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Abstract Rice is one of the pillars of world-wide

food security. Improvement in its yield is necessary

to mitigate hunger of millions of people who depend

on rice as a staple. Decoding rice genome sequence is

expected to complement efforts being made to

improve rice and its yield. The information about

more than 32,000 genes, regulatory elements, repeat

DNA, and DNA markers opens-up new horizons for

molecular analysis and genetic enhancement not only

for rice but also for other cereal crops. In the post-

genomic era, significant progress has been made on

defining transcriptome and epigenome as well as gene

discovery by way of forward and reverse genetic

approaches. Efforts are on to fill the gap between the

genome and the phenotype. This may lead to regular

practice of genomics-assisted breeding of rice.
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Introduction

Despite significant ongoing efforts to breed improved

rice, the world-wide yield of rice has shown signs of

stagnation after registering an increase of almost two-

fold during the 1960s and the 1990s (www.fao.org,

www.irri.org). This is also in part due to dwindling

land resources and climate change. It is imperative to

increase rice yield commensurate with population

growth to fulfill the demand since expectations for

such improvement are high for rice in comparison to

other major cereals like maize and wheat. Further,

qualitative improvement of rice will help alleviate

under-nutrition of people of the world.

Rice is the first food crop whose genome has been

completely sequenced, more than once and for both

indica and japonica subspecies, reflecting its impor-

tance as major source of food world-wide (Goff et al.

2002; Yu et al. 2002, 2005; International Rice

Genome Sequencing Project, IRGSP 2005). The

map-based sequence of japonica rice revealed infor-

mation about 370 Mb out of an estimated 389 Mb

genome, which is used to provide ‘gold standard’ of

12 pseudomolecules representing rice chromosomes

(Matsumoto et al. 2008). The smaller genome size, 6
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and 40 times smaller than maize and wheat, respec-

tively, synteny, and demonstrated potential for

genetic manipulation as well as diversity make rice

a model system to investigate its genome and for crop

improvement. Various aspects of rice genome

sequencing and subsequent developments in terms

of forward and reverse genetics, proteomics, phylog-

enomics, and molecular breeding have been reviewed

earlier (Vij et al. 2006; Collard et al. 2008; Han and

Zhang 2008; Jung et al. 2008; Matsumoto et al.

2008). Here, we present a brief overview of recent

developments in rice genomics particularly on

genome annotation, transcriptomics, epigenomics

and gene discovery.

The rice genome and its annotation

Both indica and japonica rice genomes have been

sequenced. While indica genome was sequenced by

whole genome shot-gun approach (Yu et al. 2002,

2005), japonica rice genome was sequenced by both

whole genome shot-gun (Goff et al. 2002) and map-

based clone-by-clone (IRGSP 2005) approaches. The

map-based clone-by-clone approach involved con-

struction of a high-density linkage map, YAC-based

physical map, transcript map and BAC/PAC physical

map. The sequence-ready physical map comprised of

both PAC and BAC libraries (Chen et al. 2002; Wu

et al. 2002). The finished quality sequence (370 Mb)

of more than 3,000 BAC/PAC clones represented

95% of the whole genome and covered virtually the

entire euchromatic region (IRGSP 2005). Although,

significant progress has been made in sequencing

centromeric and telomeric regions in rice unraveling

their complex architecture, efforts to complete their

sequence are still on (Matsumoto et al. 2008). Almost

35% of the genome represents repeat elements. The

finished sequence of the genome had a total of

37,544 non-transposable-element-related protein-

coding sequences. Interestingly, evidence for wide-

spread and recurrent gene transfer from the organelles

to the nuclear genome was observed. Analysis of

duplications in the genome revealed three main

classes of duplications—whole genome, tandem and

background duplications (Paterson et al. 2004; Vij

et al. 2006). It was observed that almost 60% of the

genome is duplicated and duplications are present in

all chromosomes. However, chromosomes 11 and 12

share a recent duplication block. The wealth of SSRs

([18,000) reported has accelerated research on

marker-assisted breeding and positional cloning for

genes of agronomic importance.

Initial studies on rice genome annotation, largely

based on the in silico predictions, over-estimated the

number (40,000–50,000) of protein coding genes.

Surprisingly, a considerable proportion (*50%) of

the predicted genes did not have any homolog in

Arabidopsis. These genes had an unusually high GC

content, smaller size and failed to map to any known

ESTs. Subsequent analysis (Bennetzen et al. 2004;

Jabbri et al. 2004) suggested that most of these genes

were either wrong annotations or transposon related,

clearly indicating a review of the annotation strategy.

As evidenced by the annotation of Drosophila (Misra

et al. 2002), human (Imanishi et al. 2004) and

Arabidopsis genomes (Haas et al. 2002; Wortman

et al. 2003), automated annotations need to be

manually curated to remove obvious discrepancies

and refine the predictions. ESTs and full-length

cDNA sequences are invaluable, as they can be used

to validate the predicted coding loci. Therefore,

whole genome automated annotations need to be

refined by manual curation on the basis of known

ESTs, fl-cDNAs, MPSS data, known proteins etc.

from the same as well as related organisms. Based on

a similar basic idea, four major annotation portals of

the rice genome are available at Rice Annotation

Project-Database (RAP-DB; Rice Annotation Project

2007; rapdb.dna.affrc.go.jp), Osa1, MSU (Ouyang

et al. 2007; rice.plantbiology.msu.edu), Beijing

Genomics Institute-Rice Information System (BGI-

RIS; Zhao et al. 2004; rice.genomics.org.cn/rice) and

NCBI-genomes (www.ncbi.nlm.nih.gov/sites/entrez?db=

genome). The RAP-DB differentiates the gene models

supported by fl-cDNAs from those having only evi-

dence of expression (i.e., no support of fl-cDNA but

ESTs/MPSS provide the proof of expression) as well

as ab initio prediction without any evidence of

expression. RAP-DB can be accessed through

GBrowse (Stein et al. 2002), which provides a chro-

mosome-oriented access to the annotations and G-

Integra (Imanishi et al. 2004) for global view that

integrates information from other plant genomes as

well. The database also provides genome-wide com-

parison of the japonica and indica rice along with

sorghum. The Osa1 database (MSU) also refines the

automated prediction of rice genes with the help of
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transcript assemblies (Haas et al. 2002). In addition, it

provides a ‘community annotation facility’ wherein

research groups can annotate the gene family of their

interest and submit it to the database. RAP-DB pro-

vides a ‘gene id’ converter based on overlapping

exons in the two databases (Osa1 and RAP-DB) that

helps to fetch similar gene models. Osa1 also pro-

vides information, based on ESTs, cDNAs, MPSS

and SAGE data, about the spatial and temporal

expression profile of the predicted gene models. The

BGI-RIS has the core dataset based on the indica

(cultivar 93-11) rice genome. Apart from these, sev-

eral other databases have been established to provide

valuable information to enrich the annotations fur-

ther. ‘Rice indica cDNA Database’ (RICD; Lu et al.

