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Abstract

Econophysics is a new word, used to describe work being done by physicists in which 2nan-
cial and economic systems are treated as complex systems. Everyone is a5ected by economic
6uctuations, and quantifying 6uctuations is a topic that many physicists have contributed to in
recent years. Moreover, everyone – rich and poor – would be powerfully a5ected by a breakdown
of the world-wide 2nancial system. Further, it is possible that methods and concepts developed
in the study of strongly 6uctuation systems might yield new results in economics. Finally, eco-
nomic systems are complex interacting systems for which a tremendous amount of quantitative
data exists, much of it never analyzed. Here we discuss selected recent examples where statistical
physicists studying 6uctuations have uncovered two new empirical “laws”. The 2rst empirical
law concerns the histogram giving the relative occurrence probability that a stock experiences a
given price change; this histogram decreases as the given price change increases, with an ap-
parent power law tail that describes 6uctuations di5ering by as much as 8 orders of magnitude
in this relative occurrence probability. The second empirical law concerns a histogram of size
changes of business 2rms, which has a width that decreases as a power law of the 2rm size
for 2rms that range over roughly 8 orders of magnitude. In addition to such scaling laws, there
appears also the analog of “universality” – e.g., the analogous histogram of country size appears
to obey the same scaling law, with the same exponent, as the histogram of 2rm size. c© 1999
Elsevier Science B.V. All rights reserved.

1. Introduction

We begin by noting that the fundamental principles governing the complex sys-
tem called economics are not completely uncovered. This observation seems to be
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almost generally accepted – e.g., the cover article of the 23 August 1997 issue of The
Economist is entitled “The Puzzling Failure of Economics.”

Then how can physicists contribute to the search for solutions to the puzzles posed
by modern economics that economists themselves have not solved? One approach –
in the spirit of experimental physics – is to begin empirically, with real data that one
can analyze in some detail, but without prior models. In economics, one has a great
deal of real data. Moreover, if one has at one’s disposal the tools of statistical physics
and the computing power to carry out a number of approaches, this abundance of
data is to great advantage. Thus, for physicists, studying the economy means studying
a wealth of data on a well-de2ned complex system. Indeed, physicists in increasing
numbers are 2nding problems posed by economics suKciently challenging to engage
their attention. Various terms have been applied to this new interdisciplinary sub2eld
of physics. Some physicists prefer the term “Phynance”. In an analogy with the terms
biophysics, geophysics, and astrophysics, the term “Econophysics” was introduced in
1995 [1] to attempt to legitimize why physics graduate students obtaining physics Ph.D.
degrees should be allowed to work on problems originating in economics.
If we physicists have any prior bias, it may be the lesson learned years ago when

it was the fashion to work on critical phenomena: “Everything depends on everything
else.” A careful analysis of any system involves studying the propagation of correlations
from one unit of the system to the next. We learned that these correlations propagate
both directly and indirectly. At one time, it was imagined that “scale-free” phenomena
are relevant to only a fairly narrow slice of physical phenomena [2]. However, the range
of systems that apparently display power law and hence scale-invariant correlations has
increased dramatically in recent years, ranging from base pair correlations in noncoding
DNA [3] and their possible interpretation [4], lung in6ation [5] and interbeat intervals of
the human heart [6,7] to complex systems involving large numbers of interacting units
that display “free will,” such as city growth [8,9], and even animal behavior [10,11].
In particular, economic time series, as e.g., stock market indices or currency exchange
rates depend on the evolution of a large number of strongly interacting systems, and
belong to the class of complex evolving systems. Thus, the statistical properties of
2nancial markets have attracted the interests of many physicists [12–46]. In this short
contribution, space limitations motivate us to focus mainly on our group’s results; the
work of other research groups is treated elsewhere. For a more balanced account, the
reader should consult two recent books [47,48], other articles in these proceedings, and
two other recent international conferences [49,50].

2. Correlations – or the Lack Thereof

The recent availability of “high-frequency” data allows one to study economic time
series on a wide range of time scales varying from seconds up to years. Consequently,
a large number of methods known from statistical physics have been applied to char-
acterize the time evolution of stock prices and foreign exchange rates [47].
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Fig. 1. (a) Data analyzed: The S&P 500 index Z(t) for the 13-year period 3 January 1984 – 31 December
1996 at sampling intervals Pt = 1min. These data include the data set analyzed by Mantegna and Stanley
[12–14] and the extension of 7 extra years. Note the large 6uctuations, such as that on 19 October 1987
(“black Monday”). The index Z(t) has an increasing trend except for some crashes, such as the crashes in
October 1987 and May 1990. For the period studied the index can apparently be 2t by a straight line on a
semi-log graph, i.e., exponential growth with annual increase rate of ≈ 15%. (b) Amplitude of 6uctuations,
|G(t)| (see text for de2nition), with Pt = 1min. (c) Volatility VT (t) with T = 1month (8190 min) and
sampling time interval Pt = 30min of the S&P 500 index for the entire 13-year period 1984–1996. The
highlighted block shows possible “precursors” of the October 1987 crash. This 2gure is provided courtesy
of Y. Liu.

