Electrolysed-reduced water dialysate improves T-cell damage in end-stage renal disease patients with chronic haemodialysis

Kuo-Chin Huang1,*, Shih-Ping Hsu2,3,*, Chih-Ching Yang4,5,*, Pu Ou-Yang2, Kun-Tai Lee6, Shinkatsu Morisawa7, Kazumichi Otsubo7 and Chiang-Ting Chien2

1Department of Family Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan, 2Department of Medical Research, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan, 3Department of Internal Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan, 4Department of Health, Internal Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan, 5Department of Internal Medicine, National Yang-Ming University, Taipei, Taiwan, 6Wan-Hua Regional Hospital, Taipei, Taiwan and 7Nihon-Trim Co., Ltd, Osaka, Japan

Correspondence and offprint requests to: Chiang-Ting Chien; E-mail: ctchien@ntuh.gov.tw
*These authors contributed equally to this work.

Abstract

Background. T-cell damage by increased oxidative stress in end-stage renal disease (ESRD) patients undergoing chronic haemodialysis (HD) led to the increased T-cell apoptosis and the alteration of surface markers and Th1/Th2 ratio in CD4+ T lymphocytes. Antioxidant electrolysed-reduced water (ERW) was used as the dialysate in ESRD patients undergoing chronic HD to test for improved oxidative stress-related T-cell apoptosis, alterations of surface markers and intracellular cytokine profile.

Methods. We evaluated apoptosis formation by annexin V, CD25-related surface markers, and cytokine ratio of Th1/Th2 in CD4+ T lymphocytes and Tc1/Tc2 in CD8+ T lymphocytes of 42 ESRD patients haemodialysed with ERW for 1 year.

Results. In comparison to 12 healthy individuals, the ESRD patients had more T-cell apoptosis and less CD3+, CD4+ and CD8+ T cells and CD25/CD69/CD94/CD3+ phenotypes at baseline. Lower intracellular IL-2 and IFN-γ levels in the Th1/CD4+ and Tc1/CD8+ cells and higher intracellular IL-4, IL-6 and IL-10 levels in the Th2/CD4+ and Tc2/CD8+ cells were also noted in the ESRD patients. After a 1-year ERW treatment, the patients had a decrease in T-cell apoptosis and increases in CD3+, CD4+ and CD8+ cell numbers and CD25/CD69/CD94/CD3+ phenotypes in the T cells. The intracellular IL-2 and IFN-γ levels in the Th1/Tc1 cells significantly (P < 0.05) increased and the intracellular IL-4, IL-6 and IL-10 levels in the Th2/Tc2 cells decreased. Furthermore, the Th1/Th2 and Tc1/Tc2 cytokine ratios were improved toward a normal status.

Conclusion. One-year ERW treatment effectively ameliorated T-cell apoptosis, altered CD25-related surface markers and intracellular cytokine profile in the HD patients.

Keywords: apoptosis; electrolysed reduced water; end-stage renal disease; oxidative stress; T-lymphocyte
activation of transcription factors that regulate a variety of activation-associated genes of cytokines and surface receptors for coordinating the immune response [18]. Activator protein 1 (AP-1) and nuclear factor kappa B (NF-κB) translocation from the cytoplasm to the nucleus regulate transcriptional induction of several cytokines and T-cell activation-induced proteins [19–22]. Downregulation of AP-1 and NF-κB DNA-binding activity by antioxidants inhibits human T lymphocytes activation and inflammation-based cardiovascular diseases [23,24].

