. Each record comprises a sender mo-
bile phone number, a recipient mobile phone number and a time stamp with
a precision of 1 s. The detailed information about the data is listed in Table 1.

For the purpose of retaining customer anonymity, each subscription is
identified by a surrogate key such that it is not possible to recover the actual
phonenumbers from it. There is noother information available for identifying
or locating customers, which guarantees that their privacy is fully respected.

The interevent time in our analysis is the time interval between sending
two consecutive messages. For active users with at least several messages per
day, the longest waiting time during a day is limited to 5–6 h, on average
shorter than the time interval between the last message of 1 d and the first
message of the next day (8–9 h). We thus exclude the time intervals crossing
2 d from the analysis, as they have negligible effects on our results. Note that
such time intervals associated with a sleep break may not be so neatly
separated for inactive users, and for many other human activity occurring
at slower scales.

Separating Events into Independent Bursts. Using a crossover time τ0, we can
divide the events into bursts in which frequent communications are sepa-
rated with an interval τ < τ0, and consequently determine all the messages
initiating the bursts. From such bursts obtained using different τ0, we can
reliably estimate the response rates PA and PB for the two users A and
B, respectively. Finally, the most suitable τ0 is chosen such that the initiations
of communication of the two users are best fitted by two independent
Poisson processes, and the rates λA and λB of the random initiations are
determined. Using the waiting time statistics from the separated bursts,
we can estimate the parameters αA and αB with a formula developed in
priority-queuing theory (3). All these empirical parameters are then put into
the model of two coupled priority-queues to reproduce the distributions of
waiting times and interevent times with a suitable processing time tp. More
details of the methods to obtain empirical parameters, the analysis of
the model, and application of the model to describe some other interacting
human activity are presented in SI Text.
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Table 1. Information of the data

Name of
the company

The total number
of the records

The number
of the users

The number of
the active users *

A 548, 182 44, 430 9, 567
B 643, 502 72, 146 12, 162
C 398, 185 31, 096 7, 727

*Who sends more than five SMs and receives more than five SMs is
considered as an active user
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