2008b) has a collection of 20,000 putative full-length

cDNAs and [40,000 ESTs isolated from various

cDNA libraries of indica rice varieties Guangluai 4

and Minghui 63. The cDNAs/ESTs have been map-

ped to the genome and putative function assigned on

the basis of sequence similarity. Similarly, ‘Knowl-

edge-based Oryza Molecular biological Encyclope-

dia’ (KOME, Kikuchi et al. 2003) compiles data on

[28,000 full length cDNA of japonica rice (cv.

Nipponbare). Based on these cDNAs 13,046 putative

promoter regions in rice have been identified at the

Eukaryotic Promoter Database (EPD; www.epd.isb-

sib.ch). Subsequent genome-wide computational

analysis revealed that only *19% of rice gene pro-

moters have a ‘TATA’ box (Civán and Svec 2009).

‘OryGenesDB’ (Droc et al. 2009) is a resource for

reverse genetic studies in rice and contains 1,71,000

flanking sequence tags (FSTs) of rice insertion lines

(Tos17, T-DNA and Ac/Ds) available from 10 major

sources. It also offers a web-based utility ‘Orylink’

for an organized search among the three databases,

viz. OryGenesDB, Oryza Tag Line and Green-

PhylDB. ‘Oryza Tag Line’ (Larmande et al. 2008) is

a collection of phenotypic characteristics of about

30,000 enhancer-trap lines of Oryza sativa cv. Nip-

ponbare. On the other hand, GreenPhlyDB is based

on the concept of ‘phylogenomics’ (Eisen and Fraser

2003), i.e., a throughtput analysis combining genomic

and phylogenetic data. The database compiles the

comparative functional genomics data of rice and

Arabidopsis and assigns the proteins of both model

plants to different orthologous groups. As a result,

6,421 gene families, perhaps the largest collection of

plant gene families, have been curated manually.

Similarly, ‘SALAD database’ (Mihara et al. 2009;

salad.dna.affrc.go.jp/salad) provides a portal to ana-

lyze and compare proteomes of rice, Arabidopsis,

Sorghum, Vitis as well as Selaginella, Physcomet-

rella, Chlamydomonas and Saccharomyces. Another

phylogenomic database is the ‘Rice kinase database’

where[1,400 protein kinases have been identified in

the rice proteome (Dardick et al. 2007). ‘ARACHI-

PELAGO’ is a compilation of information for over

2,500 rice genes known to be involved in response to

abiotic stress. Another important resource to enrich

genome annotation is ‘RiceGeneThresher’, a web

based utility to identify genes underlying known

QTLs in rice (Thongjuea et al. 2009).

Looking deeper in the annotations, the latest

release of RAP-DB (Rice Annotation Project 2008)

catalogues 30,192 protein coding gene models with

evidence of expression, *27% of which are similar

to known proteins (including rice) and 45% could

only be annotated by the presence of a protein

domain. It may be noted that putative function was

only mapped if the database hit was linked to a

relevant published study. Besides, 22,022 gene mod-

els have been identified by ab initio predictions which

do not have any evidence of expression. Availability

of genome sequence has spearheaded many individ-

ual ventures that have enriched the annotation.

Detailed annotations of over 30 gene families have

already been deposited to the community annotation

facility of Osa1 database. Similarly many gene

families like glutamate dehydrogenase gene family,

BURP-domain containing gene family, HAk potas-

sium transporter gene family, HSP20 gene family,

Argounautes, receptor like cytoplasmic kinase gene

family, A20/AN1 zinc-finger domain-containing pro-

teins, and basic leucine zipper (bZIP) transcription

factor family (Kapoor et al. 2008; Nijhawan et al.

2008; Vij et al. 2008; Vij and Tyagi 2008; Ding et al.

2009; Ouyang et al. 2009; Yang et al. 2009), to name

a few, have been studied in detail.

Apart from identification of the protein coding

genes, studies have also been done to identify non-

coding small RNA loci in rice. MPSS data for small

RNAs (2,953,855 tags) from untreated flower,

seedling and stem tissues (Nobuta et al. 2007) has

been mapped to the genome and is available at RAP-

DB. Over 350 miRNAs have been identified and are

available at miRBase (Griffiths-Jones et al. 2008) and

RAP-DB. Similarly, other important components of
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the genome are the repetitive DNA elements. The

‘Oryza repeat database’ (a component of Plant

Repeat Database) at Osa1 has a compilation of

known transposable elements and centromere/telo-

mere associated repeats of rice. The database has

24,966 repeat elements covering [11.0 Mb of the

genome. The most abundant are the transposable

elements followed by centromere-related, telomere-

related, rDNAs and unclassified sequences. Recently,

a genome-wide analysis has identified a new active

retro-transposon ‘Lullaby’ from rice calli (Picault

et al. 2009).

Thus, there has been a substantial increase in

knowledge since the initial release of the rice genome

sequence. Various portals have been developed

which attempt to integrate the knowledge with a

genome-centric view. It is important to complement

them with a slight change in perspective and collating

information in a protein-centric manner.