Electrolysed-reduced water (ERW) with rich atomic hydrogen obtained by electrolysis scavenges O₂⁻, H₂O₂ and HOCl and protects DNA, lipids and proteins from oxidative damage [1,3,25]. In addition, it does not produce oxidized molecules after reduction like other organic antioxidants [1,3,26]. Our serial studies indicated that ERW dialysate diminished HD-enhanced H₂O₂ and HOCl activity, minimized atherosclerotic, oxidized and inflammatory markers and improved severity of anaemia during treatment [1,3]. Additionally, ERW reduced plasma levels of IL-6 and C-reactive protein [3]. A significant reduction in several proinflammatory cytokine levels as analysed by a cytokine array was indicated after 6 months of ERW treatment [1]. Thus, we speculated that a 12-month ERW treatment may have a protective potential on T cells by modulating T-cell apoptosis, altered CD25-related surface marker expression and intracellular Th1/Th2 and Tc1/Tc2 cytokine ratios in the ESRD patients with chronic HD.

Materials and methods

Subjects

All ESRD patients (n = 55) in the dialysis centre of Wan-Hwa Regional Hospital underwent chronic HD with ERW dialysate during the same period. However, only 42 patients with informed consent met the following inclusion criteria: the absence of habitual smoking, malignancy, inflammatory disorders, chronic or acute infections, supplementation of vitamin C or E and treatment with either oral or intravenous iron or anti-inflammatory drugs in the preceding 3 months. The mean age of the enrolled patients was 57 ± 5 years (range 42 to 88 years). The causes of ESRD were type II diabetes mellitus in 15 patients and chronic glomerulonephritis in the other 27 patients. Of the 15 diabetic patients, 5 were treated with insulin injection, 6 with oral hypoglycaemic agents (OHA) and 4 with a combination of insulin and OHA. All 42 patients were on a normal diet without restriction of essential fatty acids. Their mean mid-week pre-dialysis creatinine level was 10.9 ± 0.5 mg/dL at baseline. During the dialysis sessions, the blood flow rate was 250–300 mL/min and the dialysate flow was 500 mL/min. One kind of haemodialyser with a surface area of 1.5 or 1.8 m² (AF-150 and AF-180 membrane type; Althane, Althin Medical Inc., USA) was adopted according to the individual’s body weight. The Kt/V of all these patients was maintained between 1.3 and 1.6. We also enrolled 12 healthy controls (3 males and 9 females, 35 ± 6 years old). This clinical trial was approved by the Human Research Committee of Wan-Hwa Regional Hospital.

ERW system

HD-24K (Nihon Trim Co., Osaka, Japan) was structured as described previously [3]. The quality of ERW for HD was approved by the Yen Jing Ling Industrial Research Institute National Taiwan University with the no. E89A299D277 as required by the American Association of Medical Instruments (AAMI). The ERW dialysate maintained the properties of a lower redox potential value when compared to that of non-ERW dialysate (150 ± 5 vs 296 ± 5 mV). The microbiological quality of the final dialysate met the AAMI standards: bacteria <200 colony-forming units/mL and an endotoxin concentration <2 EU/mL. The endotoxin level in the water used for HD was 0.050 ± 0.002 EU/mL as measured by an endotoxin ELISA kit (HBT-HIT301, Biocompare Inc., CA, USA) and an automated ELISA analyser (CODA, SN10373, CA, USA).

Measurements of cell death in T lymphocytes

Ten millilitres of blood samples was collected from the healthy controls and the enrolled chronic HD patients just before the mid-week dialysis session. Peripheral blood mononuclear cells (PBMCs) were isolated by gradient centrifugation [10] for the analysis of T-cell apoptosis. Apoptotic and necrotic cell death in CD3⁺ T lymphocytes was analysed in PBMCs from all ESRD patients by flow cytometry [10]. T cells were further assayed for apoptosis with FITC-labelled monoclonal antibody using the Annexin V kit (PharMingen, San Diego, CA, USA). Double labelling was performed at 37 °C as follows: propidium iodide (PI, 50 μg/mL) and Annexin V (2 μg/mL) were added to the culture medium for 2 h and then the staining was immediately analysed on a FACSCalibur (Becton Dickinson, San Jose, CA, USA).

