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Dissection of genetically complex traits with
extremely large pools of yeast segregants
Ian M. Ehrenreich1,2,3, Noorossadat Torabi1,4, Yue Jia1,3, Jonathan Kent1, Stephen Martis1, Joshua A. Shapiro1,2,3,
David Gresham1{, Amy A. Caudy1 & Leonid Kruglyak1,2,3

Most heritable traits, including many human diseases1, are caused
by multiple loci. Studies in both humans and model organisms,
such as yeast, have failed to detect a large fraction of the loci that
underlie such complex traits2,3. A lack of statistical power to
identify multiple loci with small effects is undoubtedly one of the
primary reasons for this problem. We have developed a method in
yeast that allows the use of much larger sample sizes than previ-
ously possible and hence permits the detection of multiple loci with
small effects. The method involves generating very large numbers
of progeny from a cross between two Saccharomyces cerevisiae
strains and then phenotyping and genotyping pools of these off-
spring. We applied the method to 17 chemical resistance traits and
mitochondrial function, and identified loci for each of these phe-
notypes. We show that the level of genetic complexity underlying
these quantitative traits is highly variable, with some traits influ-
enced by one major locus and others by at least 20 loci. Our results
provide an empirical demonstration of the genetic complexity of a
number of traits and show that it is possible to identify many of the
underlying factors using straightforward techniques. Our method
should have broad applications in yeast and can be extended to
other organisms.

Genome-wide association studies (GWAS) have recently detected
many trait loci in humans4. Despite the large number of loci that have
been identified by GWAS, case studies, such as human height5, have
shown that we remain unable to explain the genetic basis of complex
traits in our population2. Controlled crosses in model organisms can
shed light on this problem by elucidating basic principles that govern
the genetic basis of trait variation. However, akin to the problem in
humans, mapping studies in model organisms typically detect only a
fraction of the loci underlying heritable traits, implying that they lack
statistical power3.

Very large mapping populations are needed to dissect comprehen-
sively the genetic basis of highly complex traits. In many cases, geno-
typing and phenotyping on a sufficient scale will not be feasible without
the use of methods that examine pools of individuals. One such
method, bulk segregant analysis (BSA), was first proposed nearly
twenty years ago as an expeditious approach for mapping quantitative
trait loci (QTLs)6, and its modern implementations are commonly
used to map major effect QTLs and Mendelian loci7–11. However,
BSA has yet to be effectively used to dissect a highly complex trait, even
though simulations indicate that it should be capable of detecting
numerous small-effect loci with high resolution when .105 cross pro-
geny are used (Supplementary Figs 1 and 2). We have developed a
powerful extension of BSA that can be used to map complex traits in
yeast comprehensively. Extreme QTL mapping (X-QTL) has three key
steps. The first is the generation of segregating populations of very large
size. The second is selection-based phenotyping of these populations to

recover large numbers of progeny with extreme trait values. This can be
accomplished, for example, by selection for drug resistance or by cell
sorting. The final step is quantitative measurement of pooled allele
frequencies across the genome, by either microarray-based genotyping
or massively parallel sequencing.

To generate the pools of segregants that form the starting point for
X-QTL, we implemented the Synthetic Genetic Array (SGA) marker
scheme12,13, which enables the recovery of MATa haploids from a
cross of appropriately marked parental strains (Fig. 1a, b). We used
the Saccharomyces cerevisiae strains BY4716 (hereafter referred to as
BY), a laboratory strain, and RM11-1a (hereafter referred to as RM),
a wine strain, as the progenitors of the pools. We crossed these strains
to form a diploid, sporulated the diploid, and selected for ,107

unique BY3RM MATa haploid segregants. We designed an allele-
specific genotyping microarray with isothermal probes14 that assays
,18,000 single nucleotide polymorphisms (SNPs) between BY and
RM. We tested the array by hybridizing the haploid and diploid
progenitor strains, as well as multiple MATa pools, and found that
we could discriminate the parental strains and reproducibly identify
deviations in allele frequencies associated with the SGA markers and
other loci in the segregating pools (Fig. 1c–e). Comparable results
were obtained by sequencing pools to ,1803 coverage with the
Illumina Genome Analyzer (Fig. 1e).