Comparative genomics

Comparative studies in the grasses laid the foundation

for comparative genomics. Comprehensive data sets

are in place for the major crop plants like rice, wheat,

maize, barley, sorghum, and oats which provide

evidence for the presence of genic colinearity

between genomes. This phenomenon of macro-

colinearity was first established in seven grass

genomes, rice serving as the central reference

genome, and is often referred to as the ‘Crop Circle’

(Devos 2005). This work when extended to DNA

sequence level (micro-colinearity), aiding studies of

the genic and non-genic regions, has frequent devi-

ations attributed to small scale rearrangements,

deletions, or local gene amplifications (Bennetzen

2000; Keller and Feuillet 2000). The rice genome

sequence has led to seeding of information not only

for positional cloning in other crop plants, but also

provides the ability to gain insight into gene family

organization. Exceptions to micro-colinearity have

provided information into mechanisms involved in

evolution of grass genomes.

The elucidation of syntenic relationship of rice

with other cereal genomes was considered as one of

the major benefits of sequencing the rice genome.

Several important genes have been identified in other

cereals based on their synteny with rice. These

include Ror2, a gene conferring resistance to pow-

dery mildew in barley, malting quality QTL in barley,

liguleless in sorghum and major heading date QTL in

ryegrass (Armstead et al. 2004; Han et al. 1998;

Zwick et al. 1998). Exceptions to colinearity were

observed in Rpg1, Rph7 and PhD-H1 genes in barley

(Dunford et al. 2002; Han et al. 1999; Leister et al.

1998; Brunner et al. 2003). The finished sequences of

rice chromosomes 11 and 12 allowed detailed studies

of rice–wheat synteny at the gene level and indicated

that although synteny is conserved at the gross

genome level, microcolinearity may have been dis-

turbed during evolution of the cereals (Singh et al.

2004; The Rice Chromosome 11 and 12 Sequencing

Consortia 2005). Although, majority of rice gene

models from chromosome 11 mapped to group 4

chromosomes of wheat, indicating a common origin,

many of these which mapped to the short arm of

wheat chromosome 4A also mapped to the short arms

of chromosomes 4B and 4D indicating significant

rearrangements. A similar situation was seen in case

of chromosome 12 where most of the gene models

mapped to wheat group 5 chromosomes (The Rice

Chromosome 11 and 12 Sequencing Consortia 2005).

A comparative distribution of rice chromosome 11–

12 gene homologs to the wheat homoeologous groups

indicates different origins of the two chromosomes

but does not support the earlier observation of the

evolution of 11 and 12 chromosomes via polyploidi-

zation (Paterson et al. 2004). The utility of single-

copy genes for defining syntenic and colinear regions

between rice and wheat has also been emphasized

(Singh et al. 2007). Based on microarray experi-

ments, a genome-wide expression map of different

tissues identified a vast majority of paralogous genes

pairs with neo- and sub-functionalization over a

period of time during the course of evolution

(Throude et al. 2009).

High resolution of physical maps of rice chromo-

somes across the 11 wild genomes provides a suitable

FPC and web-based platform to access and under-

stand the Oryza genome (www.omap.org). Within the

rice subspecies, a 172-kb genomic DNA region

associated with the yld1.1 QTL was found to be

highly conserved between O. sativa ssp. japonica and

O. sativa ssp. indica and the common ancestor O.

rufipogon plays an important role in conservation of

synteny in terms of the content, homology, structure,

orientation, and physical distance of the predicted 14
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genes within this region (Song et al. 2008). Since

Oryza species have 10 different genome types,

including 6 diploid genome types (AA, BB, CC, EE,

FF and GG) and 4 allotetraploid genome types (BBCC,

CCDD, HHKK and HHJJ), it makes for interesting

study dealing with evolutionary and phylogenetic rel-

evance of important genes like the MONOCULM1.

Thus, 14 different orthologous regions of the MOC1

locus were recently analyzed by Lu et al. (2009). It was

found that transposons were only conserved between

genomes of the same type (i.e., AA or BB) and the

allotetraploids were observed to be the result of more

recent polyploidization involving pseudogenization

of duplicated genes caused by large deletions and

small frame-shift insertions/deletions, or nonsense

mutations.

Despite the differences in genome size amongst

the cereals, it is indeed remarkable that the size of

gene-rich regions is similar (Feuillet and Keller

1999). Synteny is generally the highest and retroel-

ements lowest in the distal regions of the chromo-

somes prone to high rates of recombination.

Conservation of gene order has also been investigated

between sorghum and maize, rice and rye, rice

subspecies and with other crop plants (Bennetzen

and Ramakrishana 2002; Feuillet and Keller 2002;

Bennetzen and Ma 2003; Hackauf et al. 2008).

Analysis of the rice genome indicates that more than

90% wheat, barley and maize proteins could be

identified in rice (Goff et al. 2002). Analysis of 2,629

maize markers with rice sequences revealed 656

putative orthologs (Salse et al. 2004). Gene rear-

rangements are common and even amongst closely

related species like barley–wheat or maize–sorghum,

at least 20% differences are observed. Despite these

non-cohesive reports, the rice genome has proved to

be a stable genome over a period of time and

absorbing extensive rearrangements during the course

of evolution.

The recently completed Sorghum genome indi-

cates that, as compared to rice, sorghum has *75%

larger heterochromatin DNA, inferring that euchro-

matin is 252 and 309 Mb, respectively, in sorghum

and rice (Paterson et al. 2009). The net increase in

size of sorghum is largely due to LTR retrotranspo-

sons, and sorghum resembles rice in having a higher

ratio of gypsy-like to copia-like elements (3.7–1 and

4.9–1) than maize (1.6–1). The major deviations are

in the C4 biosynthetic pathway, the NBS-LRR

proteins and the cell wall biogenesis pathways. Some

characteristic drought-related adaptations, which dif-

fer with rice, are represented by the miRNA 169 g for

which five homologs are present in sorghum.

Nonetheless, with the recent completion of the

high-quality genetically and physically anchored

sorghum genome and the imminent completion of

the whole genome shot-gun sequence for Brachypo-

dium distachyon, coupled with newer tools for

functional analysis and massive information gener-

ated, make it exciting times for studies on compar-

ative genomics of the grasses (Bossolini et al. 2007).

These efforts are greatly aided by development of

tools and resources for use in comparative genomics

efforts. Chief amongst these are the Gramene

(www.gramene.org) database and its ever increasing

size as well as use and GRASSIUS (www.grassius.org)

for comparative regulatory genomics. The compara-

tive genomics of cereal genomes has led to an attempt

to reconstruct ‘ancestral cereal genome’ defining

‘inner circle’ recently (Bolot et al. 2009).