Surface marker expression

CD3⁺ T lymphocytes from whole blood were phenotyped by dual-colour flow cytometry using a standard procedure that included the establishment of a lymphocyte gate on a light scatter bit map and the use of the minimal acceptable antibody combinations, i.e. CD3⁺CD4⁻ and CD3⁺CD8⁻. Cells were adjusted to 0.5 × 10⁶ cells/mL in phosphate buffer saline containing 10% foetal bovine serum (Hyclone, Logan, UT, USA). Native samples were incubated with fluorescence labelled antibodies according to the manufacturer’s instructions. Subsequently, 0.4 mL FACS-Flow® (BD Biosciences) was added. Lymphocytes were defined via forward scatter (FSC) and sideward scatter (SSC); their population showed a low SSC and an elongated width of FSC characteristics. To mainly obtain morphologically intact cells and to avoid degraded cells and debris, this population was gated in the more upper part of the FSC distribution and checked for an optimum of cell viability via PI dye exclusion. T-lymphocyte subpopulations were identified on the respective bivariate plots.

Phorbol myristate acetate (5 ng/mL) (PMA; Sigma Chemical Co., St. Louis, MO, USA) and ionomycin (500 ng/mL) (Sigma Chemical Co., St. Louis, MO, USA) were applied to the lymphocytes and incubated for either 4 or 24 h to measure surface marker expression and intracellular cytokine production in the activated T cells.

For the detection of CD25, CD69 and CD94, 0.25 mg/mL of FITC-conjugated antihuman CD25 (PharMingen), FITC-conjugated antihuman CD69 (PharMingen) and FITC-conjugated antihuman CD94 (PharMingen) were added to tubes (12 × 75 mm) containing the PMA and ionomycin-stimulated CD3⁺ lymphocytes (50 μL of 10⁶/mL) designated for the measurement of activation and the samples were incubated in the dark at room temperature for 30 min. We used CD3-FITC for T-cell identification, CD3-FITC/CD4 conjugated to phycoerythrin (PE) for Th cell identification, CD3-FITC/CD8-phycoerythrin cyanin 5 for T-cell recognition and CD25 and CD69 for T-cell activation. The samples were then analysed with a FACSCalibur flow cytometer (Becton Dickinson, San Jose, CA, USA) using CellQuest software (Becton Dickinson).

Intracellular cytokine profile

Flow cytometric evaluation of the intracellular expression of IFN-γ, IL-2, IL-4, IL-6 and IL-10 in the Th1/Th2 and Tc1/Tc2 cells was performed according to the manufacturer’s instructions (Becton Dickinson, Application Note: Detecting Intracellular Cytokines in Activated Lymphocytes). Briefly, whole blood was collected into tubes containing sodium heparin and diluted in RPMI 1640 and was assayed within 6 h after collection. All activation procedures were performed in capped polystyrene test tubes. CD3⁺CD4⁻ and CD3⁺CD8⁻ T cells were stimulated with 50 ng/mL PMA and 500 ng/mL ionomycin and incubated for 4 h at 37 °C; brefeldin A (10 μg/mL) was added for the last 3 h of incubation. PMA and ionomycin are pharmacological T cell-activating agents and have the advantage of stimulating T cells of any antigen specificity. Brefeldin A is used to block intracellular transport mechanisms, thereby leading to an accumulation of cytokines in the cells.
T cells were stained with PE-conjugated anti-CD4 or anti-CD8 monoclonal antibodies at room temperature in the dark for 15 min. Intracellular staining was performed for 30 min at room temperature using FITC-conjugated anti-IFN-γ, FITC-conjugated anti-IL-2, FITC-conjugated anti-IL-4, FITC-conjugated anti-IL-6 or FITC-conjugated anti-IL-10 (PharMin-gen). CellQuest software and a FACSCalibur (BD Biosciences) were used for data collection and analysis.

Statistical analysis

All values are expressed as the mean ± standard deviation. Within-group comparisons between pre-HD values were performed by the paired t-test. For longitudinal data, repeated-measures ANOVA with post hoc analysis with the Bonferroni procedure were used to analyse the between- and within-group differences. P < 0.05 was adopted as indicating statistical significance.