We first used X-QTL to map the genetic basis of sensitivity to
4-nitroquinoline (4-NQO), a DNA damaging agent. We previously
showed that sensitivity to 4-NQO is a complex trait in the BY3RM
cross15. BY3RM segregants show varying degrees of sensitivity, and
the parental strains are both intermediate relative to their progeny,
suggesting contributions of multiple alleles from each parent.
Conventional QTL mapping with 123 genotyped segregants detected
a single significant locus on chromosome 12, and subsequent experi-
ments identified an amino acid substitution in the DNA repair gene
RAD5 as the underlying causative polymorphism. A backcrossing
strategy identified a smaller contributing effect of a polymorphism
in the gene MKT1. The BY allele of RAD5 and the RM allele of MKT1
conferred 4-NQO resistance, but these loci did not fully explain the
observed 4-NQO responses of the segregants, implying that addi-
tional loci must exist.

To map the genetic basis of sensitivity to 4-NQO using X-QTL, we
first plated segregating pools across a range of drug doses to find a
highly selective 4-NQO concentration. We then conducted 4-NQO
selections at this concentration, while in parallel growing control
populations on rich medium without the drug. 4-NQO-resistant
and control pools were harvested, and the extracted DNA was hybri-
dized to genotyping microarrays. To identify loci that confer resist-
ance to 4-NQO, we scanned the genome for locations at which allele
frequencies in selected pools were significantly different from the
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control pools (Supplementary Methods). Using this approach, we
identified 14 loci in the 4-NQO selection at a false discovery rate
(FDR) of 0.05. Similar deviations in allele frequency in the selected
pools were observed when the genotyping step was carried out by
either arrays or short-read sequencing (X-QTL-seq; Supplementary
Fig. 3).

We examined whether the loci identified by X-QTL for 4-NQO
resistance correspond to real biological effects. Using X-QTL, we
observed peaks at RAD5 and MKT1, with both loci selected in the
expected direction (Fig. 2). We confirmed that the peak overlapping
RAD5 was actually due to this gene by repeating the BY3RM cross
with an RM parent strain that had the BY version of RAD5. When
4-NQO resistance was mapped in the selected pool with RAD5 fixed,
the resulting segregating pool showed increased resistance to 4-NQO,

and no RAD5 peak was observed by X-QTL (Fig. 2). Next, we isolated
96 individual progeny from the same cross used to generate the
segregating pools, phenotyped them for 4-NQO sensitivity, and
genotyped them at the 14 loci identified by X-QTL. Nine of the loci
showed significant effects in this independent data set (P , 0.05), five
of which were highly significant (P , 0.001). The loci jointly
explained 59% of the phenotypic variance in 4-NQO sensitivity in
an additive model (Supplementary Fig. 4). Because we measured
the heritability of this trait to be 0.84, the loci explained 70% of
the genetic variance, indicating that we have explained most of the
genetic basis of this trait with the loci detected by X-QTL.

We next applied X-QTL to resistance to 16 diverse chemical agents
(Supplementary Table 1), including a detergent and a number of
antifungal compounds, using the same methodology that was used
for 4-NQO. At a global FDR of 0.05, we mapped 177 total loci for
these 16 traits. We detected between 1 and 24 peaks in pools selected
on these agents. Including 4-NQO, we detect an average of 11 peaks
per trait, suggesting high genetic complexity for many traits. The 17
traits show marked differences in their genetic architectures (Fig. 3
and Supplementary Fig. 5). At the simpler end of the range, resistance
to cadmium chloride, copper sulphate and ethanol is controlled by
one major locus for each trait (Fig. 3a). At the other extreme, we
identified more than 20 loci in the diamide, hydrogen peroxide and
sodium dodecyl sulphate selections (Fig. 3b). Other traits show inter-
mediate levels of complexity (Fig. 3c, d).