Much recent work is based on analysis of the S&P 500 index, an index of the
New York Stock Exchange that consists of 500 companies representative of the US
economy. It is a market-value weighted index (stock price times number of shares
outstanding), with each stock’s weight in the index proportionate to its market value
[12–14,51]. The S&P 500 index is one of the most widely used benchmarks of US
equity performance. Data that we analyzed typically cover a long period, such as 13
years (from January 1984 to December 1996) with a recording frequency of 1 min
or shorter (Fig. 1a). The total number of data points in this 13-year period exceeds
four million, more than three orders of magnitude greater than the classic Mandelbrot
analysis of cotton price 6uctuations [52].
The S&P 500 index Z(t) from 1984 to 1996 has an overall upward drift, approx-

imately linear on a semi-log graph – interrupted by drastic events such as October
1987 and May 1990. Since the standard deviation of Z(t + Pt) − Z(t) is propor-
tional to the price level, one analyzes the logarithmic of the index changes G(t) ≡
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Fig. 2. (a) Semi-log plot of the autocorrelation function of g(t). (b) Autocorrelation function of |g(t)| in
the double-log plot, with sampling time interval Pt = 1min. The horizontal dashed line indicates the noise
level. The autocorrelation function of g(t) decays exponentially to the noise level within half an hour,
C(t) ∼ exp(−t=
) with 
 ≈ 4:0min. In striking contrast, a power law correlation, C(t) ∼ t−�, exists in the
|g(t)| for more than 3 decades. Note that both graphs are truncated at the 2rst zero value of C(t). The solid
line in (b) is the 2t to the function 1=(1+ t�) from which we obtain �=0:30± 0:08. This 2gure is provided
courtesy of Y. Liu.

logeZ(t + Pt) − logeZ(t), where Pt is the time lag. One only counts the number of
minutes during the opening hours of the stock market, and removes the nights, week-
ends and holidays from the data set, i.e., the closing and the next opening of the market
is continuous.
It turns out that the distributions of the increments of economic time series, both

in stock market indices and foreign currency exchange rates, are nearly symmetric
and have very fat tails (strong “leptokurtic” wings) – see, e.g., [12–14,52–56]. Index
increments as a function of time show exponentially decaying correlations that are
at noise level after a few minutes (Fig. 2a) – making them fundamentally di3erent
from many well-studied examples of complex dynamical systems in physics such as,
e.g., turbulent 6ow where power law correlations on long time scales are commonly
observed [53–56].
The situation is di5erent for the volatility, calculated, e.g., averaging market 6uctu-

ations over a suitable time interval (Fig. 1b and 1c). There is long-time persistence in
the volatility – much larger than the correlation time for price changes [51,57–61]. To
quantify the dynamics of the volatility is important, since volatility is the key input of
virtually all option-pricing models, including the classic Black and Scholes model [62]
that is based on estimates of the asset’s volatility over the remaining life of the option.
Speci2cally, using both traditional power spectrum methods as well as a new method

– termed detrended 4uctuation analysis (DFA) [63] – Liu, et al. [55] detect long-range
volatility correlations embedded in a nonstationary time series, and avoid the spurious
detection of apparent long-range correlations that are an artifact of nonstationarities
(Fig. 2b).
To test whether this correlation is a spurious artifact of the distribution function,

which might have long tails, Liu et al. shuTed each point of the volatility time series [51].
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Fig. 3. The mutual information Ia(Pt;Pa) of the variables |Ga(t+Pt)| and |Ga+Pa(t)| is represented in the
(Pt;Pa) half-plane (5 min units). Here Pt is the time lag and Pa is the time scale lag, and |Ga(t +Pt)|
is the price change over scale a at time t + Pt. The time lag Pt spans the interval [ − 2048; 2048] while
the scale lag Pa ranges from Pa = 0 (top) to 1024 (bottom). The amplitude of Ia(Pt;Pa) is coded from
black for zero values to red for maximum positive values (“heat” code), independently at each scale lag Pa.
(a) S&P 500 index. (b) its randomly shuTed increment version. Note that, for middle scale lag values, the
maxima (red spots) of the mutual information in (a) are 2 orders of magnitude larger than the corresponding
maxima in (b). This 2gure is provided courtesy of A. Arneodo, M.-F. Muzy, and D. Sornette.