Results

The haematocrit levels of the patients were 30.3 ± 3.6% at Month 0, 29.6 ± 3.2% at Month 1, 30.3 ± 3.5% at Month 3, 30.1 ± 4.4% at Month 6, 31.5 ± 3.7% at Month 12 of ERW treatment and 33.8 ± 4.6% at Month 6 post-ERW treatment. The administered dosages of erythropoietin per kilogramme body weight were 278 ± 167 U/kg/month at Month 0, 335 ± 165 U/kg/month at Month 1, 330 ± 202 U/kg/month at Month 3, 298 ± 167 U/kg/month at Month 6, 315 ± 197 U/kg/month at Month 12 of ERW treatment and 282 ± 177 U/kg/month at Month 6 post-ERW treatment.

It has been suggested that HD enhances T-cell activation-induced cell death. We evaluated the percentage of apoptosis (annexin V–PI+ and necrosis (annexin V–PI+) in the T lymphocytes from the ESRD patients undergoing HD. Our results showed that a significant increase in apoptosis (annexin V–PI+) and necrosis (annexin V–PI+) in the pre-dialysis T cells was found in the patients when compared to the healthy subjects (Figure 1). ERW treatment significantly reduced the percentage of annexin V–PI+ and annexin V–PI+ when compared to the pre-ERW levels. The decreased percentage of T-cell apoptosis and necrosis tended to recover at Month 6 post-ERW treatment.

Fig. 1. ERW on T lymphocyte apoptosis. The effect of ERW dialysate treatment on % annexin V–PI+ and annexin V–PI+ in the T lymphocytes before ERW treatment (Pre), during the first month (1M), third month (3M), sixth month (6M) and 12th month (12M) of ERW treatment and 6 months post-ERW treatment (Post) was demonstrated. ERW treatment during 3–12 months significantly reduced % annexin V–PI+ and % annexin V–PI+ in the T lymphocytes of the 42 patients. An increase in % annexin V–PI+ and % annexin V–PI+ was found at 6 months post-ERW treatment. Mean ± SD. *P < 0.05 when compared to healthy controls (n = 12); #P < 0.05 Post vs 12 months of ERW treatment.

Fig. 2. ERW on leukocytes (WBC) count and T cell subsets. Absolute counts of WBC, lymphocytes, CD3+, CD4+/CD3+ and CD8+/CD3+ T cells in the patients (n = 42) prior to (Pre), during the first month (1M), third month (3M), sixth month (6M) and 12th month (12M) of ERW treatment and 6 months post-ERW treatment (Post). ERW treatment mildly but significantly increased the numbers of CD3+, CD4+ and CD8+ T cells at 12 months of treatment. At 6 months post-ERW treatment, lymphocytes, CD3+, CD4+/CD3+ and CD8+/CD3+ T cells in the patients tended to decrease. Mean ± SD. *P < 0.05 when compared to healthy controls (n = 12).
When compared to healthy controls, the ESRD patients with chronic HD had decreased CD3+, CD4+ and CD8+ T-cell counts (Figure 2). ERW treatment mildly increased the counts of CD3+ and CD8+ T cells in the patients. After ERW treatment had been stopped for 6 months, the counts of CD4+ and CD8+ T cells in the patients tended to decrease.

In comparison to the healthy controls, the percentage of surface marker expressions of CD25/CD3+, CD69/CD3+ and CD94/CD3+ cells were all significantly reduced in the ESRD patients with chronic HD (Figure 3). One-year ERW treatment significantly (P < 0.05) increased the percentage of CD25/CD3+, CD69/CD3+ and CD94/CD3+ expressions in the patients. However, further increases in CD25/CD3+, CD69/CD3+ and CD94/CD3+ phenotypes were found at 6 months post-ERW treatment.

