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Abstract

This paper describes a genetic algorithm (GA) to solve the problem of optimal facilities layout in manufacturing

systems design so that material-handling costs are minimized. The paper considers the various material flow

patterns of manufacturing environments of flow shop layout, flow-line layout (single line) with multi-products,

multi-line layout, semi-circular and loop layout. The effectiveness of the GA approach is evaluated with numerical

examples. The cost performance is compared with other approaches. The results show the effectiveness of the GA

approach as a tool to solve problems in facilities layout.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

An effective facility layout design reduces manufacturing lead time, and increases the throughput,

hence increases overall productivity and efficiency of the plant. The major types of arrangements in

manufacturing systems are the process, the flow-line or single line, the multi-line, the semi-circular and

the loop layout. The different layouts are illustrated in Fig. 1, where each box represents a location with

the number in the top section indicates the location number and that in the lower section indicates the

machine number. The single line facility layout problem is considered when multi-products with

different production volume and different process routings need to be manufactured. The selection of a

specific layout defines the way in which parts move from one machine to another machine. The selection
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Fig. 1. Types of layout.
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of a type of the machine layout is affected by a number of factors, namely the number of machines,

available space, similarity of operation sequences and the material handling system used. There are

many types of material handling equipment which include automated guided vehicles, conveyor

systems, robots, and others. The selection of the material handling equipment is important in the design

of a modern manufacturing facility.

The problem in machine layout design is to assign machines to locations within a given layout

arrangement such that a given performance measure is optimized. The measure used here is the

minimization of material handling cost. This problem belongs to the non-polynomial hard (NP-hard)

class. The problem complexity increases exponentially with the number of possible machine locations.

This work presents a genetic algorithm (GA) approach to determine the optimal layout for the

different material flow systems within a manufacturing facility. An optimization model is introduced to

study the layout of machines for different patterns of material flow manufacturing environments. The

effectiveness of the proposed approach is evaluated using numerical example problems benchmarked by

previous researches for the flow shop type. Another numerical example applies the proposed approach to

a flow-line with the multi-products is presented. The results show that the proposed approach provides an

effective means to solve facility layout problems.
2. Mathematical model

The facility layout problem addressed here is the assignment of M machines to N locations in a

manufacturing plant. During the manufacturing process, material flows from one machine to the next

machine until all the processes are completed. The objective of solving the facility layout problem is

therefore to minimize the total material handling cost of the system. To determine the material handling

cost for one of the possible layout plans, the production volumes, production routings, and the cost table

that qualifies the distance between a pair of machines/locations should be known. The following

notations are used in the development of the objective function:
Fij
 amount of material flow among machines i and j (i,jZ1,2,.,M).
Cij
 unit material handling cost between locations of machines i and j (i,jZ1,2,.,M).
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Dij
 rectilinear distance between locations of machines i, and j
C
 total cost of material handling system.
The total cost function is defined as:

C Z
XM

iZ1

XM

jZ1

FijCijDij (1)

The evaluation function considered in this paper is the minimization of material handling cost, which

is the criterion most researchers prefer to apply in solving layout problems. However, the proposed

approach applies to other objective functions as well.
3. Genetic algorithms
3.1. Approach

Early researchers of the facilities layout problem believed that the best approach to solutions was

through the development of the general quadratic assignment problem (QAP). By using the QAP, the

facilities layout problem can be optimally solved by applying implicit enumeration approaches such as

cutting plane, branch and bound approaches, or other operations research techniques. The exact solution

is obtained from optimal methods in a reasonable time only when the problem size is small. It has been

shown that the solution times for the QAP are likely to increase exponentially as a function of the

number facilities to be located. GAs have received a great deal of attention in the recent literature due to

the fact that they do not rely on analytical properties of the function to be optimized which make them

well suited to a wide class of optimization problems.

The GA is a stochastic search technique (Goldberg, 1989; Michalewicz, 1992). It can explore the

solution space by using the concept taken from natural genetics and evolution theory (Kazerooni,

Luonge, & Abhary, 1995; Tavakkoli & Shayan, 1997; Venugopal & Narendran, 1992; Zhang, Zhu, &

Luo, 1997). In recent years, GA has been proposed as an innovative approach to solve the facility

layout problem (Al-Hakim, 2000; Gau & Meller, 1999; Hamamoto, 1999; Islier, 1998; Rajasekharan,

Peters, & Yang, 1998). GA starts with an initial set of random solutions for the problem under

consideration. This set of solutions is known as the population. The individuals of the population are

called ‘chromosomes’. The chromosomes of the population are evaluated according to a predefined

fitness function, which in this case is the material handling cost. The chromosomes evolve through

successive iterations called ‘generations’. During each generation, through merging and modifying

chromosomes of a given population, creates a new population. Merging chromosomes is known as