The random shuTing operation keeps the volatility distribution unchanged, but kills
totally the correlations in the time series if there are any. DFA analysis of this ran-
domly shuTed data does not show any correlations and gives exponent �=0:50. This
tells us that the long-range correlations are genuine and not a spurious artifact of the
heavy-tailed distribution, because the distribution does not change when the data are
shuTed.
Arneodo et al. have recently applied wavelet methods to decompose the volatility

of intraday (S&P 500) return data across scales [64]. They 2nd a causal information
cascade from large scales (i.e., small frequencies or “infrared”) to 2ne scales (“ultravi-
olet”). Further, they devise a clever way to visualize the information 6ux across scales
(see Fig. 3).

3. Histograms of price changes

As economic systems consist of a large number of interacting units, it is plausible that
they might be amenable to scaling analysis. In fact, Mandelbrot in 1963 [52] demon-
strated that the histogram of 6uctuations in cotton prices obeys a scaling distribution,
the LUevy distribution. A recent study determined that the high-frequency 6uctuations in
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the S&P 500 index also exhibits scaling behavior [12–14]. Analyzing almost one million
records at 1 min intervals over 6 years of trading, Mantegna and Stanley determined
that 6uctuations on a 1-min time interval were re6ected in 10-, 100- and 1000-min in-
tervals [12–14]. The distribution of index returns 2ts a LUevy distribution with a sharp
drop o5 in the tails. These scaling properties mean that viewing stock market returns
on 1-min intervals provides insight on the behavior at 1000-min intervals.
Thus the LUevy part of the S&P 500 distribution agrees with Mandelbrot’s 1963 cot-

ton price results, but the tail truncation does not (presumably because the tail statistics
in the low-frequency results are not above the noise level). Recently, Gopikrishnan
and co-workers have asked the question whether this discrepancy could arise from the
fact that the S&P is an average over many 2rms [65,66]. To this end, they analyze
a database documenting each and every trade in the three major US stock markets,
the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), and the
National Association of Securities Dealers Automated Quotation (NASDAQ) for the
entire 2-year period, January 1994 to December 1995. They thereby extract a sample
of approximately ≈ 40 million data points, which is much larger than the four million
data points analyzed by Liu et al. [51,67,68], and the ≈ 2000 data points studied by
Mandelbrot. Gopikrishnan et al. 2nd, remarkably, that an asymptotic power-law behav-
ior, with an exponent � ≈ 3, for the cumulative distribution (Fig. 1 of Gopikrishnan
et al. [65]) is well outside the LUevy regime (0¡�¡ 2). Similar values of � are found
for the S&P 500 index changes (Fig. 4). The volatility histogram can be analyzed in
the same way as the price change histogram, with similar results (Fig. 5). It is inter-
esting that the histogram of volatility changes was initially believed to be log-normal
[51], but later work showed that the wings are by no means log-normal but are instead
power law [68].
In summary, previous proposals for the histogram of index changes have included

(i) a Gaussian distribution [69], (ii) a LUevy distribution [52,70,71], and (iii) a truncated
LUevy distribution, where the tails become “approximately exponential” [12–14,72–76].
The inverse cubic result di5ers from all three proposals: Unlike (i) and (iii), it has
diverging higher moments, and unlike (i) and (ii) it is not a stable distribution.

4. Scale invariance in economics

We and our collaborators have also studied economic data through those special
eyeglasses that suggest that “everything depends on everything else.” Speci2cally, in
collaboration with a card-carrying economist, Michael Salinger – we studied the pos-
sibility that all the companies in a given economy might interact, more or less, like
an Edwards–Anderson spin glass [77,78]. As in an Edwards–Anderson spin glass, each
spin interacts with every other spin – but not with the same coupling and not even
with the same sign.
If the sales of a given business 2rm A decrease by, e.g., 10%, this will have reper-

cussions in the economy. Some of the repercussions will be favorable – 2rm B, which
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Fig. 4. (a) Probability distribution of the normalized price increments, where the abscissa is calculated in
units of a standard deviation, for a database containing approximately 4 million records that lists at typically
15 sec to 1 min intervals the value of the S&P Index over the 13-year period January 1984 to December
1996. The lines are power-law 2ts to the data over the range from 2 to 80 standard deviations. (b) Log–log
plot. The regression lines yield � ≈ 3. This 2gure is courtesy of P. Gopikrishnan, L.A.N. Amaral, and
M. Meyer.

competes with A, may experience an increase in market share. Others will be negative
– service industries that provide personal services for 2rm A employees may experi-
ence a drop-o5 in sales as employee salaries will surely decline. There are positive
and negative correlations for almost any economic change. Can we view the economy
as a complicated spin glass?
To approach this interesting bit of statistical “poetry” and make sense of it, M.H.R.