The intracellular levels of the Th1/Tc1 cytokines, IL-2 and IFN-γ, in CD4+ and CD8+ cells were significantly (P < 0.05) decreased in the ESRD patients with chronic HD when compared to the healthy subjects (Figures 4 and 5). In contrast, the intracellular levels of Th2/Tc2 cytokines, IL-4, IL-6 and IL-10, in CD4+ and CD8+ cells were all significantly increased in the patients.

The long-term effect of ERW treatment on Th1 and Th2 cytokine profiles in CD4+ T cells from the ESRD patients with chronic HD is demonstrated in Figure 4. One-year ERW treatment significantly increased INF-γ and IL-2 (Th1 cytokines) expressions in CD4+ T cells during 6–12 months of ERW treatment. In contrast, ERW treatment significantly depressed IL-4, IL-6 and IL-10 (Th2 cytokines) expressions during 1–12 months of ERW treatment. At 6 months post-ERW treatment, Th1 cytokines tended to decrease and Th2 cytokines tended to increase in the patients. Mean ± SD. *P < 0.05 when compared to healthy controls (n = 12).

IL-4, IL-6 and IL-10, in CD4+ and CD8+ cells were all significantly increased in the patients.

The long-term effect of ERW treatment on Th1 and Th2 cytokine profiles in CD4+ T cells from the ESRD patients with chronic HD is demonstrated in Figure 4. One-year ERW treatment significantly increased INF-γ and IL-2 expressions. In contrast, ERW treatment significantly depressed IL-4, IL-6 and IL-10 expressions. At 6 months post-ERW treatment, INF-γ and IL-2 expressions tended to decrease and IL-4, IL-6 and IL-10 expressions tended to increase in the patients. We further compared the Th1/Th2 and Tc1/Tc2 ratios between the ESRD patients and healthy subjects. Long-term ERW treatment mildly but significantly

Fig. 3. ERW on CD25-related surface markers. Effect of 12 months of ERW treatment on CD25+CD3+, CD69+CD3+ and CD94+CD3+ cells from the HD patients (n = 42). ERW treatment increased CD25+CD3+, CD69+CD3+ and CD94+CD3+ cell counts during the first month (1M), third month (3M), sixth month (6M) and 12th month (12M). At 6 months post-ERW treatment (Post), CD25+CD3+, CD69+CD3+ and CD94+CD3+ surface markers were further upregulated in CD3+ cells. Mean ± SD. *P < 0.05 when compared to healthy controls (n = 12); #P < 0.05 Post vs 12M.

Fig. 4. ERW on Th1/Th2 cytokine profiles. Effect of 12-month ERW treatment on intracellular Th1/Th2 cytokine profiles in CD4+ T cells from the patients (n = 42) prior to (Pre), at the first month (1M), third month (3M), sixth month (6M) and 12th month (12M) of ERW treatment and 6 months post-ERW treatment (Post). ERW treatment significantly increased the percentage (%) of INF-γ and IL-2 (Th1 cytokines) expressions in CD4+ T cells during 6–12 months of ERW treatment. In contrast, ERW treatment significantly depressed IL-4, IL-6 and IL-10 (Th2 cytokines) expressions during 1–12 months of ERW treatment. At 6 months post-ERW treatment, Th1 cytokines tended to decrease and Th2 cytokines tended to increase in the patients. Mean ± SD. *P < 0.05 when compared to healthy controls (n = 12).
Haploidy and catalase-like activities can scavenge ROS from the patients (increased the percentage (%) of INF-γ 6 months post-ERW treatment (Post). ERW treatment significantly increased the Th1/Th2 and Tc1/Tc2 ratios toward a normal status. At 6 months post-ERW treatment, the Th1/Th2 and Tc1/Tc2 ratios tended to decrease.

