
Interest in genome-wide association (GWA) 
studies was instigated in 1996, when Risch 
and Merikangas noted that association 
studies have considerably greater power than 
linkage analysis to detect genetic variants 
with small or moderate phenotypic effects, 
even when testing large numbers of variants 
across the genome1. Their power estimates 
related to a ‘direct’ or ‘sequence-based’ study 
design, using variants that are located within 
genes. In this design, 500,000 variants (on 
average, 5 variants for each gene in the then-
anticipated 100,000 human genes) would be 
genotyped and tested for association with 
the phenotype of interest. This approach 
has the advantage of a candidate-gene study 
— in which variants with known biological 
functions can be examined — but avoids 
the disadvantage of only testing a limited 
number of genes.

Risch and Merikangas also noted that 
the number of genotyped variants could 
be reduced using an approach that takes 
advantage of linkage disequilibrium (LD) 
between variants. This was later termed the 
‘indirect’ or ‘map-based’ approach to GWA. 
Because variants in strong LD are likely to 
be inherited together, one can use a subset 
of ‘tagging’ markers as proxies for the entire 
set. There has been much interest in such an 
approach, as genotyping an exhaustive set of 
markers would be prohibitively expensive. 
The indirect approach has rapidly expanded 

to include variation in the whole genome 
rather than only in genes2,3. The rationale 
for this expansion was that potentially 
important functional polymorphisms 
also exist outside genes, particularly in 
cis-regulatory regions, which can be located 
tens of thousands of base pairs away from 
the genes that they regulate4.

At present, there are two general strate-
gies for indirect GWAs (FIG. 1). The first 
uses quasi-random or anonymous SNPs 
that are spread across the genome, such 
as the Affymetrix 500K array set. The sec-
ond uses sets of LD-based tag SNPs that 
are specifically chosen to saturate the 
genome, effectively capturing most of 
the other unmeasured common SNPs at a 
pre-specified LD threshold. To make the 
second approach feasible, the International 
HapMap Project was established, with the 
initial goal of creating a set of 600,000 LD 
tagging SNPs5. The second phase of this 
project was recently completed, resulting 
in a publicly available catalogue of more 
than 3.9 million validated SNPs, as well 
as information about the LD between 
them, from 269 individuals from multiple 
populations6. Along with these SNPs, 
ten HapMap ENCODE regions across the 
human genome have been resequenced 
in 16 subjects from each of the three 
HapMap populations (Caucasian, African 
and Asian). The additional SNPs that were 

detected in these regions have been geno-
typed in all the HapMap subjects, providing 
a more complete set of SNPs that can be 
used to evaluate the performance of SNP 
genotyping sets.

In addition to these steps towards 
facilitating GWAs in general, various gene-
based SNP discovery projects (for example, 
the SeattleSNPs Program for Genomic 
Applications) have identified SNPs in genes 
that can be used for gene-centric approaches 
to GWA studies. Such studies can use an 
indirect approach that focuses on markers 
that capture variants in genes, or can study 
putative causal variants directly.

Based on the results of the first few 
GWA studies7–9, it is clear that both indi-
rect map-based and direct gene-centric 
approaches can be successful. It is not clear, 
however, whether either approach currently 
provides a comprehensive survey of the 
genome. For example, although a study 
of age-related macular degeneration suc-
ceeded in identifying a polymorphism in 
the complement factor H gene, the study 
missed an additional major locus that has 
since been identified through candidate-
gene studies10,11. This raises the crucial 
issue of coverage in GWA studies — the 
portion of all genetic variants for which 
information can be captured with a given 
SNP set. Coverage, in turn, affects the 
overall power of a study to detect causal 
variants. A causal variant that is in high LD 
with SNPs in the set that are genotyped can 
be detected with a minimal loss of power 
compared with testing the variant directly, 
under a number of assumptions12. By 
contrast, causal variants that are located in 
regions of the genome that are poorly cov-
ered by the SNP set can only be detected 
with an enormous sample size. Therefore, 
a SNP set with comprehensive coverage 
can help to both limit false-negative results 
and reduce the number of subjects needed 
— and in turn, the overall genotyping 
burden — important aspects of any GWA 
in light of their considerable expense.

