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13. Poisson Regression Analysis 

 
 

We have so far considered situations where the outcome variable is numeric and Normally 
distributed, or binary. In clinical work one often encounters situations where the outcome 
variable is numeric, but in the form of counts. Often it is a count of rare events such as the 
number of new cases of lung cancer occurring in a population over a certain period of time. 
The aim of regression analysis in such instances is to model the dependent variable Y as the 
estimate of outcome using some or all of the explanatory variables (in mathematical 
terminology estimating the outcome as a function of some explanatory variables.  
 
When the response variable had a Normal distribution we found that its mean could be linked 
to a set of explanatory variables using a linear function like Y = β0 + β1 X1 + β2X2 …….+βk Xk. 

 
In the case of binary regression the fact that probability lies between 0-1 imposes a constraint. 
The normality assumption of multiple linear regression is lost, and so also is the assumption 
of constant variance. Without these assumptions the F and t tests have no basis. The solution 
was to use the logistic transformation of the probability p or logit p, such that   
loge(p/1− p) = β0 + β1Χ1 + β2Χ2 …….βnΧn. The β coefficients could now be interpreted as 
increasing or decreasing the log odds of an event, and expβ (the odds multiplier) could be 
used as the odds ratio for a unit increase or decrease in the explanatory variable. In survival 
analysis we used the natural logarithm of the hazard ratio, that is   
loge h(t)/h0 (t) = β0 +β1 X1 + …..+ βnXn 
 
When the response variable is in the form of a count we face a yet different constraint. Counts 
are all positive integers and for rare events the Poisson distribution (rather than the Normal) is 
more appropriate since the Poisson mean > 0. So the logarithm of the response variable is 
linked to a linear function of explanatory variables such that loge (Y) = β0 + β1Χ1 + β2Χ2 … 
etc. and so Y = (eβ0 ) (eβ1Χ1) (eβ2Χ2) .. etc.  In other words, the typical Poisson regression 
model expresses the log outcome rate as a linear function of a set of predictors. 
 
 
Assumptions in Poisson Regression 
 
The assumptions include: 
 
1. Logarithm of the disease rate changes linearly with equal increment increases in the 

exposure variable. 
2. Changes in the rate from combined effects of different exposures or risk factors are 

multiplicative. 
3. At each level of the covariates the number of cases has variance equal to the mean. 
4. Observations are independent. 
 
Methods to identify violations of assumption (3) i.e. to determine whether variances are too 
large or too small include plots of residuals versus the mean at different levels of the predictor 
variable. Recall that in the case of normal linear regression, diagnostics of the model used 
plots of residuals against fits (fitted values). This means that the same diagnostics can be used 
in the case of Poisson Regression. 
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The examples below illustrate the use of Poisson Regression. 
 
Example 1 
 

Births by caesarean section are said to be more frequent in private (fee paying) hospitals 
as compared to non-fee paying public hospitals. Data about total annual births and the 
number of caesarean sections carried out were obtained from the records of 4 private 
hospitals and 16 public hospitals. These are tabulated below: 

 
 
Births Hospital Caesareans 
 type 
236 0 8 
739 1 16 
970 1 15 
2371 1 23 
309 1 5 
679 1 13 
26 0 4 
1272 1 19 
3246 1 33 
1904 1 19 
357 1 10 
1080 1 16 
1027 1 22 
28 0 2 
2507 1 22 
138 0 2 
502 1 18 
1501 1 21 
2750 1 24 
192 1 9 
 
 
 
0 = Private   1 = Public 
    Hospital      Hospitals 
 
 
 

The result of Poisson regression analysis is described below: 
 
[ In Genstat Stats    Regression Analysis    Generalized Linear    General Model in the Analysis field 

 Distribution  Poisson ] 
 
We first regress the response variable ‘Caesarean Sections’ against one explanatory variable 
viz. ‘number of births’; then add one more explanatory variable ‘number of obstetricians’, and 
finally add a third variable in the form of indicator variable for ‘public hospital’(i.e. Public 
hospital =1; Private Hospital =0) in the regression analysis. 
 