Discussion

Our study indicates that 12 months of ERW treatment decreased T-cell apoptosis, increased the absolute numbers of CD3+, CD4+ and CD8+ T lymphocytes and CD25/CD69/CD94/CD3+ surface marker expressions and modulated Th1/Th2 and Tc1/Tc2 intracellular cytokine ratios toward a normal status.

In 1985, Hayashi proposed the ‘Water Regulating Theory’ for the clinical improvement of diseases by intake of reduced water [27]. The ideal ROS scavenger could be active atomic hydrogen, which can be produced in ERW during water electrolysis. ERW exhibits a high pH, low dissolved oxygen, rich atomic hydrogen and an extremely negative redox potential value [25]. ERW can reversibly split molecular hydrogen to produce active atomic hydrogen contributing to the redox regulation of cellular function [26]. The ROS scavenging capability of ERW is stable at 4 °C for over a month and not lost even after neutralization, repeated freezing and melting, deflation with sonication, vigorous mixing, boiling, repeated filtration or closed autoclaving, but is lost by opened autoclaving or by closed autoclaving in the presence of tungsten trioxide which efficiently adsorbs active atomic hydrogen [25]. Rich active hydrogen in ERW is an ideal ROS scavenger because it does not produce oxidized molecules after reduction like other organic antioxidants (vitamin C, vitamin E and polyphenols) [1,3,8,29]. ERW, vitamin C and catechins completely scavenge O2-• produced by the hypoxanthine–xanthine oxidase system in a sodium phosphate buffer [25]. Furthermore, ERW, catalase and vitamin C can directly scavenge H2O2 [1,3,25]. We found that ERW and catechins can scavenge both H2O2 and HOCl, but vitamin C only removes H2O2 [1,29]. The reduction in plasma HOCl activity may preserve HD-decreased serum paraoxonase 1 activity [29], an HDL-associated oxidant-sensitive enzyme which can inhibit the atherogenic oxidation of LDL. The scavenging ROS mechanism by ERW may be due to the direct adsorption of ROS by active atomic hydrogen because no antioxidant production was detected by a total antioxidant status assay in our previous studies [1,3]. Our serial studies [1,3] have indicated that ERW can be used in HD patients due to its stable characteristics, lower cost and strong antioxidant activity to reduce HD-evoked oxidative stress, proinflammatory cytokine levels and atherosclerotic risk factors and preserve the activity of erythrocyte reductases and increase haematocrit during 6 months of treatment. During our previous study with 6 months of ERW dialysate in HD patients, levels of biochemical parameters were stable and no long-term toxicity/adverse effects on the liver, kidney and other organs were noted. ERW treatment can also replace intravenous vitamin C infusions to prevent vitamin C overdoses and secondary oxalosis manifested by an increase in plasma oxalate levels and the deposition of calcium oxalate in various tissues [1,8,30].

The oxidative stress associated with uraemia is exacerbated by HD because neutrophils and monocytes, activated by contact with the dialysis membranes, release large amounts of ROS [1,3,7,8,29]. The deleterious effects of ROS on carbohydrates, lipids and proteins have a pathological role in many inflammatory diseases, most of which are frequent in HD patients [1,3,8,13,29]. In contrast to healthy status, ESRD induces a clinical state of immuno-deficiency with a higher incidence of infections and higher mortality due to infectious complications. Furthermore, ESRD patients, especially when treated with HD, have increased oxidative stress in T lymphocytes, which may lead to abnormal cytokine synthesis and immune response. The results of this study implicate that ERW treatment reduces T-cell priming as the cause of intracellular ROS and low-grade inflammation associated with ESRD. The augmented ROS release together with the increased intracellular Th2/Tc2 cytokines and DNA-bound NF-κB/p65 and AP-1/c-Fos activities are known contributors to systemic ox-
dative stress. We previously showed that systemic inflammatory markers such as CRP, IL-6 and TNF-α positively correlate with plasma H₂O₂ activity [1,3,8,29]. Our previous results further showed that 26 proinflammatory cytokines are downregulated after 6 months of ERW treatment [1]. These findings provide a new insight into the molecular events that resolve inflammation and immunodeficiency in chronic HD patients by ERW treatment.