Functional genomics of rice

The aim of functional genomic programs is to define

molecular function of individual genes, identify both

upstream and downstream interacting partners and

eventually build regulatory and biochemical networks

to understand functioning of a system, be it a cell, a

tissue or an organism, in a holistic manner. For any

organism, once the genic content is defined by the

genome sequencing and annotation programs, the

transcriptional units (TUs) need to be validated and

the gene products, i.e., transcripts, proteins and

metabolites, need to be segregated in temporal,

developmental and/or tissue/cell type based co-

expression groups, which define the span of individual

networks. The members of individual co-expression

groups can further be categorized into regulatory and/

or biochemical pathways by delineating their function

by using various forward and reverse genetics

resources and tools. The development of these genetic

resources and their easy accessibility to research

community, therefore, is of immense importance for

the success of any functional genomics initiative

(Rensink and Buell 2005; Jung et al. 2008). The

forward genetics resources include physically (fast-

neutron, gamma-rays, and ion beam irradiation), or
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chemically (ethyl methanesulfonate, methyl nitrosou-

rea, or diepoxybutane) generated mutants, insertion

mutants (T-DNA or transposon), gene entrapment and

activation tag lines. It further requires development of

high throughput mutation screening panels and

preliminary characterization of the site of mutation

by identifying flanking sequence tags (FSTs) in case

of insertion mutations to aid reverse genetics-based

gene function validation (Krishnan et al. 2009).

Querying the transcriptome

Like in case of yeast, fly, worm, human and

Arabidopsis genome projects, the quest to understand

rice transcriptomes also started with sequencing of

Expressed Sequenced Tags (ESTs). During initial

phase of the rice genome project, *29 k ESTs were

sequenced that helped in the identification of *10 k

unique cDNAs from various tissues and callus-

specific libraries (Uchimiya et al. 1992; Sasaki

et al. 1994; Liu et al. 1995; Yamamoto and Sasaki

1997). For unknown genomes, EST information

provided the fastest alternative to gain insights into

gene structure, expression and function of genes

along with genome organization (Fukuoka et al.

1994; Monna et al. 1994; Yamamoto and Sasaki

1997). Since initial studies were based on random

selection of clones for sequencing from cDNA

libraries, the proportion of redundant clones

increased logarithmically with the progress of the

program and soon crossed the 50% mark. This

situation demanded a strategic course correction in

order to enrich the cDNA libraries for rarely

expressed transcripts. During this time, rice genome

sequencing initiatives were also gaining momentum

and so was the need to define the rice transcriptional

units to be able to make sense of the genome

sequence information. But for defining the transcrip-

tional units EST data was not enough. It required

sequence information of the entire cDNA to be able

to define the ORFs, the intron–exon boundaries and

alternatively spliced transcripts. An ambitious full-

length cDNA (FL-cDNA) project was then initiated

as part of Japan’s Rice Genome Research Program

(RGP) and by the time the shot-gun method based

draft sequences of indica (Yu et al. 2002) and

japonica (Goff et al. 2002) rice were published,

Kikuchi and coworkers were ready with the

sequences of 28,469 FL-cDNAs (KOME: http://

cdna01.dna.affrc.go.jp/cDNA/) that could be map-

ped onto these sequences (Kikuchi et al. 2003).

18,933 TUs could be localized on the japonica

sequence published by Syngenta (Goff et al. 2002)

and 5,045 of these sequences were multi-exon TUs,

suggesting that they might have originated from

alternative splicing, initiation or termination. At this

stage, based on rice-specific EST and Fl-cDNA data

and known TU from other organism a number of

algorithms were developed for gene prediction in rice

(described in detail in the previous section on gene

annotations). Eventually, map-based sequence of

japonica rice, Nipponbare, also became available

along with improvement in annotation algorithms

leading to the refinement of both indica and japonica

draft sequences (Yuan et al. 2005; IRGSP 2005;

Ouyang et al. 2007). Further additions to FL-cDNA

database resulted in increase in the number of map-

ped TUs to 32,775 (TIGR4), 32,730 (IRGSP4) and

30,162 (93-11, BGI) (Satoh et al. 2007).

High throughput technologies for transcriptomic

research

As the data related to structural genomics was

accumulating, it became imperative that studies

related to understanding function of the genes also

gained pace. High throughput transcriptome analysis

technologies, namely, serial analysis of gene expres-

sion (SAGE), massively parallel signature sequencing

(MPSS) and microarrays, were still in their nascent

stage (Schena et al. 1995; Velculescu et al. 1995;

Brenner et al. 2000; Reinartz et al. 2002) The SAGE

and MPSS (sequence-based technologies) had the

advantage of being open systems, which were

capable of detecting both known and unknown

transcripts, alternative spliced forms, as well as,

antisense transcripts. The hybridization-based micro-

array technology, even though, was effective only in

case of known transcripts, its lower direct costs (5–10

time lower than SAGE and MPSS), higher throughput

and higher specificity made it the favorite for gene

expression analysis research (Wang 2007). The initial

rice microarrays consisted of a small number [1,265

(Yazaki et al. 2000); 1,728 (Kawasaki et al. 2001);

8,987 (Yazaki et al. 2003)] of specifically amplified

cDNAs. The unsuitability of these arrays for high-
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throughput transcriptomic analysis soon became

evident due to lack of reproducibility in manufactur-

ing process and cross-hybridizations resulting from

lack of precise control over target sequence selection

(Kikuchi et al. 2007). The second phase of arrays

were based on 25–60 mer oligonucleotides from

unique regions of the transcripts that were either

chemically synthesized on glass slides (Agilent 22K

Rice Gene Expression Arrays), synthesized on silicon

wafer by photolithography technology (Affymetrix

57K GeneChip Rice) or printed on glass slides using

inkjet technology (Beijing Genomics Institute, 61K;

NSF Rice Oligonucleotide Array Project, 20K and

later 45K). Although, these arrays were primarily

designed for assaying transcript abundance, other

uses of these chips, including genome-wide poly-

morphism (Hazen and Kay 2003; Cui et al. 2005;

Edwards et al. 2008), and copy number estimations

(Skvortsov et al. 2007) have also been suggested.