‘crossover’ while modifying an existing one is known as ‘mutation’. Crossover is the process in which

the chromosomes are mixed and matched in a random fashion to produce a pair of new chromosomes

(offspring). Mutation operator is the process used to rearrange the structure of the chromosome to

produce a new one. The selection of chromosomes to crossover and mutate is based on their fitness

function. Once a new generation is created, deleting members of the present population to make room

for the new generation forms a new population. The process is iterative until a specific stopping
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criterian is reached. The outline of the genetic search process used in this paper is summarized as

follows:
1.
 Randomly generate an initial population of chromosomes with a population size P.
2.
 Evaluate each chromosome in the population according to the material handling cost equation.
3.
 Determine the average fitness for the whole population.
4.
 Use elitist strategy to fix the potential best number of chromosomes by deleting the worst number of

each generation, and copying the best numbers into the succeeding generation. The total number of

chromosomes is kept constant for computational economy and efficiency. The average of whole

chromosomes acts as a guide to which chromosomes are eliminated and which of them ‘gets

reproduced’ in the next generation. This process is applied to eliminate members with a fitness value

P(k) greater than 1.5 times the average of the chromosomes and copying the best number of

chromosomes instead.
5.
 Apply the Monte Carlo selection technique to select parent chromosomes from the current

population. This is used for choosing randomly the parents for the crossover and mutation.
6.
 Apply the crossover and mutation operators to generate a new population based on the values of

crossover and mutation probabilities (pc and pm, respectively). The rest of the population is brought

from the previous population, which has the best fitness value.
7.
 Check the pre-specified automatic stopping criterion. If the stopping criterion is reached, the search

process stops. Otherwise, proceed to the next generation, and go to step 2. The flow chart of the GA

optimization procedure is shown in Fig. 2.
3.2. String representation

The technique of GAs requires a string representation scheme (chromosomes). In this paper, the entire

manufacturing plant/department is divided into N grids and each grid represents a machine location. In

this study, a form of direct representation for strings is used. Fig. 3 shows different examples of different

types of production plant layout with their encoded chromosomes representation. This chromosome

string representation indicates one of the possible machine layout plans of each production type.

Examples of flow shop layout containing 9 machines/departments, production flow line contains 5

workstations, multi-line production system contains 6 machine locations, and a closed-loop layout type

of 8 machines are presented in the figure. A location assigned with the letter ‘e’ represented an empty

area where no machine is allowed to be located.
3.3. Selection operator

The selection operator is applied to select parent chromosomes from the population. A Monte Carlo

selection technique is applied. A parent selection procedure operates as follows:
1.
 Caculate the fitness Fsum (Eq. (1)) of all population members.
2.
 Generate a random number (n) between 0 and Fsum.
3.
 Return the first population member whose fitness, when added to the fitness of the preceding

population members, is greater than or equal to n.



Fig. 2. Flow chart of GA optimization procedure.
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Fig. 3. Types of layout and their chromosomes representation.
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4.
 Repeat Step 3 for the second population member and check that the new selected member is not the

same as the first member.

3.4. Crossover operator

The probability of crossover pc is the probability of applying the crossover operator to these

chromosomes. The remainder of chromosomes will produce offspring chromosomes, identical to their

parents. Otherwise, the selected chromosomes to crossover will be crossed to produce two offspring

chromosomes by using crossover operator. In this paper a new crossover operator is proposed as follows.

Consider a pair of parent chromosomes (P1, P2) shown below:

P1 1 4 7 5 2 8 3 6 9
P2 4 1 6 7 5 2 9 3 8
First, select two random numbers to be aligned to the parents string. Suppose the two random numbers

in this example are 4 and 7. The genes with double-lined borders within the cutting section, i.e. (5,2,8,3)

in P1 and (7,5,2,9) in P2, are exchanged so that a portion of genetic codes from P1 is transferred to P2,

and vice versa. The structures of the resultant chromosomes then become:

PK
1 1 4 7 7 5 2 9 6 9

PK
2 4 1 6 5 2 8 3 3 8
At this stage, several genes are found to exist in more than one position in the resultant chromosomes

(e.g. 7, 9 in PK
1 ; and 3, 8 in PK

2 ). This would mean that a machine represented more than one position has
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more than one machine location in the layout plan. A backward replacement procedure can then be

implemented to change the values of those repeated genes outside the cutting section. The repeated

genes outside the cutting section of PK
1 can be replaced by changing 7 in the third gene by 5, since the

gene 5 in P1 is produced by exchanging with the gene 7 in P2. Gene 5 is however also repeated in PK
1 in

the cutting section. So, this gene is changed again to 2. The gene 9 in PK
1 can also be changed by the gene

3 to obtain the offspring c1. The repeated genes outside the cutting section in PK
2 can also be replaced by

changing gene 8 to 7 (the combined result of changing from 8 to 2, 2 to 5 and 5 to 7) and the gene 3 to 9.