CD8⁺ T cytotoxic lymphocytes can be the first line of immunodefence by production of several cytokines such as IFN-γ after infection and before T-cell proliferation, contributing to the host-acquired immunity [31]. CD25 (IL-2 receptor) is expressed in functional T lymphocytes, and then upregulation of CD25 can trigger CD8⁺ T cytotoxic lymphocyte clonal expansion and immune response [32]. Downregulation of CD25 has been found in humans with colon cancer, breast cancer and renal carcinoma [32]. CD69 is expressed in the activated T and B lymphocytes and natural killer cells. CD69 can drive the clonal expansion, cytokine release and cytotoxicity in T lymphocytes and natural killer cells. CD25 can be negatively regulated by CD94/NKG2A receptors to prevent overt activation and killing of the host cells [33]. Upregulation of CD94/NKG2 can prevent T-lymphocyte activation-induced apoptotic cell death [34]. In clinical trials, high expressions of CD94 prolonged the survival rates in nasal-type extranodal NK/T cell lymphoma patients [35] or prevented leukocyte activation-induced apoptosis [34]. Upregulation of CD94/NKG2A can increase the sensitivity threshold to antigen stimulation and delicately control cytotoxic T-lymphocyte response, therefore, preventing antigen activation-induced cell death and clonal exhaustion and promoting the generation of a pool of memory cells [36,37]. In our study, ERW treatment significantly increased CD25, CD69 and CD94 expressions in the T lymphocytes. After ERW treatment had been stopped for 6 months, a higher activation of CD25, CD69 and CD94 were found. These data suggest that upregulation of CD94 in T lymphocytes can delicately control the upregulation of CD25 (IL-2 receptor) and CD69 in the activated T lymphocytes after ERW treatment. The immunomodulation by ERW treatment might improve the activation-induced cell death in the T lymphocytes of ESRD patients undergoing chronic HD. These data also show that, during ERW treatment, an upregulation in CD25/CD3⁺ and CD69/CD3⁺ may involve a functional response in T cells. The significant elevation of CD25/CD3⁺, CD69/CD3⁺ and CD94/CD3⁺ at 6 months post-ERW treatment may affect a negative regulation of enhanced CD25/CD3⁺ and CD69/CD3⁺ by the upregulation of CD94/CD3⁺. ERW may prevent T cells exaggerated priming after chronic HD.

T-cell activity is significantly retarded in ESRD patients compared with normal subjects. The proportions of CD4⁺ T helper/inducer and B cells are significantly lower in HD patients than in controls [38]. In our study, 12 months of ERW treatment mildly increased the absolute numbers and the proportions of CD3⁺, CD4⁺ and CD8⁺ T lymphocytes in the ESRD patients with chronic HD. These data suggest that long-term ERW treatment may provide an improvement and prevention of HD-enhanced T-cell death in ESRD patients.