Here we argue for a gene-centric approach 
to GWA studies that focuses on variation in 
genes for two reasons. First, variants 
in genes have a high probability of being 
functionally important, so comprehensive 
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coverage of these variants is essential for 
GWAs13–15. Second, because variants in 
many genes seem to be in lower LD than 
variants that lie outside genes16, they might 
be more difficult to capture using an 
indirect approach. To support the valid-
ity of this second concern, we describe a 
quantitative comparison of indirect and 
gene-centric approaches to GWAs using 
data from the HapMap ENCODE project. 
With regard to the feasibility of capturing 
all casual variants in ‘genic’ regions, we also 
determine the number of SNPs that would 
be required for a comprehensive coverage 
of genes. Ultimately, the development of 
such resources to make gene-centric studies 
possible will improve the efficiency and 
completeness of any GWA study.

Indirect approaches
It is currently unknown whether the existing 
SNP sets for indirect GWA approaches of 
either type — using quasi-random or specifi-
cally selected markers — are complete with 
regard to coverage of SNPs in genes. Also 
unclear is whether these approaches are fully 
efficient for detecting causal variants, owing 
to the large number of SNPs that must be 
genotyped.

With regard to coverage, previous work 
indicates that, across the majority of the 
genome, recombination rates are low within 
genes17. Specifically, SNPs in exons18, non-
conservative coding changes19 and SNPs 
in exon–intron boundaries20 show higher 
levels of LD than SNPs that lie outside genes 

but are the same physical distance apart. 
However, recombination rates in gene-
rich regions overall are the highest in the 
genome. This phenomenon agrees with 
the Hill–Robertson effect: a high level of 
recombination around loci that are under 
selective pressure is beneficial because it 
allows for selection to act independently on 
the loci21. This suggests that although SNPs 
that lie within genes might serve as good 
proxies for each other, SNPs that occur 
outside genes might do a poor job of 
capturing variation within genes.

Empirical investigation of coverage. We 
quantitatively evaluated the coverage (BOX 1) 
of both genic and non-genic SNPs that 
is likely to be achieved by following both 
the quasi-random and the tag SNP-based 
approaches to indirect GWA studies. For 
this, we used data on all common SNPs 
(those with minor allele frequencies (MAFs) of 
≥5%) from the HapMap ENCODE regions.

Two recent studies have used the 
HapMap Phase II data to compare the cover-
age of the Affymetrix 500K quasi-random 
SNP set and an LD-based platform, the 
Illumina HumanHap300 set22,23, although 
they did not specifically investigate coverage 
of genic variants. Here we also evaluate cov-
erage for the Affymetrix 500K set. However, 
as noted by Pe’er et al.22, the HumanHap300 
set was constructed using information from 
the HapMap Phase I data, which includes 
data from the ENCODE regions. Therefore, 
evaluating the HumanHap300 set in the 

HapMap ENCODE data would lead to an 
upward bias in the estimate of coverage in 
our analysis, as this platform is based on a 
less-complete SNP set across the rest of the 
genome. For this reason, we do not include 
the actual Illumina SNP set here, but rather 
an LD-based tag set. Note that future SNP 
sets that incorporate HapMap Phase II data 
should provide even more complete 
coverage of the genome.

LD tagging SNPs for genotyping can 
be chosen to ensure that all SNPs, genic 
or otherwise, are captured at or above a 
specific value of r2 (the squared correlation 
coefficient, a measure of LD between 
variants; BOX 1). Although SNPs can still be 
captured with various maximum r2 values, 
threshold tagging can eliminate the prob-
lem of SNPs being captured at low levels of 
LD, thereby limiting the effects of variation 
in coverage on statistical power. The selec-
tion of a particular threshold involves a 
trade-off between more complete coverage 
and a lower genotyping burden. For these 
reasons, we chose to evaluate tagging SNP 
sets that we selected to LD-tag all HapMap 
ENCODE SNPs (MAF ≥ 5%) at two LD 
thresholds: r2 = 0.8 and r2 = 0.5. The first 
ensures that all SNPs are captured at a high 
level of LD at the cost of genotyping a large 
number of SNPs; the second provides a 
39–40% reduction in the number of SNPs 
that must be genotyped, although this 
threshold provides a lower level of coverage 
for many SNPs24. Tagging was implemented 
using the Tagger server to choose multima-
rker tags with as many as six markers.