Recent advances in microarray technologies have

made it possible to accommodate even larger number

of probes per unit area, thereby making it possible to

have the entire genome placed on manageable

number of microarrays. Since in these slides (called

tiling arrays) the entire genomic information is placed

on microarrays in a sequential, unbiased manner, they

can be used to query the transcriptome in terms of

number of TUs, exon usage diversity, and antisense

transcription in a more comprehensive manner (Li

et al. 2005, 2006; Stolc et al. 2005). Li et al. (2007)

used 37 of these chips covering the entire rice

genome to find 25,352 and 27,744 transcriptionally

active regions (TARs) from non-exonic regions

indicating the presence of uncharacterized splice

variants or regions of incompletely annotated genes,

antisense transcripts, duplicated gene fragments, or

potential non-coding RNAs.

The sequence-based analysis of transcriptomes

started with SAGE, which later matured into Robust-

longSAGE (Gowda et al. 2004) and then SuperSAGE

(Matsumura et al. 2006), where the abundance of

short sequence TAGs from the 30 end of individual

transcripts was taken as measure of their relative

abundance. Although SAGE was developed on a

sound logic that offered unbiased analysis of tran-

scriptomes, it did not become popular with the

researchers because of higher operational costs and

limited number of transcriptional units assayed. The

ideology behind SAGE, however, persisted in the

form of MPSS and it proved that this approach was

as important for transcriptomics as microarrays. But,

the MPSS too remained out-of-bound for many

researchers for being costly, and therefore, not many

time-points could be analyzed using this technology.

Nevertheless, MPSS libraries for 32 human samples,

20 rice samples, and 17 Arabidopsis samples derived

from various tissues and/or physiological/develop-

mental states were generated, making it an indis-

pensable resource for transcriptomic research

(Jongeneel et al. 2005; Nakano et al. 2006; Nobuta

et al. 2007). With the advent of ‘next-generation’

sequencing technologies, genome Sequencer FLX

from 454 Life Sciences/Roche, Illumina Genome

Analyzer and Applied Biosystem’s SOLiD, the

sequence-based transcriptome analysis concept seems

to have come of age (Lister et al. 2009). All these

technologies are capable of generating giga-bases of

relatively shorter reads (50–400) in a single run,

thereby, not only enhancing the resolution of existing

concepts like, transcriptome (mRNA/small RNA)

profiling, alternative splicing, DNA methylation,

genome re-sequencing, etc. but are also revealing

newer ways to unravel genomic treasures, e.g., RNA-

sequencing (Ozsolak et al. 2009; Wang et al. 2009b)

and deep cap analysis gene expression (CAGE) for

genome-wide identification of promoters and quanti-

fication of their expression (de Hoon and Hayashizaki

2008).

Understanding function of genes

the high-throughput way

So far, there is no technology available for high

throughput validation of gene function, but what all

the present day transcriptomics technologies have

been able to achieve is to have created bins for

segregating genes based on co-expression patterns. It

is hoped that, commensurate to our knowledge of

individual gene functions, it will be possible to

segregate these bins further into smaller bins of

biochemical/regulatory ‘‘direct linkage groups’’ and

use them for building the network of life.

Hormone responsive genes, including those for

gibberellins (GA), abscisic acid (ABA) and brassinos-

teroids (BRs), were the first targets of transcriptome

profiling studies in rice. Besides identifying specifi-

cally and commonly affected genes these studies also
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helped in validating the respective promoter regions

involved in hormone response (Yazaki et al. 2003;

Yang et al. 2004). A large number of global expression

profiling studies have targeted abiotic stress tolerance

genes that show differential expression in response to

salt, drought or cold stress, highlighting the effect of

these factors on rice productivity and global economy

(Rabbani et al. 2003). The genes involved in salt stress

have been identified by comparing the transcriptome

profiles of salt sensitive (IR29) and salt tolerant

(Pokkali) cultivars (Kawasaki et al. 2001) and in

vegetative and reproductive tissues (Zhou et al. 2007)

under stressed and unstressed conditions. Since cold

temperatures negatively affect male fertility in rice,

microarray-based expression profiling was used to

identify *160 differentially accumulated transcripts

in the anthers of cold-stressed plants (Yamaguchi et al.

2004). To assay the impact of high temperatures on

grain filling metabolism when transcriptomes of

unstressed and heat-stressed developing seed were

compared, pronounced effects were observed on the

expression of genes involved in starch biosynthesis

(Yamakawa et al. 2007). Besides abiotic stresses, rice

blast and sheath blight are major factors affecting

productivity of rice. To understand the molecular basis

of host-pathogen (Magnaporthe grisea/Rhizoctonia

solani) relationships, studies have been carried out

using microarrays and RL-SAGE (Shim et al. 2004;

Kim et al. 2005; Soderlund et al. 2006; Venu et al.

2007). Using these studies, Shimono et al. (2007) were

able to associate WRKY45 gene to benzothiadiazole

(BTH) activated protection of plants from blast by

activating the salicylic acid (SA) signaling pathway.

Global expression profiles have also been gener-

ated at various stages/tissue of vegetative and repro-

ductive development to identify genes involved in

control of developmental phases and manifestation of

developmental stage-specific tissue and organs. Rice

FL-cDNA project pioneered in generating and cata-

loging EST/cDNA based tissue/organ-specific tran-

scriptomes (Kikuchi et al. 2003). Subsequently,

various stages of panicle and seed development were

queried by microarray-, SAGE- and MPSS- (Nakano

et al. 2006) based methods at the level of stage of

development (Furutani et al. 2006), organ (Endo et al.

2004; Wang et al. 2005; Li et al. 2007), or even single

cell types (Hirano et al. 2008; Suwabe et al. 2008;

Jiao et al. 2009) isolated by laser dissection micros-

copy. These analyses indicated towards involvement

of certain gene families of transcription factors and

those coding for signal transduction components, e.g.,

AUX-IAA, bZIP, C2H2 zinc finger, CDPKs, F-box,

homeobox, HSP20 MADS-box, Argonautes etc.

which were analyzed in detail to identify develop-

mental stage-/tissue-specific key members (Agarwal

et al. 2007; Arora et al. 2007; Jain et al. 2007; Ray

et al. 2007; Kapoor et al. 2008; Nijhawan et al. 2008;

Ouyang et al. 2009).