To detect polarized Th1/Th2 or Tc1/Tc2 responses, intracellular staining by flow cytometry analysis is relatively simple and highly sensitive. Th1/Th2 and Tc1/Tc2 cytokines are implicated in regulating the immune responses and may be involved in impaired status. CD4⁺ T cells produce IFN-γ, IL-2, IL-4 and IL-10 in response to infected macrophages, whereas CD8⁺ T cells produce predominantly IFN-γ and IL-2. Since IL-4 and IL-10 can suppress IFN-γ-mediated protective mechanisms against parasites, the production of these cytokines by CD4⁺ T cells in response to infected cells can negatively affect their protective activity in vivo [39]. The production of plasma IL-2, which is involved in cell-mediated immune responses, and the production of plasma IL-4 and IL-10, which affects humoral immunity, are significantly lower in HD patients than in controls [38]. Both CD4⁺, T (Th) and CD8⁺ T (Tc) lymphocytes can be functionally divided into type 1 and type 2 subsets based on the secretion of either IFN-γ (T1) or IL-4 (T2), while the synthesis of cytokines such as IL-2, IL-6 and IL-10 is not stringently restricted to a single subset [40]. Previous results have demonstrated that both cellular immunity induced by Th1 and humoral immunity induced by Th2 decrease in HD patients [38]. The T-cell activity with the production of IL-2, IL-4 and IL-10 was significantly reduced in HD patients compared to controls [38]. In the present study, we found that a lower percentage in the Th1 and Th2 cytokines of CD4⁺ cells and Tc1 and Tc2 cytokine expression of CD8⁺ T cells was found in the ESRD patients with chronic HD. One possibility for the lower value of intracellular cytokine expression in the CD4⁺ and CD8⁺ T cells was due to a short period of 4 h of PMA and ionomycin stimulation. On the other hand, although stimulation with PMA and ionomycin usually gives higher percentage of T cells producing cytokines, especially for Th1 or Tc1 cytokines when compared to other diseases [41], we suggest that renal insufficiency and chronic HD contribute to the lower expression of intracellular cytokines in the T cells. However, these required further studies. ERW treatment significantly increased INF-γ and IL-2 (Th1 and Tc1 cytokines) levels during 12 months of ERW treatment. In contrast, ERW treatment significantly depressed IL-4, IL-10 and IL-6 during the 12 months of ERW treatment. Six months after ERW treatment had been stopped, INF-γ and IL-2 levels and IL-4 and IL-10 levels decreased, but an increase in IL-6 level was noted in these ESRD patients with chronic HD. The decrease in Th1/Th2 and Tc1/Tc2 ratios in comparison to healthy controls could be partly reversed by long-term ERW treatment. According to the medical records, the yearly rates of hospitalization due to infections were one out of 42 (2.38%), one out of 42 (2.38%) and zero out of 42 (0%) prior to, at the course of and post-follow-up stage, respectively. These findings suggest that long-term ERW treatment may diminish the infection rate of ESRD patients with chronic HD.

Conclusion

In conclusion, our findings demonstrate that long-term ERW treatment attenuates chronic HD-evoked immunodeficiency in T lymphocytes, as indicated by a decrease
in T-lymphocyte apoptosis, an increase in CD25-related surface marker expression in the T cells and a shift in cytokine profiles from Th2/Th2 to Th1/Th1 status in the ESRD patients undergoing chronic HD.

Acknowledgments. This work was partly supported by the National Science Council of the Republic of China (NSC96-2221-E-002-256-MY3 and 98-2320-B-002-043-MY3), National Taiwan University Hospital (NTUH98-S-1141) and Taipei City United Hospital Heping Branch.

Conflict of interest statement. None declared.

References

3. Huang KC, Yang CC, Lee KT et al. Reduced hemodialysis-induced oxidative stress in end-stage renal disease patients by electrolyzed reduced water. Kidney Int 2003; 64: 704–714

17. Borrego F, Robertson MJ, Ritz J et al. CD69 is a stimulatory receptor for natural killer cell and its cytotoxic effect is blocked by CD94 inhibitory receptor. Immunology 1999; 97: 159–165

22. Daichou Y, Kurashige S, Hashimoto S, Suzuki S. Characteristic cytokine profiles from Th2/Tc2 to Th1/Tc1 status in the ESRD patients undergoing chronic HD.

33. Borrego F, Robertson MJ, Ritz J et al. CD69 is a stimulatory receptor for natural killer cell and its cytotoxic effect is blocked by CD94 inhibitory receptor. Immunology 1999; 97: 159–165

37. Braud VM, Aldemir H, Breart B, Ferrlin WG. Expression of CD94-NKG2A inhibitory receptor is restricted to a subset of CD8+ T cells. Trends Immunol 2003; 24: 162–164

Received for publication: 24.8.99; Accepted in revised form: 1.2.10