Thus the offspring chromosome c1, and c2 will be:

c1 1 4 8 7 5 2 9 6 3

c2 4 1 6 5 2 8 3 9 7
The cutting section in the proposed crossover operator is selected randomly by two genes in the string.

If the chromosome has large size genes, the cutting section is differing from small to large, which reflects

the flexibility of the proposed approach. Also, for the flexibility of the proposed crossover, the empty

location (letter ‘e’ in the chromosome) in the proposed approach is treated as any location number

without any change in the procedure. The algorithm performs checking after the first step of exchanging

cutting section in the parents to replace the repeated location outside the cutting section in the

chromosome as explained earlier and the number of empty locations in the offspring chromosomes

before crossover will be the same after crossover.

3.5. Mutation operator

The mutation operator is used to rearrange the structure of a chromosome. In this study, the swap

mutation is used, which is simply selecting two genes at random and swapping their contents. The

probability of mutating a single gene is called the probability of mutation pm, which is usually a small

number. Mutation helps to increase the searching power. In order to explain the need of mutation,

consider the case where reproduction or crossover may not produce a good solution to a problem. During

the creation of a generation it is possible that the entire population of strings is missing a vital gene of

information that is important for determining the correct or the most nearly optimum solution (e.g. need

only to swap one gene with another gene). Future generations that would be created using reproduction

and crossover would not be able to alleviate this problem. Here, mutation becomes important.

3.6. Stopping criterion

The program is terminated when either the maximum number of generations is reached, or until the

population converges.

4. Numerical examples

4.1. Sample example I

A comparative evaluation of the proposed approach is made using bench-mark numerical examples.

The first example is taken from Chan and Tansri (1994) and compared with the work of Mak, Wong,



Table 1

Flow of materials between machines

From/to 2 3 4 5 6 7 8 9

1 100 3 0 6 35 190 14 12

2 6 8 109 78 1 1 104

3 0 0 17 100 1 31

4 100 1 247 178 1

5 1 10 1 79

6 0 1 0

7 0 0

8 12
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and Chan (1998) that used the same example to evaluate their work. The plant flow of materials between

machines and material handling cost between machines are presented in Tables 1 and 2, respectively.

The plant configuration layout is a 3!3 grid. The general guidelines proposed by both the works of

Chan and Tansri and Mak et al. is considered to evaluate the performance of the proposed approach.

Their work conducted 19 sets of experiments to determine an appropriate combination of the

population size P and the generation size G. The experimental results are compared with the global

optimal solutions in order to evaluate the performance of the search process for the different

combinations of the population and generation sizes. The exhaustive search method is applied to

determine the global optimal solution and eight optimal machine layouts are obtained (Mak et al., 1998).

Fig. 4 shows the resulting optimal machine layouts giving a material handling cost of $4818. In

addition, the work done by Chan and Tansri (1994) is included three widely used crossover operators.

They are the partially mapped crossover (PMX), the order crossover (OX), and the cycle crossover (CX).

These authors reported that the PMX operator provided excellent results. The proposed approach used in

this paper is therefore compared with the PMX crossover approach, in addition to the approach proposed

by Mak et al. (1998).

The experiments designed in both works used a set of genetic parameters values. The genetic

parameters are the population size, P, the generation size, G, the percentage of replication of well-

performed chromosomes in each generation, R, the probability of crossover pc, and the probability of

mutation pm. In this example, using 9 machines, there are 362 880 possible solutions in the solution
Table 2

Material handling cost between machines

From/to 2 3 4 5 6 7 8 9

1 1 2 3 3 4 2 6 7

2 12 4 7 5 8 6 5

3 5 9 1 1 1 1

4 1 1 1 4 6

5 1 1 1 1

6 1 4 6

7 7 1

8 1



Fig. 4. Optimal facility layouts for sample example I.
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space (9!). However, the reason for using GAs is to obtain reasonable solutions by minimal evaluations.