We defined ‘genic’ SNPs as those SNPs 
that were annotated as follows in Ensembl: 
synonymous and non-synonymous coding 
SNPs, and SNPs in 5′ and 3′ untranslated 
regions. Although other SNPs that lie near 
coding regions are also more likely to cause a 
functional change than SNPs that are further 
away from genes (owing to effects on RNA 
processing or transcription regulation13), 
SNPs that lie within introns, particularly 
those that are not located near intron–exon 
boundaries, are relatively less likely to have 
functional significance than those in coding 
regions or UTRs14,15.

To measure coverage, we determined the 
maximum r2 value between each HapMap 
ENCODE SNP and the SNPs in the genotyp-
ing sets. The cumulative distribution of the 
maximum r2 values between SNPs in 
the quasi-random genotyping set and all 
common genic and non-genic HapMap 
ENCODE SNPs (MAF ≥ 5%) is shown in 
FIG. 2. On the basis of these r2 values we see 
that, when using the quasi-random set of 

Figure 1 | Approaches to constructing SNP sets for genome-wide association studies. All 
common SNPs (those with minor allele frequencies of ≥5%) are shown for one of the HapMap ENCODE 
regions (ENm010 on chromosome 7) for the Caucasian population. All genic SNPs from this set are also 
shown. Four approaches to capturing information about the SNPs in this region in genome-wide 
association studies are illustrated, each using a different type of genotyping SNP set. Quasi-random 
SNPs from the Affymetrix 500K array set are shown, as are two sets of tagging SNPs, which are chosen 
on the basis that they are in linkage disequilibrium with other SNPs that are not genotyped. These 
tagging SNPs are selected to capture all SNPs at or above pre-specified thresholds of r2, a measure of 
linkage disequilibrium; see BOX 1. Finally, the genic tagging set consists of the SNPs that are required 
to cover SNPs that lie within genes at or above an r2 threshold of 0.8.
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markers, genic SNPs are not as well covered 
as non-genic SNPs for the Caucasian (CEU) 
and combined Asian (JPT and CHB) popu-
lations. This difference is largely driven 
by a statistically significant excess of genic 
SNPs in low LD (r2 ≤ 0.2) compared with 
non-genic SNPs (P = 0.0012 in CEU; 
P = 0.0025 in JPT and CHB) (Supplementary 
information S1 (table)). In the Yoruban 
African group, there is little difference in the 
quasi-random SNP set coverage of genic and 
non-genic SNPs; in fact, there is a slightly 
higher coverage of genic SNPs for larger 
r2 values (Supplementary information S1 
(table)). This might, in part, reflect the lower 
levels of LD that exist overall among the 
Yoruban African group compared with 
the Caucasian and Asian groups.

For the tagging SNP sets, coverage of 
genic SNPs was slightly lower than that 
of non-genic SNPs in the Caucasian group, 
indicating that the maximum r2 values for 
genic SNPs are more likely to fall closer to the 
LD threshold (that is, they are more likely to 
be found at the low end of the LD range) than 
those of non-genic SNPs (not shown). On 
the other hand, coverage of genic SNPs in the 
Asian and Yoruban African groups was simi-
lar or slightly higher than that of non-genic 
SNPs. These results indicate that tagging sets 
can be selected to give sufficient coverage of 
genic SNPs, although not all tagging sets can 
provide equivalent coverage for both genic 
and non-genic SNPs.

It is also possible to capture many genic 
SNPs using tagging SNPs from nearby 
introns and non-coding regions. To deter-
mine how well these non-genic SNPs can 
capture genic SNPs, we constructed a SNP 
set that included all common (MAF ≥ 5%) 
intronic SNPs and SNPs that lie within 
10 kb of genes, and examined the maximum 
r2 values for the common (MAF ≥ 5%) genic 
SNPs (FIG. 3). The majority of genic SNPs 
(74–90%) were captured at an r2 value ≥0.8 
in the three populations. However, 9% of 
genic SNPs in the Caucasian and combined 
Asian populations and 13% in the Yoruban 
African population were captured with 
a maximum r2 < 0.5. This indicates that a 
tagging set that includes only SNPs that 
have been selected from introns and nearby 
regions will not provide comprehensive 
coverage of high-priority genic SNPs.

Power of indirect studies. When SNP 
genotyping sets have lower levels of coverage 
of genic SNPs, as observed above, GWA 
studies will have a decreased power to detect 
the causal variants that occur in genes. To 
quantify the potential difference in power 

to detect genic and non-genic SNPs, we 
simulated power on the basis of the empiri-
cal distributions of allele frequencies and 
maximum r2 values of these types of SNP in 
the HapMap ENCODE regions, using the 
cumulative r2 adjustment for power25. We 
determined power on the basis of a study of 
2,000 cases and 2,000 controls, for multipli-
cative genetic effects on the phenotype that 
have odds ratios ranging from 1.2 to 2.0, and 
a genome-wide significance criterion of α = 10–6.