Stanley and collaborators 2rst located and secured a database – called COMPUSTAT
– that lists the annual size of every 2rm in the United States. With this information,
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Fig. 5. Probability distribution of the volatility with di5erent time windows T with Pt = 30 min. (a) The
center part of the distribution shows a quadratic behavior on the log-linear scale. The asymptotic behavior
seems consistent with a power law. The solid line is a 2t to a long-normal distribution, using the log-normal
scaling form,

√
� exp(a + �=4)P(VT ) as a function of (ln VT − a)=

√
��, where a and � are the mean and

the width on a logarithmic scale. By the scaling, all curves collapse to the log-normal form with a= 0 and
� = 1; exp(−(ln x)2) (solid line). (b) The full distribution (the box indicates the center of the distribution
analyzed in (a)), now shown on a log–log plot. It is apparent that the data 2t well to a power-law with
exponent four. The box shows the region of the distribution that appears to 2t a log-normal distribution,
and it is clear that the data even in this window are better 2t by a power law. We hypothesize that other
distributions that have been interpreted previously to be log-normal may in fact be power law distributions,
since a log-normal distribution is almost indistinguishable from power-law distribution with a large value of
the exponent. The 2gure is courtesy of Y. Liu.
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Stanley and co-workers calculated histograms of how 2rm sizes change from one year
to the next [77,78]. They then made 15 histograms for each of 15 bins of 2rm sizes.
The largest 2rms have very narrow distributions of growth rates – plausible because
the percentage of size change from year to year for the largest 2rms cannot be that
great. On the other hand, a tiny 2rm or a garage-based start-up can radically increase
(or decrease) in size from year to year. Thus these 15 histograms have widths that
depend on the 2rm size. When this width is plotted on the y-axis of log–log paper as
a function of 2rm size on the x-axis, the data are approximately linear over 8 orders
of magnitude, from the tiniest 2rms in the database to the largest. The width scales as
the 2rm size to an exponent �, with � ≈ 1=6 [77,78]. We can therefore normalize the
growth rate and show that all the data collapse on a single curve – demonstrating the
scaling of this measure of 2rm size.
Why does this data collapse occur? Researchers are working on that. Buldyrev mod-

els this 2rm structure as an approximate Cayley tree, in which each subunit of a
2rm reacts to its directives from above with a certain probability distribution [79].
More recently, Amaral et al. [80] have proposed a microscopic model that repro-
duces both the exponent and the distribution function. Takayasu and Okuyama [81]
extended the empirical results to a wide range of countries, and developed still another
model.
It is not impossible to imagine that there are some very general principles of complex

organizations at work here, because similar empirical laws appear to hold for data on
a range of systems that at 2rst sight might not seem to be so closely related. For
example, instead of studying the growth rate of 2rms, one can study the growth rates
of countries by analyzing the ratio of the GDP of a country in one year compared
to its value in the previous year. It appears (Fig. 6) that the histograms of country
GDP sizes behave the same way as the histograms of 2rm sizes [82], even with the
same value of the exponent � ≈ 1

6 . Very recently, Plerou et al. analyzed in the same
way a database comprising research budgets of 719 US universities and found similar
qualitative results [83], but a larger exponent value, � ≈ 1

4 . Amaral’s model o5ers one
possible explanation for this di5erence [80].
A surprising fact that may be related to the foregoing analysis is the following.

Instead of the size of a 2rm at time t (or the size of a GDP or a university budget)
one might analyze the population Ns(t) of a species s in successive years. Such data
exist for a 30-year period for every species sighted in North America, and very recently
Keitt and Stanley [11,84] have analyzed this database using the same sort of techniques
used to describe long-term data sets on economics. They 2nd statistical properties that
are remarkably similar, and consistent with the idea that “every bird species interacts
with every other bird species,” just as the economic analysis supports the notion that
“every economic entity interacts with every other economic entity.”
These empirical results are not without interest, since they represent a departure