Genome-wide expression profiles generated from

F1 hybrids and their inbred parents have been

exploited to help solve the century old puzzle of

heterosis (Swanson-Wagner et al. 2006). It is believed

that categorization of differential expression profiles

into additive and non-additive modes followed by

their association to vigor and productivity-related

biochemical pathways might hold the key to the

understanding of molecular basis of heterosis. Such

expression analyses have been carried out on seed-

lings, roots, leaves, panicles and embryos of maize

and rice to identify the set of differentially expressed

genes and assess their linkage to yield related

quantitative trait loci (Meyer et al. 2007; Hoecker

et al. 2008; Wei et al. 2009).

Various approaches used for gene function anal-

ysis also involve use of transgenic rice system either

to generate tagged mutants or to validate function by

complementation or by raising gene overexpression/

suppression lines (Kathuria et al. 2007). This has

generated a wealth of information about genes with

possible functions in stress tolerance, quality control,

yield and plant development. In addition, a large

number of regulatory elements have been evaluated

for their activity in transgenic rice which could be

utilized for stage-/state-specific expression of desir-

able genes. Complementing these efforts, gene tag-

ging and protein level interactions have also

identified a few agronomically useful genes (Jung

et al. 2008). Such efforts need to be intensified to

identify function of a large number of genes in

conjunction with map-based cloning.

Epigenomics

The expressed or suppressed state of any gene is further

governed by covalent modifications such as, methyl-

ation, acetylation, ubiquitination and phosphorylation
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of DNA and the underlying histone proteins that are

mediated by regulatory proteins or small non-coding

RNAs (Strahl and Allis 2000; Jenuwein and Allis 2001;

Fischle et al. 2003). Combination of these modifica-

tions on the chromatin encode a layer of information

over and above the genetic constitution of a cell that is

heritable and at the same time sensitive to genetic and

environmental cues. The information contained in this

epigenome regulates tissue-/state-specific expression

of genes in different cell types.

The availability of complete genome sequence of

two model plants, rice and Arabidopsis and the

advances in high throughput techniques for studying

functional genomics in a holistic manner have

provided unprecedented opportunity to study the

impact of processes like DNA methylation in mod-

ulating plant developmental processes. Cytosine

DNA methyltransferases are the key enzymes that

catalyze the transfer of a methyl group from S-

adenosyl L-methionine (AdoMet) to N4 or C5

position of cytosines. The rice genome harbors a

total of 10 genes that encode the conserved catalytic

methyltransferase domain (M. Kapoor et al., unpub-

lished results). These genes can be grouped along

with de novo and maintenance methyltransferases

identified in Arabidopsis and other organisms indi-

cating that rice too utilizes the same set of DNA

modifying enzymes for mediating epigenetic modifi-

cation at the DNA level. While the biological roles of

maintenance methyltransferase, MET1, de novo

methyltransferase, DRM2 and DRM3 and chromo

domain containing CMT3 have been extensively

studied in Arabidopsis, information about rice pro-

teins is beginning to unfold (Finnegan and Kovac

2000; Lindroth et al. 2001; Cao and Jacobsen 2002;

Chan et al. 2005; Xiao et al. 2006; Mathieu et al.

2007). To date, two methyltransferases, OsMET1-1

(OsMET1a) and OsMET1-2 (OsMET1b), have been

cloned and characterized in rice (Teerawanichpan

et al. 2004; Yamauchi et al. 2008). Expression of

OsMET1-2 was observed to be higher than that of

OsMET1-1 and, similar to animal Dnmt1, transcrip-

tion of OSMET1-2 produced alternatively spliced

transcript forms that differed in the usage of 5’ exons

(Yamauchi et al. 2008). Functional analysis of

OsMET1 by RNAi approach has demonstrated that

its inactivation does not affect de novo methylation at

CpG locations in the genome. In addition, in vitro

catalytic activity of the purified protein revealed its

preference for hemi-methylated DNA, thereby, sug-

gesting that OsMET1 functions as the major mainte-

nance methyltransferase in rice (Teerawanichpan

et al. 2004; Miki and Shimamoto 2008).

The distribution and correlation of histone and

DNA methylation with structural features of

chromatin and regulation of gene transcription on

two rice chromosomes, 4 and 10, was recently

described by using tiling-path microarray (Li et al.

2008). DNA methylation along 77.5% of the length

of these chromosomes was observed to be positively

correlated with heterochromatin formation. In

euchromatin, combinatorial interaction of DNA,

H3K4me2 and H3K4me3 methylation was observed

to be responsible for distinct expression states in

cultured cells and differentiated shoot samples. As

observed in other organisms, in rice too, gene body

methylation was observed to have greater impact on

transcriptional activity than promoter methylation. It

was observed in rice that while cytosines at CG are

methylated uniformly in genes in all cells, CNG and

CNN methylation is more dynamic and dictates

tissue-specific expression in different cell types.

Transposable elements, both DNA type (class II

elements) and retrotransposons (class I elements) are

known to contribute towards evolution of genomes

and genes (for reviews, see Feschotte et al. 2002;

Kazazian 2004). In rice, Tos17, a copia-like retro-

transposon containing Long Terminal Repeats (LTR)

and mPing, a miniature inverted-repeat DNA trans-

posable element (MITE) are known to transpose

randomly in the genome when activated by develop-

mental or environmental cues (Hirochika et al. 1996;

Jiang et al. 2003; Kikuchi et al. 2003; Miyao et al.

2003; Nakazaki et al. 2003). Transposition of both

Tos17 (in japonica) and mPing (in indica) has been

shown to be correlated with changes in cytosine

DNA methylation patterns of the flanking sequences

(Hirochika et al. 1996; Ngezahayo et al. 2009). Tos17

is present in 2–5 copies in the rice genome and is

known to transpose into genic regions three times

more frequently than in intergenic regions when

activated under developmental or stress conditions

(Hirochika et al. 1996; Miyao et al. 2003).