Using the quasi-random SNP set, power 
is decreased by as much as 10% for detecting 
associations between genic SNPs and the 
phenotype — compared with non-genic SNP 
associations — in the Caucasian population 
(FIG. 4). The greatest difference occurs when 
the odds ratios and power are high; this is 
driven by the number of SNPs in low LD, 
which are difficult to capture. Similarly, in the 
Asian population, there is a 6% lower power 
for genic SNPs. In the African population, 
power is up to 13% higher for genic SNPs 
when power is low, and 1% greater when 
the power is high. The power to detect both 
genic and non-genic SNPs in the African 
group is lower than the corresponding power 
in the Caucasian and Asian groups.

When looking at the tagging SNPs, for 
both LD thresholds (0.5 and 0.8), power 
is slightly lower for the genic SNPs among 
Caucasians (up to 6% lower). Here the largest 

difference occurs in the middle of the range 
of odds ratios. For the Asian group, power is 
8–10% higher for genic SNPs when using the 
two tagging sets, again with the largest dif-
ference occurring in the middle of the range 
of odds ratios. For the African population, 
power was up to 14% higher for genic SNPs 
when using the two tagging sets, also with the 
largest difference occurring in the middle of 
the range of odds ratios. All three groups had 
similar power to detect both genic and non-
genic SNPs at the high and low ends of the 
range of odds ratios examined.

Our empirical observations that quasi-
random SNP sets can provide worse coverage 
and lower power for genic than non-genic 
SNPs for the Caucasian and Asian groups, 
and that tagging SNP sets have lower cover-
age and power for the Caucasian group, has 
important implications for the design of 
indirect GWA studies. In particular, quasi-
random and LD tagging SNP sets might 
require additional SNPs for the complete 
coverage of genes in some populations.

Gene-centric approaches
Approaches that focus efforts directly on 
genes can provide two advantages over the 
indirect approaches that attempt to capture all 
variants. First, a gene-centric approach could 
decrease the genotyping burden, an important 
concern because of the considerable expense 

Box 1 | Coverage and power

The goal of measuring coverage is to determine 
how well the SNPs that are part of a genotyping 
set capture all known variants. Studies of 
coverage typically use the linkage disequilibrium 
(LD) measure r2 (the squared correlation 
coefficient). For each variant, one can calculate 
the r2 between that variant and each SNP in the 
genotyping set. The highest of these values is 
the maximum r2 value, m. In the figure, arrows 
represent SNPs, and the SNPs that are shown on a 
yellow background represent a subset that have 
been selected for genotyping. Values are shown for the coverage by these SNPs of the SNP 
shown in red (which is not genotyped). By determining the maximum r2 for all SNPs in the complete 
set, we can estimate the coverage that a particular genotyping set provides.

The maximum r2 measure can be used to translate coverage to calculate the sample size that is 
required for an indirect association study. In the figure, the maximum r2 value is 0.8, 
corresponding to the value between the SNP of interest (red) and the genotyped SNP that is 
shown immediately to the right. For a particular variant, the effective sample size of an indirect 
association study is simply the product of the actual sample size (n) and the maximum r2 value for 
that variant (m); so, as coverage decreases, a larger sample size will be needed to obtain the same 
power. The overall power of a genome-wide association study can be estimated using the 
effective sample size for each variant. In the analyses we describe here, we use a metric that is 
based on the cumulative distribution of maximum r2 values, or the cumulative r2 adjusted power, 
to determine power25. Note that caution should be exercised when using summary measures of 
coverage that are often presented in the literature, such as the average of all maximum r2 values. 
Sample size and power do not characteristically vary in a linear way, so using summary coverage 
measures can overestimate power.
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of conducting GWA studies. Second, a gene-
centric approach should be more complete 
with regard to the coverage of genes, which is 
crucial to detecting causal variants.