We compared the 191 peaks detected across the 17 traits. The
genome was divided into 20-kilobase (kb) bins, and all loci within a
bin were grouped together. Using this procedure, we found 123 dis-
tinct loci (Fig. 3e). Of these, 82 loci (,67%) were trait-specific. For
instance, a peak was detected at RAD5 on chromosome XII only in our
analysis of resistance to 4-NQO. Similarly, the major locus for copper
sulphate resistance, which was previously mapped in a screen for
QTLs involved in resistance to small molecules in the BY3RM cross16,
coincides with the location of the CUP1 genes on chromosome VIII
and was detected only in the copper sulphate selection. Of the 41
remaining loci, 40 were detected for 2 to 5 traits, and 1 locus, which
overlaps MKT1, was detected for 8 different compounds. An amino
acid polymorphism in MKT1 is known to be involved in a large
number of trait differences between BY and other strains, including
4-NQO resistance15, sensitivity to dipropyldopamine and pheny-
lephrine17, high temperature growth18, sporulation efficiency19, gene
expression20, and growth of petite colonies21. Our results suggest that
in addition to these previously studied phenotypes, MKT1 also has a
broadly pleiotropic effect on drug resistance under the conditions of
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Figure 1 | X-QTL design and quantitative allele frequency measurement in
DNA pools. a, b, The crossing design used for X-QTL is shown in a, whereas
the selection scheme used to generate segregating pools is shown in b. can/
thia, canavanine/thialysine. c–e, Genotyping of parental strains (c), two
segregating pools (d) and an unselected control pool grown on rich medium
(e) is shown. Dotted lines at zero indicate no difference between the log10

ratios of the BY and RM allele-specific probes. Enrichment of the BY allele is
indicated by deviations above 0 and enrichment of the RM allele is indicated
by deviations below 0. For the segregating pools, both the control loci
involved in MATa selection and the dye used for reference labelling are
denoted. In d, we use a dye-swap experiment to show that the dye used for
labelling does not cause any bias in allele frequency measurement. Panels
d and e differ in that d shows a MATa pool before plating on rich medium
and e shows a MATa pool after 2 days of growth on rich medium. In e, the
same pool was hybridized to the genotyping microarray and was sequenced
to ,1803 coverage with the Illumina Genome Analyzer. The results in c and
d are plots of raw data with no sites removed, whereas in e raw data was
plotted with sites more than 1.5 standard deviations away from the local
average of the 10 nearest data points removed for clarity.
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our study. Furthermore, our results suggest that X-QTL detects loci at
a fine resolution, as the locations of the peaks corresponding to MKT1
and RAD5 were estimated to be within 2 kb of these genes themselves
(Supplementary Table 2). The loci we have detected across 17 com-
pounds thus provide a foundation for comprehensively studying the
molecular mechanisms that shape phenotypic variation in response to
chemical agents among yeast strains.

Selections for resistance to chemical agents permit only one
extreme tail of the phenotype distribution to be sampled. Addi-
tional insights can be gained from selections where both high and
low extreme segregants can be recovered. Fluorescence-activated cell
sorting (FACS) provides a straightforward approach to such two-
tailed selections, as large numbers of individuals exhibiting high

and low values for a stain or reporter can easily be recovered. To
pilot this approach, we used the dye Mitotracker red, which stains
cells depending on the mitochondrial proton gradient and mito-
chondrial volume. We harvested a MATa pool, stained it with
Mitotracker red, and then sorted out extreme cells by FACS. We
sorted a population of ,5 3 106 cells and selected 3 3 104 cells from
each tail. These selected cells were then grown up on agar plates with
rich medium to generate enough cells from which to extract DNA.
DNA pools from both tails, as well as from a subsample of the whole
population, were hybridized to the genotyping microarray.