  
 

  



Poisson Regression Analysis 
 
 

138

 
 
  
***** Regression Analysis ***** 
  
 
     Distribution: Poisson 
Response variate: CAESAREA 

    Link function: Log 
     Fitted terms: Constant, BIRTHS 
  
  
*** Summary of analysis *** 
  
                                        mean    deviance 
              d.f.     deviance      deviance     ratio 
Regression       1 63.575488916  63.575488916     63.58 
Residual        18 36.414789139   2.023043841 
Total           19 99.990278055   5.262646213 
  
Change          -1 -63.575488916 63.575488916     63.58 
 
* MESSAGE: The following units have large standardized residuals: 
                  13        2.25 
                  14       -2.82 
                  16       -2.94 
                  17        2.17 
* MESSAGE: The following units have high leverage: 
                   9        0.41 
                  19        0.21 
  
  
*** Estimates of regression coefficients *** 
  
                  estimate         s.e.      t(*) 
Constant             2.132        0.102     20.95 
BIRTHS           0.0004405    0.0000540      8.17 
* MESSAGE: s.e.s are based on dispersion parameter with value 1 
  
  
The regression equation may now be written as: 
Loge(Y) = β0 + β1X1
  
On substituting the values of Y and X, the equation can be written as: 
Loge(Caesarean) = 2.132 + 0.000441 Births 
 Which leads to caesarean = (e) 2.132 x (e) 0.0004 Births 
 
Recall that we have used poisson regression to model the data and thereby obtained 
estimates of caesarean sections based on just one explanatory variable viz. number of 
births. We next add a second term to the model, - type of hospital and obtain the 
following. 
 
 
***** Regression Analysis ***** 
  
 Response variate: CAESAREA 
     Distribution: Poisson 
    Link function: Log 
     Fitted terms: Constant, BIRTHS, HOSP_TYP 
  
 *** Summary of analysis *** 
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                                        mean  deviance 
              d.f.     deviance     deviance     ratio 
Regression       2 81.951077606 40.975538803     40.98 
Residual        17 18.039200449  1.061129438 
Total           19 99.990278055  5.262646213 
  
Change          -2 -81.951077606 40.975538803     40.98 
* MESSAGE: ratios are based on dispersion parameter with value 1 
  
  
* MESSAGE: The following units have large standardized residuals: 
                   5       -2.48 
* MESSAGE: The following units have high leverage: 
                   9        0.41 
  
  
*** Estimates of regression coefficients *** 
  
                  estimate         s.e.      t(*) 
Constant             1.351        0.249      5.43 
BIRTHS           0.0003261    0.0000603      5.41 
HOSP_TYP             1.045        0.272      3.84 

• MESSAGE: s.e.s are based on dispersion parameter with value 1 
 
This is the full model for which the regression equation may be written as: 
Log (Y) = β0 + β1X1 + β2X2 
 

 On substituting the values we have Loge (Y) = 1.351 + 0.00033 Births +  
1.045 Hosptype for Public Hospitals (For private hospitals X2 is 0 and β2X2 = 0). 
 
This leads to caesarean sections = (e) 1.351 x (e) 0.00033births x (e) 1.045 Public Hospitals 
Caesarean sections in Public Hospitals = 3.86 x  1 x 2.84 = 10.97 =approximately 11. 
Caesarean sections in Private Hospitals = 3.86 x 1 = 3.86 = Approximately 4. 
 
Conclusion  
According to evidence presented all things being equal it is the other way round. 
Caesarean sections are about twice as common in Public Hospitals than in Private 
ones. 
 
Of the two models presented which one gives best estimates? For the answer we look 
at the tables which give the values for deviance. Deviance serves the same purpose as 
sum of squares in multiple linear regression. An important use of deviance, and 
difference between deviances, is in the comparison of fits of two models when 
additional explanatory variable(s) get added to the initial simple model. 
 
In the case of the first analysis using just one explanatory variable, the deviance 
explained by the regression is 63.575. This changes to 81.95 when a second variable, 
Hospital Type is added to the model. The difference is 18.375 (81.95 – 63.575 = 
18.375) and the difference in degree of freedom is 1. Looking this up in the table of χ2 
at 1 degree of freedom, we find that the result is significant (P < .001). We can opt for 
this model. 
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The next step is to check for the fit of the model by carrying out diagnostic plots of 
deviance against fits 
 
 
 
 

 
 

0 10 20 30

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Fitted Values

R
es

id
ua

ls

Plot of Residuals against Fittefd Values

 
Second Example to illustrate Poisson Regression Analysis 
 
 

A cohort of subjects, some non-smokers and others smokers, was observed 
for several years. The number of cases of cancer of the lung diagnosed among 
the different categories was recorded. Data regarding the number of years of 
smoking were also obtained from each individual. For each category the 
person-years of observation were calculated. The investigators wish to address 
the question of the relative risks of smoking. 

 
 
 
 

The following records were kept. 
 