Power of the genic SNP approach. Although 
a gene-centric approach to GWAs requires 
much less genotyping than an indirect 
approach, it would be expected to provide 
little coverage of SNPs that lie outside genes. 
To investigate this, we used the program 
Tagger to generate a set of SNPs that tag 
all common genic SNPs in the HapMap 
ENCODE regions (MAF ≥ 5%) with an 
r2 ≥ 0.8. We then determined how much 
power this set of genic-tag SNPs had to 
detect associations with other genic and 
non-genic SNPs in these regions. As above, 
power was calculated for a study of 2,000 
cases and 2,000 controls, with odds ratios 
ranging from 1.2 to 2.0 and a genome-wide 
significance criteria of α = 10–6.

As expected by design, the genic-tag SNP 
set had sufficient power to detect causal vari-
ants within genes. For example, for a variant 
with an odds ratio of 1.5 and MAF ≥ 5%, 
our genic-tag SNP sets have 80% power 
in Caucasians, 94% in Asians and 88% in 
Yoruban Africans. However, the power of a 
genic set to detect non-genic SNPs is con-
siderably lower, equal to 17% in Caucasians, 
23% in Asians and 11% in Yoruban Africans. 
This is not surprising, as many putative 
causal variants that lie outside genes are in 
relatively low LD with the genic-tag SNPs. 
Conversely, although many genic SNPs can 
be captured using non-genic tags, about 
9–13% of genic SNPs have low maximum 
r2 values (<0.5), and 5% of genic SNPs 
cannot be picked up at all by non-genic tags.

Note that the same genome-wide signifi-
cance level was applied for both the genic and 
indirect approaches (α = 10–6), even though 
the first approach has substantially fewer tests. 
Because the genic SNP approach is focused 
on identifying causal variants in a subset of 
the genome, a more liberal significance level 
can be used to reflect the smaller number of 
tests, resulting in an increase in power and 
efficiency for the genic approach. For example, 
using a significance level of 2 × 10–5, we see 
an increase in power of 10%, 3% and 6% to 
detect genic SNPs and 17%, 10% and 21% 
to detect non-genic SNPs in the Caucasian, 
Asian and African groups, respectively.

Relative efficiency of GWA approaches
Although there is a loss of power to detect 
non-genic causal variants when using a 
genic SNP approach to GWA, this approach 
has a considerably lower genotyping burden. 
As shown in TABLE 1, the genic approach 
requires that far fewer SNPs be genotyped 
than does the indirect approach. As a result, 
the genic SNP approach might be more 

‘efficient’ in terms of the effort that is 
required to detect an association, depending 
on the proportion of causal variants that 
reside within genes.

To evaluate this, we determined the effi-
ciency of GWA approaches — here defined 
as power divided by the genotyping burden 
— for conditions in which different propor-
tions of causal variants are genic, ranging 
from 0 to 100%. Again, this was carried out 
using data from the HapMap ENCODE 
regions. Our analyses show that, in the 
Caucasian group, the genic SNP approach is 
1.8- to 2.7-fold more efficient than whole-
genome approaches, even when all causal 
variants occur outside genes (FIG. 5). When 
half of all causal variants lie outside genes, 
the gains in efficiency for the genic approach 
are 5.0- to 16.0-fold, compared with whole-
genome approaches. For the Asian group, 
the gains are 2.5- to 3.6-fold when all causal 
variants occur outside the genes, and 6.0- to 
9.3-fold when half of all causal variants lie 
outside genes. For the African group, the 
gains are 1.2- to 3.7-fold and 4.9- to 
16.0-fold, respectively.

Which GWA approach should be used?
Determining which GWA approach to use 
depends on how an individual group of 
researchers wishes to balance complete-
ness, efficiency and a priori hypotheses 
about where causal variants reside for a 
particular phenotype. For example, rare 
adverse drug events might occur in only a 
few hundred subjects each year. Collecting 
a large enough sample to adequately 
power an indirect GWA study of such 
events could take many years. Focusing 
on a smaller set of genic SNPs and taking 
advantage of the reduced multiple-testing 
burden can provide an efficient initial 
genome-wide association scan that can 

Figure 2 | Coverage of genic and non-genic SNPs by a quasi-random 
SNP set. Coverage, as measured by the cumulative distribution of the 
maximum r2 values for each SNP, is lower for genic SNPs in both 
the Caucasian (CEU) and Asian (JPT and CHB) groups. This is largely 

owing to an excess of genic variants in low linkage disequilibrium with 
the SNPs in the genotyping set. This is not the case for the Yoruban 
African (YRI) group, which has lower overall coverage compared with the 
Caucasian and Asian groups.