Hence, it is appropriate to limit the total number of evaluations in each experiment to less than 3% of the

total number of solutions in the solution space. Table 3 lists the different suggested combinations of the

population and generation sizes. Each experiment is run 10 times. Both of the works of Chan and Tansri

(1994) and Mak et al. (1998) used the genetic parameters of RZ5%, pcZ0.6, and pmZ0.001 and have

reported that these work well with these owen parameters. The approach proposed here uses a cut-off of

1.5 times the average fitness value of the whole population of each generation as a replication ratio, pcZ
0.9, and pmZ0.1 per populations. The experimental results shown in Table 3 are expressed in terms of:
1.
 The material handling cost of the best solution among the 10 runs (Best).
2.
 The average of the best material handling costs among the 10 runs (Avg).
3.
 The number of runs needed to obtain one of the eight optimal solutions (#).

In general, an increase in the population and generation sizes can provides better solutions since the

number of sampling solutions from the solution space is enlarged. The general cost performance for the

three different approaches is studied with the used sampling solution space. The different combinations

of population P and generations G of the 19 experiments represent a different solution space.

The results of the study show that the proposed approach is more efficient than the two other

approaches when solving facility layout problem. The results listed in Table 3 show that the proposed

approach produces 81 successful runs to obtain one of the eight optimal solutions among 37 of the work

of Mak et al. (1998) and 23 among the work of Chan and Tansri (1994). The proposed approach success

to obtain the optimal solution in 17 experiments from the 19 among 12 of the work of Mak et al. and 8 of

the work of Chan and Tansri. The approach proposed here provides good results for the different

combinations of the population and generation sizes.
4.2. Sample example II

This example is taken from Kazerooni, Luonge, Abhary, Chan, and Pun (1996) and the results are

compared with the works of Chan and Tansri (1994) and Mak et al. (1998). Table 4 presents the part list

and the corresponding production data of the parts. The material handling costs are assumed to be the

same among machines. The problem seeks to locate 24 types of machines in a 5!6 machine location

grid, giving 2.65!1032 (30!) possible solution in the solution space making the determination of the

optimal solution by using the exhaustive search method is impossible in this case. The proposed

approach is applied to solve the problem with the genetic parameters PZ200, GZ40 pcZ0.9, and pmZ
0.1 per population. For comparison, the work proposed by Mak et al. and the three widely used crossover



Table 3

The experimental results for sample problem I

Exp. P G No. of

trials

Proposed approach Mak et al. PMX (Chan and Tansri)