Comparison of the high and low extremes found multiple major
peaks at an FDR of 0.05 (Fig. 4). These peaks showed similar heights
but opposite directions in the two tails. The location of one of the
peaks provided a strong candidate for the causal gene. The peak on
chromosome XII spans HAP1, a zinc finger transcription factor
involved in response to oxygen. HAP1 was previously shown to be
a hotspot for trans regulation of gene expression differences in the
BY3RM cross22,23. BY has a partially functional allele of HAP1 due to
a Ty transposon insertion in the HAP1 coding region24, whereas RM
has a fully functional HAP1 allele. Consistent with HAP1’s function,
segregants carrying the RM allele of HAP1 show increased oxidative
capacity based on X-QTL mapping. Comparison of BY with a par-
tially functional HAP1 to BY with a fully functional HAP1 shows that
HAP1 has a causal role in variation in Mitotracker red staining
(Supplementary Fig. 6).

X-QTL represents a powerful method for rapidly and cost-
effectively mapping the multiple QTLs underlying a trait difference
between two yeast strains. We have used X-QTL to demonstrate
empirically that many traits have a highly complex genetic basis.
These results are consistent with previous studies in yeast, such as those
focused on transcript levels3, protein abundance25 and sensitivity to
chemical agents16, in which genetic complexity was inferred from trait
distributions and a lack of mapped loci, rather than from direct detec-
tion of multiple loci as we have accomplished here. Our results agree
with those from the comprehensive genetic dissection of a small num-
ber of traits in other model organisms, such as bristle number in
Drosophila26 and flowering time in maize27, which have shown that
dozens of loci can underlie a difference between two individuals.
Notably, whereas these studies required substantial labour, time and
resources, X-QTL is a quick and easy approach to achieve a comparable
level of genetic dissection. The levels of complexity observed here (for
example, 14 loci explaining 70% of the genetic variance for 4-NQO
resistance) are still markedly lower than those seen for some human
traits in GWAS (for example, 40 loci explaining 5% of the variance for
height2,5). One obvious explanation is the difference in experimental
designs (line crosses versus population association studies), but differ-
ences in genetic architectures among species and traits may also con-
tribute. The comprehensive genetic dissection of complex traits by
X-QTL makes it possible to answer empirically many of the basic
questions about the genetic architecture of complex traits, including
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the number of loci underlying a trait and the distribution of their allele
frequencies in a population. High-resolution mapping of these loci
also enables identification of the underlying genes and sequence
variants, as well as investigation of allelic effect sizes and genetic inter-
actions. We anticipate that general insights from such studies will be
applicable to understanding the genetics of complex traits in other
organisms, including humans, and that variants of X-QTL can be
developed for other species.

METHODS SUMMARY
Microarray hybridizations. DNA was extracted from segregating pools using

Qiagen Genomic-tip 100/G columns. DNA was labelled using array comparative

genomic hybridization reagents from Invitrogen and Cy3- or Cy5-labelled dUTP

from Enzo. Hybridization, scanning and feature extraction were done using

Agilent equipment and software. Normalization of arrays was done using the

rank invariant method within the Agilent software.

Statistical analysis. For a given SNP, the difference in log10 ratios of the intensities

of the BY and RM allele-specific probes on a single array was computed, and this

metric was used in downstream analyses. In cases where a SNP was represented by

two probe sets, the probe sets were used as separate data points. For the drug

selections, selection and control experiments were compared using t-tests with

equal variances. A regression-based peak-finding approach was then used, which
scans the genome for locations where the slope in –log10(P) values changes signs.

Significance levels were determined by permutation (Fig. 3c). For the Mitotracker

red study, the high- and low-staining pools were compared using t-tests with

equal variances. QVALUE28 was then used to determine an FDR based on the

observed P values.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Construction of segregating pools. To construct segregating pools, we use the

Synthetic Genetic Array (SGA) marker system12,13. In our cross, we use a BY

parent that is MATa can1D::STE2pr-SpHIS5 lyp1D his3D1 and an RM parent

that is MATa AMN1BY his3D0::NatMX ho::HphMX. These strains were crossed

and a diploid zygote was recovered.