Figure 3 | Coverage of genic SNPs by a non-
genic SNP set. Coverage of genic SNPs in the 
HapMap populations using a non-genic SNP set 
that included all common (minor allele frequen-
cies of ≥5%) intronic SNPs, and SNPs within 
10 kb of genes. Coverage is measured by the 
cumulative distribution of the maximum r2 values 
for each SNP.
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identify biologically plausible associations 
while limiting false-positive findings. 
A second example in which prioritizing 
variants can lead to greater efficiency is the 
testing of gene–gene interactions. Testing 
for all possible interactions requires a 
number of comparisons that equals the 
square of the number of variants being 
tested. By focusing on a subset of high-
priority variants, one can dramatically 
reduce the multiple-testing burden.

Instead of choosing one GWA approach 
over the other, the most attractive option 
might be to complement the indirect 
approach with genic SNPs. For example, 
indirect GWA studies that use quasi-
random SNP sets could add gene-based 
SNPs to provide more complete coverage 
of high-priority regions. Alternatively, 
indirect GWA studies that use an 
LD-tagging based genotyping set could 
choose to ‘over-capture’ genic SNPs by 
using a more stringent LD threshold in 
genic regions. This would allow for more 
complete coverage of genic SNPs, while 
maintaining a reasonable genotyping 
burden (that is, in comparison with using 
more stringent LD criteria for all SNPs).

The genic SNP approach could also be 
combined with genotyping SNPs in evolu-
tionarily conserved regions to help identify 
cis enhancers, thereby covering all variants 
with a high prior probability of functional 
importance. Approximately 5% of the 
human genome sequence is conserved 
with the mouse, and about 30% of this 
is coding sequence. A minimal set of 
tagging SNPs (r2 ≥ 0.8) for genic and 
conserved non-coding variants in the 
HapMap ENCODE regions would require 
80% fewer SNPs than a complete tagging 
set (r2 ≥ 0.8) in the Caucasian group, 
81% fewer in the Asian group and 87% 

fewer in the African group (TABLE 1). This 
approach could be particularly attractive 
for studying African populations, because 
an LD-tagging SNP set that can provide 
comprehensive coverage might need to 
incorporate more than twice as many 
SNPs as similar sets for Caucasian and 
Asian populations (TABLE 1). Of course, 
the potential reductions in the genotyping 
burden and the ensuing costs from using 
genic SNPs, either alone or in conjunction 
with indirect SNP sets, will depend on the 
expense that is involved with incorporat-
ing additional genic SNPs into various 
genotyping platforms. Given that both 
Affymetrix and Illumina have platforms 
that can incorporate specific SNPs, it might 
be possible to efficiently include additional 
genic SNPs into future SNP sets.

Developing gene-centric resources
Although the HapMap project focused on 
providing a set of SNPs that can be used 

as part of an indirect approach to whole-
genome studies that aim to capture all 
variants, a genome-wide gene-centric 
SNP set has received less attention. 
Given the clear functional importance of 
non-synonymous coding SNPs, genic 
resequencing efforts in numerous subjects 
could provide a complete set of high-priority 
SNPs for gene-centric studies.

The total number of genes in the human 
genome is probably less than 25,000 (REF. 26). 
The most recent build of the human genome 
has identified 22,218 genes (including 1,947 
psuedogenes), and another 1,000 to 2,000 
protein-coding loci are expected to be iden-
tified in the next 5 years (E. Birney, personal 
communication). Therefore, we now know 
the location and sequence of more than 
95% of human genes, making it possible 
to identify the vast majority of SNPs that 
lie within genes. To this end, the Wellcome 
Trust Exon Resequencing Project has begun 
to resequence all the known exons in 48 

Figure 4 | Predicted power of genome-wide association studies using 
a quasi-random SNP set. The cumulative r2 adjusted power to detect 
causal variants that are either genic or non-genic is calculated on the 

basis of the empirical distributions of coverage and allele frequencies. 
Power varies depending on the odds ratios of the causal genetic variants 
(CEU, Caucasian; JPT and CHB, Asian; YRI, Yoruban African).