Best Avg. # Best Avg. # Best Avg. #

1 20 10 200 5039 5310.1 0 5233 5504.4 0 4938 5434.8 0

2 40 10 400 4818 5231.9 1 5040 5286.7 0 5039 5263.8 0

3 100 10 1000 4818 4961 2 4818 5024.8 1 4938 5164.9 0

4 200 10 2000 4818 4895.9 5 4818 4891.4 2 4818 4966.8 2

5 500 10 5000 4818 4822 9 4818 4833.2 7 4818 4892.3 5

6 20 20 400 4872 5172.9 0 5225 5481.2 0 4938 5402.1 0

7 40 20 800 4818 5052 1 4927 5174.6 0 4992 5184.6 0

8 100 20 2000 4818 4855.2 4 4818 4889.1 4 4818 4991.7 2

9 200 20 4000 4818 4842.1 6 4818 4846.5 5 4818 4919.8 2

10 20 40 800 4818 5074.1 2 5225 5462.2 0 4938 5402.1 0

11 40 40 1600 4818 4979.5 2 4927 5163.8 0 4992 5180.7 0

12 100 40 4000 4818 4842.8 7 4818 4871.4 4 4818 4919.5 3

13 200 40 8000 4818 4842.1 6 4818 8440 5 4818 4887.9 4

14 20 100 2000 4818 4940.9 5 5225 5453 0 4938 5337 0

15 40 100 4000 4818 4862.7 6 4818 5141.6 1 4927 5122.4 0

16 100 100 10 000 4818 4826.8 8 4818 4866 5 4818 4863.9 4

17 20 200 4000 4818 4893.6 6 4818 5303.9 1 4938 5224.6 0

18 40 200 8000 4818 4858.3 7 4818 5141.4 1 4862 5088.4 0

19 10 500 5000 4818 4983.7 4 4818 5184.3 1 4818 5166.1 1

81 37 23
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Table 4

Part list and production data for sample example II

Product Volume Production routing

mch_1 mch_2 mch_3 mch_4 mch_5 mch_6

P01 130 22 1 13 21

P02 150 3 20 24 0

P03 125 14 7 23 24

P04 145 15 6 18 8 12

P05 65 15 6 18 8 12 5

P06 78 9 17 10

P07 95 9 17 10

P08 160 4 16 0

P09 85 22 1 13

P10 105 2 11 19 5 21

P11 130 3 20

P12 140 3 20

P13 150 2 11 19

P14 185 2 11 19 5

P15 78 3 20 0 0

P16 95 22 1 13 21

P17 160 1 13 22

P18 85 15 6 18 8 12

P19 105 4 16

P20 130 10 17 12

P21 105 4 16

P22 130 2 5 11 19

P23 140 3

P24 150 20 12

P25 185 7 14 23

P26 145 15 6 18 8 10

P27 65 15 6 18 8 12

P28 78 4

P29 95 9 17

P30 160 6 18 8 12

P31 85 3 20 17 0

P32 105 14 7 23 24 16

P33 130 22 1 13 21 2

P34 150 3 20

P35 125 11 19 5

P36 145 20 12 21

P37 65 16 11 14

P38 78 4 16 0

P39 95 4 16 0

P40 160 1 13 19
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operation namely the PMX, OX, and CX operators listed in Mak et al. are considered to evaluate the

proposed approach. They used a genetic parameters of PZ200, GZ40, RZ4%, pcZ0.6, and pmZ
0.001. Thirty runs of genetic searches are conducted for each proposed solution and the results are shown

in Table 5.



Table 5

Results of solving sample problem II

Method Best (30 runs) Avg. (30 runs) Worst (30 runs) Successful hits

Proposed approach 11 862 11 871.8 13 373 23

Mak et al. 12 892 15 087.7 18 657 11

PMX 14 947 18 355.9 20 654 0

OX 22 406 24 301.7 26 926 0

CX 14 717 17 216.5 20 654 0

Fig. 5. The best facility layout of sample example II.

M.A. El-Baz / Computers & Industrial Engineering 47 (2004) 233–246244
Table 5 gives a comparison between the different methods indicating that the approach proposed here

obtains a more efficient solution as compared to the other methods. The results show that during the

30 runs, the PMX, OX, and CX operators do not produce the best solution obtained by the work of

Mak et al. (1998) and they obtain their best solution 11 times from the 30 runs. The proposed approach

also obtains a better solution than the work of Mak et al. and obtains this result 23 out of the 30 runs.

Again, the proposed approach still obtains good results while the values of genetic parameter are not
Table 6

Input information for 18 parts and 12 machines

Part Production volume Machine routs

P01 100 M1–M4–M2–M6

P02 120 M3–M5–M12–M10

P03 50 M2–M4–M12–M6

P04 45 M5–M8–M10

P05 60 M3–M5–M12–M6

P06 80 M4–M2–M4–M6

P07 90 M1–M5–M9

P08 120 M3–M7–M10–M4–M8

P09 140 M1–M4–M6

P10 180 M3–M12–M8–M10

P11 80 M2–M6–M2–M4–M6

P12 60 M11–M9–M10–M8

P13 70 M1–M4–M5–M7

P14 150 M2–M4–M6–M2–M6

P15 120 M3–M7–M9–M10

P16 120 M3–M10–M12–M9–M12

P17 100 M5–M10–M8–M9–M12

P18 90 M2–M8–M9–M10



Fig. 6. Layout of sample example III.
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affecting the quality of the solutions. The best facility layout obtained by the proposed approach is

presented in Fig. 5.

4.3. Sample example III

This example applies the proposed approach on a flow line with multi products. The flow line layout

configuration arranged the machines along a straight track with a fixed path material handling

equipment. The ordering of machines in the layout is made to be as close as possible to the sequence in

which parts to be processed in the layout visit the machines. Table 6 presents the input data for this

example. The material handling costs are assumed to be the same among machines. The genetic

parameters used in this example are PZ100, GZ40, pcZ0.9, pmZ0.1 per population, and a number of

runsZ10. The material handling cost obtained from this example is 11 440. The solution layout is

presented in Fig. 6.
5. Conclusion

This paper proposes an approach using GAs to solve facility layout problems. The proposed approach

considers different types of manufacturing layout environments. They include flow shop layout, flow-

line layout with multi-products, multi-line layout, semi-circular and loop layout. The proposed GA

approach produces the optimal machine layout which minimizes the total material handling cost.

The effectiveness of the proposed approach has been examined by using two benchmark problems, the

first used by Chan and Tansri (1994), and the second used by Kazerooni et al. (1996). The results are also

compared with the work of Mak et al. (1998). The comparison indicates that the proposed approach is

more efficient and has a higher chance of obtaining the best solution for the facility layout problem. A

third example to solve the facility layout problem of flow line with multi products shows that the

proposed approach provides good results in all sample problems. In addition, it has an advantage for

tackling different manufacturing types of layout environments.
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