CIGS No. Person 
Per years  years 
Day smoking  CASES 
0 15 10366 1 
0 25 5969 0 
0 35 3512 0 
0 45 1421 0 
0 55 826 2 
5 15 3121 0 
5 25 2288 0 
5 35 1648 1 
5 45 927 0 
5 55 606 0 
11 15 3577 0 
11 25 2546 1 
11 35 1826 0 
11 45 988 2 
11 55 449 3 
16 15 4317 0 
16 25 3185 0 
16 35 1893 0 
16 45 849 2 
16 55 280 5 
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20 15 5683 0 
20 25 5483 1 
20 35 3646 5 
20 45 1567 9 
20 55 416 7 
27 15 3042 0 
27 25 4290 4 
27 35 3529 9 
27 45 1409 10 
27 55 284 3 
40 15 670 0 
40 25 1482 0 
40 35 1336 6 
40 45 556 7 
40 55 104 1 
 
 

In the above data set the average number of cigarettes smoked per day represents the daily 
dose, and the years of smoking together with the average number of cigarettes smoked daily 
represents the total dose inhaled over time. Both appear to be related to the outcome as 
illustrated in the charts below. 
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Since over a number of years of observation some cases of cancer of the lung can be expected 
to arise from causes not related to smoking, we use this as our base line (uninformative) 
model and perform the first analysis as below 
 
***** Regression Analysis ***** 
  
 Response variate: CASES 
     Distribution: Poisson 
    Link function: Log 
     Fitted terms: Constant, PERSONYR 
  
  
*** Summary of analysis *** 
  
                                        mean  deviance 
              d.f.     deviance     deviance     ratio 
Regression       1  8.743853032  8.743853032      8.74 
Residual        33 128.546991211  3.895363370 
Total           34 137.290844242  4.037966007 
  
Change          -1 -8.743853032  8.743853032      8.74 
* MESSAGE: ratios are based on dispersion parameter with value 1 
  
  
 
 
*** Estimates of regression coefficients *** 
  
                  estimate         s.e.      t(*) 
Constant             1.208        0.169      7.16 
PERSONYR        -0.0001921    0.0000711     -2.70 
* MESSAGE: s.e.s are based on dispersion parameter with value 1 
  
 
 
 

We next perform the second analysis using the full model as below: 
 
***** Regression Analysis ***** 
  
 Response variate: CASES 
     Distribution: Poisson 
    Link function: Log 
     Fitted terms: Constant, PERSONYR, CIGS_DAY, SMOKING_ 
  
  
*** Summary of analysis *** 
  
                                        mean  deviance 
              d.f.     deviance     deviance     ratio 
Regression       3 63.168816931 21.056272310     21.06 
Residual        31 74.122027311  2.391033139 
Total           34 137.290844242  4.037966007 
  
Change          -3 -63.168816931 21.056272310     21.06 
* MESSAGE: ratios are based on dispersion parameter with value 1 
  
  
  
*** Estimates of regression coefficients *** 
  
                  estimate         s.e.      t(*) 
Constant            -4.669        0.988     -4.72 
PERSONYR          0.000410     0.000104      3.94 
CIGS_DAY            0.0559       0.0100      5.58 
SMOKING_            0.0888       0.0166      5.34 
• MESSAGE: s.e.s are based on dispersion parameter with value 1 
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The difference in the deviance is 63.168 – 8.743853 = 54.425 at 3 – 1 = 2 degrees of freedom. 
Entering the table for values of χ2 at 2 degrees of freedom, we get a highly significant P value 
for 54.425. This indicates a good fit for the model. 
 
We accept the model and obtain a regression equation which could be written as 
 
Log cases = α + β1Personyears + β2Cigarettes/day +β3Years of Smoking 
                 = −4.669 + 0.00041Personyears + 0.0559Cigarettes/day  
                    + 0.0888Years of Smoking 
 
Cases = (e) –4.669 × (e)0.00041personyears × (e)0.0559Cigarettes/day × (e)0.0888years of smoking

            
 

The equation is useful for estimating the relative risk of developing lung cancer by the 
number of cigarettes smoked (i.e. strength of the dose), or by number of years of smoking 
(total dose). 
 
For example, all things being equal the relative risk of smoking 25 cigarettes/day as compared 
to 15 can be estimated at (e)0.0559x25 ÷ (e)0.0559x15 = (e)0.0559x10 , and so on. Similar estimates 
could be used for calculating the relative risk by different years of smoking. 
 
A plot of residuals against fitted values is shown below: 
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Summary 
 
The typical Poisson regression model expresses the natural logarithm of the event or outcome  
of interest as a linear function of a set of predictors. The dependent variable is a count of the 
occurrences of interest e.g. the number of cases of a disease that occur over a period of 
follow-up. Typically, one can estimate a rate ratio associated with a given predictor or 
exposure. 
 
A measure of the goodness of fit of the Poisson regression model is obtained by using the 
deviance statistic of a base-line model against a fuller model. 
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