Table 1 | Multimarker tags for common SNPs in the HapMap ENCODE regions

Population

CEU JPT and CHB YRI

Genotyping sets

Quasi-random 707 659 712

Tagging r2 ≥ 0.5 637 558 1,367

Tagging r2 ≥ 0.8 1,036 933 2,246

Genic 76 72 84

Genic and conserved non-coding 212 181 281

Number of common SNPs in the HapMap ENCODE regions

Total 7,692 6,618 8,481

Genic 140 110 113

Genic and conserved non-coding 400 307 377
Common is defined as a minor allele frequency (MAF) of ≥5%. CEU, Caucasian; JPT and CHB, Asian populations; 
YRI, Yoruban African; r2, the squared correlation coefficient.
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Caucasian subjects. The project has a 99% 
probability of detecting an exonic SNP with 
a true population MAF of 5% or greater.

There are several resources that are cur-
rently available for gene-based SNPs. For 
example, EntrezSNP contains 89,931 human 
synonymous, non-synonymous and UTR 
SNPs with genotypes and a heterozygosity 
between 10% and 50% (equivalent to a MAF 
of ≥5%), including 9,506 non-synonymous 
SNPs. Furthermore, the HapMap Phase II 
release has validated a large number of 
gene-based SNPs, including 9,625 common 
(MAF ≥ 5%) non-synonymous SNPs in the 
Caucasian group, 9,418 in the combined 
Asian group and 10,497 in the Yoruban 
African group. The more complete HapMap 
ENCODE regions contain 47, 38, and 41 
common non-synonymous coding SNPs in 
the Caucasian, Asian and Yoruban African 
groups, respectively. Extrapolating from 
these regions, which total 5 million bp, to the 
entire 3,200 million bp of the human genome, 
the estimated total number of common 
non-synonymous coding SNPs is 30,080 
in the Caucasian group, 24,320 in the 
Asian group and 26,240 in the Yoruban 
African group. Similar numbers arise from 
resequencing projects of candidate genes, 
which estimate that there are 0.8–1.1 com-
mon non-synonymous coding SNPs for each 
gene, amounting to a total of 20,000–27,500 
common non-synonymous SNPs 
(0.8–1.1 × 25,000) in the human genome20,27.

On the basis of these estimated numbers, 
the HapMap project might currently have 
validated approximately 38–47% of all 
common non-synonymous coding SNPs. We 
might then expect the Wellcome Trust Exon 
Resequencing Project to identify another 
11,000 common non-synonymous coding 

SNPs that have not already been validated by 
the HapMap project. A study of subjects of 
African descent might identify an additional 
17,000 SNPs. Taken together, these projects 
will provide valuable resources for studying 
genes in GWAs.

Of course, creating a comprehensive cata-
logue of gene-based SNPs requires extensive 
resequencing in a large number of subjects. 
Consider the effort that is required to identify 
all SNPs that lie in exons, of which there are 
currently known to be 245,231, comprising 
approximately 60 Mb of DNA. Taking the 
current cost of sequencing a 500-bp amplicon 
in one individual to be US$2.00 (P. Kwok, 
personal communication), and applying this 
to each exon, the cost of sequencing all exons 
in one person would be $490,462. We note 

that multiple subjects could be pooled in each 
sequencing run for the purpose of discover-
ing SNPs, and then individual subjects could 
be genotyped later to provide information 
on SNP frequency and LD between SNPs. 
Such an approach could cut the number of 
sequencing reactions, and therefore also the 
cost, by 50% or more.

The HapMap subjects provide an excel-
lent resource for an exon resequencing 
project, with a large number of subjects 
from multiple ethnic groups. The CEU 
Caucasian and YRI African groups contain 
60 unrelated individuals, or 120 independ-
ent chromosomes. Resequencing these sub-
jects could identify at least one copy of all 
common (MAF ≥ 5%) exonic SNPs with 
a probability of 99.8%, and all SNPs with a 

Figure 5 | Relative efficiencies of approaches to genome-wide 
association studies. A comparison of the efficiencies of different 
approaches based on quasi-random or tagging SNP sets, relative to 
the efficiency of a genic approach. Note the different scales for effi-
ciency in the three graphs. Efficiency is the power divided by the 

genotyping burden. Relative efficiency is the efficiency for one 
approach divided by the efficiency for the genic approach. Values less 
than one indicate that the genic SNP approach is more efficient than 
the other approach (CEU, Caucasian; JPT and CHB, Asian; YRI, Yoruban 
African).

Glossary

Genome-wide significance criterion 
The level of significance that an 
association must reach to reject the 
null hypothesis of no association, taking 
into account the large number of tests being 
conducted.

Linkage analysis 
A method for localizing genes that is 
based on the co-inheritance of genetic markers 
and phenotypes in families over several 
generations.