In rice, Tos17, a copia-like retrotransposon con-

taining Long Terminal Repeats (LTR) is present in

2–5 copies and is known to transpose into genic regions

three times more frequently than in intergenic regions

when activated by developmental or environmental
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cues (Hirochika et al. 1996; Miyao et al. 2003). This

property of Tos17 has been exploited for functional

genomics studies for studying gene function by gene

disruption (Miyao et al. 2003; Hirochika et al. 2004).

Transcriptional and transpositional activation of Tos17

under prolonged tissue culture conditions is accompa-

nied by demethylation of its sequences that are

otherwise methylated in mature plants (Hirochika

et al. 1996). By a series of elegant experiments it has

been shown that DNA methylation at Tos17 locus is

modulated by the methylation state of underlying

H3K9 that requires SDG714, a rice SET domain

encoding gene, that functions as histone H3K9 meth-

yltransferase (Ding et al. 2007). This gene is closely

related to KYP/SUVH4, the major Su(var)3–9 class of

histone methyltransferase in Arabidopsis (Jackson

et al. 2002; Malagnac et al. 2002). SDG714 localiza-

tion studies in Arabidopsis roots and transient expres-

sion in onion epidermal cells showed that SDG714 was

specifically localized in nucleus where it was found to

be enriched in the hetrochromatin region of the

centromeres. Gene knockout mutants of SDG714

displayed reduced levels of H3K9 dimethylation and

a loss of both CG and CNG methylation at Tos17 locus.

This was correlated with increase in transcription and

copy number of Tos17 in the transformants. This is the

first report in rice that has provided experimental

evidence linking DNA and histone methylation with

transcriptional and transpositional activation of a

retrotransposon.

Many eukaryotes, including plants, possess gene

silencing machinery in which small non-coding RNAs

act as key players that link transcriptional gene

silencing by DNA methylation with post transcrip-

tional gene silencing via RNA degradation. Large

body of information relating to expression and target

genes of these small RNAs have been generated using

the novel high-throughput deep-sequencing tech-

niques that have revolutionized functional genomic

studies. At least five classes of small RNA population

have been characterized and these include microRNA

(miRNA), small interfering RNA (siRNAs), hetero-

chromatic RNA, trans-acting siRNA (ta-siRNA),

natural antisense siRNA (nat-siRNA) and in meta-

zoan, Piwi interacting RNAs (Vazquez et al. 2004;

Meins et al. 2005; Vaucheret 2006; Zhang et al.

2006b; O’Donnell and Boeke 2007). Recently, natural

antisense microRNA (nat-miRNA) were identified in

rice and these were observed to be derived from

processing of large intron containing precursors of

antisense transcripts of miRNA genes (Lu et al.

2008a). While endogenous siRNAs synthesized by

combinatorial activities of components of RNA

interfering (RNAi) machinery such as Dicer-like,

Argonautes and RNA-dependent RNA polymerases

are known to direct chromatin modification and DNA

methylation, miRNAs represent a novel class of non-

coding RNA that have been implicated in regulating

expression of genes involved in developmental and

environmental stresses in rice and other plants (Zhang

et al. 2006b; Liu et al. 2007; Nagasaki et al. 2007;

Kapoor et al. 2008). miRNAs are small RNA mole-

cules of about 21 nt in length that have the potential of

base pairing with their target RNAs and mediate their

cleavage or translational repression. Biogenesis of

these molecules involves transcription from indepen-

dent or clustered micro RNA genes located in

intergenic or intronic regions of host genes to form

pri-miRNA precursors (Cui et al. 2008). These

molecules are then processed in the nucleus to form

a partial stem loop precursor (pre-miRNA) that is

further processed into small 21 nt RNAs by ribonu-

clease enzyme Dicers in animals and Dicer-like1

(OsDCL1) in rice and other plants (Liu et al. 2005).

The single stranded miRNA then associate with

Argonaute proteins in large protein complexes

(RNA-induced Silencing Complexes, RISC) in the

cytoplasm and recognize their target RNAs with

perfect or near perfect complementarity and initiate

their degradation or repression. Many conserved and

non-conserved miRNA genes have been identified

that are activated in response to abiotic stresses such

as drought, salinity and heavy metals and phytohor-

mone treatments (Sunkar et al. 2005; Liu et al. 2009;

Zhu et al. 2008; Zhao et al. 2009). Rice genome

encodes more number of miRNAs than the Arabid-

opsis genome (*350 in rice, *184 in Arabidopsis).

Out of these, *90 miRNA are not conserved between

the two plants suggesting species-specific roles of

these regulatory RNA molecules. In silico studies on

genomic distribution and promoter analysis of 212

rice miRNA genes have revealed that more than 90%

of the genes (202 out of 212) possessed either single or

multiple promoters that contained the conserved

TATA box in their core promoters similar to pol II

transcribed promoters of protein-coding genes (Cui

et al. 2008). Recent studies have provided inter-

esting insight into links between miRNA-mediated
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regulation of developmental genes during embryo-

genesis and the molecular players of RNAi machinery

in rice (Nagasaki et al. 2007). Loss of function

mutants of OsRDR6 (SHL2), OsAGO7 (SHL4/SHO2)

and OsDCL4 (SHO1) show impaired Shoot Apical

Meristem (SAM) formation and abnormal leaf devel-

opment during embryogenesis. Microarray analysis of

gene expression in wild type and mutant plants

revealed that in the mutants down regulation of rice

homeodomain-leucine zipper family (HD-ZIPIII)

genes, OSHB1 and OSHB2, was predominantly

observed. This class of genes has previously been

implicated in SAM initiation and maintenance during

embryogenesis in Arabidopsis (Emery et al. 2003;

Prigge et al. 2005). The negative regulation of OSHB1

and OSHB2 was further observed to be mediated by

miR166 that over accumulated in each of shl and sho

mutants. miR166 belongs to miR165/166 gene family

and both OSHB1 and OSHB2 possess recognition

sequence for binding this miRNA.

Binding of miRNAs with near perfect and perfect

complementarity to their target molecules in plants

has been exploited for development of molecular

tools for comparative genomic studies, validation of

gene function and for improvement of agronomic

traits of food crops. Artificial miRNA (amiRNA)

technology has been developed for silencing genes of

interest in both rice and Arabidopsis (Schwab et al.