from traditional models of economic systems – and bird populations – in which one
partitions the entire data set into strongly interacting and weakly interacting subsets,
and then oversimpli2es or ignores the interactions in the weakly interacting subset.
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Fig. 6. Test of the similarity of the results for the growth of 2rms and countries. (a) Conditional probability
density of annual growth rates for countries and 2rms. All rescaled data collapse onto a single curve showing
that indeed the distributions have the same functional form. (b) Standard deviation of the distribution of
annual growth rates. Note that the standard deviations decay with size with the same exponent for both 2rms
and countries. The size is measured in sales for the 2rms (top axis) and in GDP for the countries (bottom
axis). The 2rm data include all 4000 publicly traded manufacturing 2rms from the 19-year period 1974–1993
(see [77,78] for details), while the GDP data include 152 countries for the 43-year period 1950–1992 (see
[82] for details). This 2gure is provided courtesy of Y. Lee, L.A.N. Amaral, D. Canning, and M. Meyer.

5. Conclusions

What can we say so far, other than just that apparently a number of natural questions
in economics can be investigated quantitatively, using empirical analysis methods not
unlike those used in the study of critical phenomena? And that the quantitative behav-
ior of these complex economic systems – comprised of many animate units – is not
unlike that found in interacting systems comprised of many inanimate submits. Can
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we understand why methods developed in, say, critical phenomena to quantify systems
comprised of inanimate units should apparently apply to complex systems comprised of
animate units? Indeed, the conceptual framework of critical phenomena is increasingly
2nding application in other 2elds, ranging from chemistry and biology [2] to econo-
physics [47,48] and even supercooled liquid water [85]. Why is this? One possible
answer concerns the way in which correlations spread throughout a system, comprised
of units in which “everything depends on everything else.”
The paradox is simply stated: our intuition suggests that the correlation C(r) between

units separated by a distance r should decay exponentially with r – for the same reason
the value of money stored in ones mattress decays exponentially with time (each year
it loses a constant fraction of its worth – due to in6ation). Thus we might expect that
C(r) ∼ e−r=�; where �, the correlation length, is the characteristic length scale above
which the correlation function is negligibly small. Experiments and also calculations
on mathematical models con2rm that correlations usually do decay exponentially, but
if the system is at its critical point, then the rapid exponential decay magically turns
into a long-range power-law decay: magically �→ ∞.

So then how can correlations actually propagate an in2nite distance, without re-
quiring a series of ampli2cation stations all along the way? We can understand such
“in2nite-range propagation” as arising from the huge multiplicity of interaction paths
that connect two spins. The correlation between two spins along each of the interac-
tion paths that connect them decreases exponentially with the length of the path. On
the other hand, the number of such interaction paths increases exponentially, with a
characteristic length that is temperature independent, depending primarily on the lat-
tice dimension. This exponential increase is multiplied by a “gently decaying” power
law that is negligible except for one special circumstance – the critical point. Right
at the critical point, the gently decaying power-law correction factor in the number of
interaction paths, normally negligible, emerges as the victor in this stand-o5 between
the two warring exponential e5ects. As a result, two spins are well correlated even at
arbitrarily large separation.
Will the power laws found empirically to describe complex economic systems ever

be understood in analogous terms? Since we do not even know the nature of the
interactions, if we consider 1000 2rms then there are 1000 × 999=2 or half a million
interactions to guess. What to do? The problem has recently been addressed in a novel
way.
In some ways, the problem of interpreting the correlations between individual stock-

price changes [86] is reminiscent of the diKculties experienced by physicists in the
1950s, in interpreting the spectra of complex nuclei. Large amounts of spectroscopic
data on the energy levels were becoming available but were too complex to be ex-
plained by model calculations because the exact nature of the interactions were un-
known. Random matrix theory was developed in this context, to deal with the statistics
of energy levels of complex systems [87–94].
Recently, methods of random matrix theory have been applied to the analogous

problem in 2nance [95–98]. For example, Plerou and her collaborators analyze the
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cross-correlation matrix of price changes at 30-min intervals of the largest 1000 US
stocks for the 2-year period 1994–1995. In a strongly interacting system like the econ-
omy, one expects signi2cant correlations between subunits. However, they surprisingly
2nd that the statistics of most of the eigenvalues in the spectrum agree with the uni-
versal properties predicted by random matrix theory, but there are deviations only for
a few of the largest eigenvalues. These deviations re6ect cross-correlations between
stocks not explainable purely by randomness.
Another genuine challenge is to achieve results that lead to respect from the eco-

nomics community. Many in the economics community are receptive to new ideas and
approaches of statistical physicists, and it is possible that if statistical physicists pay
attention to the seminal work of economists, then the two 2elds can move forward in
concert.
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