Linkage disequilibrium 
The non-random association of alleles of different 
linked polymorphisms in a population.

Minor allele frequency 
The frequency of the less-common allele 
at a polymorphic locus. It has a value that lies 
between 0 and 0.5, and can vary between 
populations.

Multiple-hypothesis testing 
The practice of testing more than one hypothesis within an 
experiment. As a result, the probability of an unusual result 
from within the entire experiment occurring by chance is 
higher than the individual probability for one test alone. 

Odds ratio 
A measurement of association that is commonly used in 
case–control studies. It is defined as the odds of exposure 
to the susceptible genetic variant in cases compared with 
that in controls. If the odds ratio is statistically significantly 
greater or less than one, then the genetic variant is 
associated with the disease.

Power 
The probability of rejecting the null hypothesis when it is 
false. In genome-wide association studies, the null 
hypothesis is that there is no association between a variant 
and the phenotype of interest.

HapMap 
A catalogue of common genetic variation in the human 
genome that was developed by the International HapMap 
Project.

P E R S P E C T I V E S

890 | NOVEMBER 2006 | VOLUME 7  www.nature.com/reviews/genetics

© 2006 Nature Publishing Group 

 



MAF of ≥1% with a probability of 70.0%. 
The combined Asian group contains 90 
unrelated subjects for a total of 180 inde-
pendent chromosomes. Resequencing in this 
group would have a probability of 99.99% 
of detecting all common (MAF ≥ 5%) 
exonic SNPs, and a probability of 83.6% for 
all SNPs with a MAF of ≥1%. The HapMap 
Phase II data currently contain 12,027 poly-
morphic non-synonymous coding SNPs 
(of any frequency) in the Caucasian group, 
12,085 in the Asian group and 13,264 in 
the Yoruban African group. Resequencing 
projects that are based on candidate genes, 
including 24 subjects from each population, 
have found that there are 1.4–2.0 polymor-
phic non-synonymous coding SNPs for 
each gene, or 35,000–50,000 genome wide27,28, 
indicating that 27–35% of these are currently 
available in the HapMap. We note that even 
this number is likely to be an underestimate 
of the number of rare (MAF < 5%) SNPs, 
given the number of chromosomes that must 
be screened to identify these SNPs29. 
Because rare SNPs are more likely to be 
specific to one population20,28, a full cata-
logue of rare non-synonymous SNPs will 
require sequencing more subjects from 
these groups, and collecting subjects from 
other populations for which rare variants 
might not be present in the current 
HapMap samples.

The development of a gene-centric SNP 
set in a population such as those that were 
used in the HapMap project would have 
several benefits. First, such a SNP set would 
provide a resource for performing the 
potentially more efficient gene-centric GWA 
studies. Second, the SNPs that are identified 
will allow for more complete coverage of 
high-priority regions that should be included 
in any comprehensive GWA study. Third, 
information on linkage disequilibrium 
among these SNPs can be used to further 
characterize the effects of individual variants 
after an initial positive association result. 
Fourth, because much of the sequence in 
genes is likely to be evolutionarily conserved, 
the identification of SNPs within genes will 
provide a resource for studying the effects 
of variation in conserved regions. Finally, a 
full register of common variation in human 
genes will provide a useful resource for the 
functional studies that will be needed to 
assess causality of SNPs that are associated 
with disease in GWA studies.

Conclusions
In summary, using empirical data from the 
HapMap ENCODE region, we have shown 
that quasi-random and tagging SNP sets 

for indirect approaches to GWA studies 
can provide lower coverage of genic SNPs 
than non-genic SNPs, especially among 
Caucasians. Although indirect GWA studies 
can have higher overall power than genic 
SNP studies, we have shown that a 
genic SNP approach to GWA studies can be 
more efficient for detecting causal variants 
than the existing indirect approaches, 
which attempt to capture information on 
all variants. Given the greater genotyping 
efficiency of a genic SNP approach, one 
might want to combine this approach 
with the currently available quasi-random 
or LD-tagging sets of SNPs to maximize 
coverage of regions with a high prior 
probability of functional importance, at a 
minimal cost. We estimate that more than 
50% of high-priority non-synonymous 
coding SNPs have yet to be identified and 
validated. The identification of additional 
genic SNPs will make more complete 
gene-centric studies possible, facilitating 
the efficient detection of causal variants 
within genes.
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