2006; Warthmann et al. 2008). This methodology

utilizes an endogenous miRNA precursor that is

cloned in a vector and then modified by replacing its

stem-loop sequence with artificially designed miR-

NAs of known sequence using overlap PCR. Once

introduced into plants by Agrobacterium-mediated

transformation or by other standard methods, the

modified miRNA precursor is processed along with

other endogenous miRNA precursors resulting in

generation of miRNAs with desirable sequences that

will target the gene of interest and will mediate either

its cleavage or translational repression.

Another significant contribution in rice functional

epigenomics has been the identification and charac-

terization of a germ-line specific Argonaute encoding

gene, MEL1 (MEIOSIS ARRESTED AT LEPTO-

TENE1). Argonautes are the effector molecules

possessing PAZ and PIWI domains and are part of

every RISC complex where they act as slicer

molecules. These proteins in Drosophila (PIWI),

Caenorhabditis elegans and mice (MIWI, MILI and

MIWI2) are known to be involved in sexual repro-

duction and play roles in spermatogenesis and oocyte

formation. Mel1 mutants identified by screening

seed-sterile mutants, which were generated by

somatic culture, displayed abnormal meiosis (Hiroch-

ika et al. 1996; Yamazaki et al. 2001; Nonomura

et al. 2007). Specifically, cells were observed to be

arrested at leptotene stage of meiosis I during

sporogenesis in anthers and female gametogenesis

was also affected at pre-meiosis, meiosis and tetrad

stages. In addition, loss of H3K9 dimethyaltion at

pericentromeric positions was also observed.

Molecular breeding

The conventional plant breeding has contributed

immensely towards improvement of yield and pro-

viding sustainability. In this era of genomics, molec-

ular markers offer unprecedented opportunity for

precision breeding. This can also help ensemble

many desirable combinations of genes with a greater

efficiency vis-à-vis conventional plant breeding. In

the early years, when the molecular markers gained

prominence, restriction fragment length polymor-

phism (RFLP) and random amplified polymorphic

DNA (RAPD) markers were used routinely for many

crop plants, including rice (Collard et al. 2008;

Collard and Mackill 2008). They were subsequently

converted into PCR-based markers called sequence

tagged site (STS). In the due course of time, the

simple sequence repeats (SSR) or microsatellite

markers gained prominence since they were codom-

inant, highly polymorphic and reproducible (Gupta

and Varshney 2000). The availability of a high

quality genome sequence of rice (IRGSP 2005)

helped in mining a rather large number of SSR

markers. The sheer number and the high density of

SSRs make them highly suitable for molecular

mapping and marker-assisted selection (MAS). The

comparison of the genome sequences of the japonica

and the indica rice cultivars has lead to the identi-

fication of single nucleotide polymorphisms (SNPs)

(Feltus et al. 2004; Shen et al. 2004), the potential

markers of choice in the years to come. More SNPs

have also been identified recently by generating

partial sequences of defined region of related geno-

types of rice and drawing comparison with the
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japonica and indica rice reference genomes (Monna

et al. 2006; Shirasawa et al. 2007).

The enormity of the work involved in conventional

breeding programmes and the complexity of the

selection required, can indeed be tackled using these

new tools judiciously, which are not only reliable but

also inexpensive. MAS has many applications not

only in rice breeding but also in genetic diversity

assessment, identifying genotypes, marker-assisted

backcrossing and gene pyramiding (Collard and

Mackill 2008). For example, various molecular

markers have been successfully deployed in the

genetic diversity assessment of Indian aromatic rice

(Jain et al. 2004), establishing the identity of the

traditional basmati (Nagaraju et al. 2002), hybrid rice

breeding (Cho et al. 2004), and in broadening the

genetic base of the US rice varieties (Xu et al. 2004).

Likewise, realizing the importance of bacterial blight

and blast disease of rice, several efforts have been

made for pyramiding the genes for resistance to these

two diseases (Hittalmani et al. 2000; Sanchez et al.

2000; Davierwala et al. 2001; Zhang et al. 2006a;

Perez et al. 2008).

The information on rice genome has also been used

to clone agronomically useful genes by marker-

assisted map-based approach. These include genes

for tillering, dwarfism, salt tolerance, submergence

tolerance, disease resistance, heading date, compati-

bility, shattering, grain yield and quality (Izawa et al.

2003; Han and Zhang 2008; Sakamoto and Matsuoka

2008; Fitzgerald et al. 2009; Huang et al. 2009; Wang

et al. 2009a). Such genes and QTLs would be of great

value for breeding to improve rice in the years to come.

Prospects

One of the primary aims of ongoing investigations in

the area of rice genomics is to understand gene

function and regulatory networks. Major limitation of

functional redundancy needs to be overcome by

multi-target mutation and gene silencing. Although a

large number of insertion mutants are available in

rice, more information is required about flanking

sequence tags (FSTs) to determine their relationship

to target genes. This could be helped by new

approaches to genome sequencing at low cost and

suitable DNA pooling. Also, this needs to be

combined with TILLING and site-specific gene

silencing to reach inaccessible genes. Such knowl-

edge about rice genes would greatly impact research

on other syntenic genomes of crop species. New

layers of regulatory control represented in epige-

nomes should be unraveled and integrated with

transcriptional and translational control circuits. This

entails cell type and stimulus specific atlas of

transcripts and proteins. The diversity of Oryza

genomes and functional allelic variation needs to be

incorporated in molecular breeding programs to

generate improved phenotypes. Large scale screening

of diverse germplasm, generation of high-density

molecular markers like SNPs and their marriage with

breeding efforts is required. The cost of using DNA

markers need to be reduced tremendously to help

their efficient use in breeding. The concerted effort of

a large number of scientists world-wide (Zhang et al.

2008) is required for generating/analyzing enabling

tools/resources, functional annotation, regulatory net-

works, interactome, diversity, bioinformatics, and

genomics-assisted breeding. As we overcome prac-

tical impediments and integrate molecular biology to

breeding activity (Collard et al. 2008), we hope to

reap the benefit of genomics research for crop

improvement.
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