To create the segregating pools, a single colony of the diploid progenitor was

inoculated into 100 ml YPD and grown to stationary phase. The diploid culture

was spun down and the supernatant was decanted. The diploid pellet was then

resuspended in 200 ml Spo11 sporulation medium (http://www.genomics.

princeton.edu/dunham/sporulationdissection.htm). The sporulation was kept

at room temperature (,22 uC) with shaking and monitored for the fraction of

diploids that had sporulated. Once more than 50% of the diploids had sporu-

lated, the culture was deemed suitable for downstream use.

The next step in the generation of segregating pools was to select for MATa
haploids. Fifty millilitres of the sporulation were spun down and then the super-

natant was decanted. The pellet was resuspended in 1 ml water. Three-hundred

microlitres b-glucoronidase (Sigma; G7770) were added to the preparation and

the mixture was incubated at 30 uC for 1 h. Approximately 50 ml of glass beads

(Sigma; G8772) were then added and the sample was vortexed for 2 min. The

sample was incubated for an additional hour at 30 uC, followed by a second

round of vortexing for 2 min. Water was added to the sample so that the total

volume was 20 ml. The spore preparation was spread onto YNB 1 canavanine/

thialysine (Sigma; C9758 for canavanine (L-canavanine sulphate salt); A2636 for

thialysine (S-(2-aminoethyl)- L-cysteine hydrochloride)), with 100ml of sample

going onto each plate. The plates were incubated at 30 uC. MATa haploids

typically grew up after ,2 days.

The final step in pool creation was to mix together MATa segregants selected

on different plates. Ten millilitres of water were poured onto a plate and a sterile

spreader was used to remove the segregants from the plate. The cell mixtures

from each plate were then pipetted off the plates into a separate container. The

pool was spun down and the water decanted. For drug selections, the cell pellet

was resuspended in 1.5 ml YPD per scraped plate. The segregant pool was incu-

bated at 30 uC for 1 h. One-hundred microlitres of this segregant pool was then

spread onto each selection or control plate. For sorting of Mitotracker red-

stained cells, haploid segregants selected on YNB 1 canavanine/thialysine were

scraped from plates and inoculated into YNB 1 canavanine liquid medium at a

concentration of around ,3 3 106 cells ml21. The cells were grown for approxi-

mately three generations to a density of ,2 3 107 cells ml21.

Drug selections with segregating pools. X-QTL should be most powerful when

selections are stringent, as this implies that one is enriching for segregants that

are phenotypically extreme and are likely to possess multiple alleles that affect a

trait in the same direction. For cell sorting, such selections are straightforward, as

individual cells exhibiting a trait value within a specified range can be isolated.

For chemical resistance mapping, achieving a stringent selection is slightly more

challenging, as a whole population of cells is plated and one can only enrich for

segregants with high trait values.

Drug selections with segregating pools require finding the optimal concen-

tration to use for a particular compound before X-QTL mapping. To do this, we

plate segregating pools across a range of concentrations. The concentration at

which we start to resolve individual colonies on plates is the concentration that

we use for X-QTL mapping. The fact that we observe ,5 3 102 to ,5 3 103

individual colonies when we plate more than 106 individuals implies that we are

selecting far into the resistance tail of the phenotype distribution. Final concen-

trations used for the chemical selections are in Supplementary Table 1. After

selection was completed, several replicate selection plates were scraped, pooled

and frozen at 280 uC. Control experiments were also conducted by plating

segregating pools on YPD without any drug added, and pools were collected

and stored in the same manner as the selections.

We attempted to combine MATa selections with our chemical resistance selec-

tions by incorporating a chemical of interest into our YNB 1 canavanaine/thialysine

plates. We found that this approach worked far worse than separating the selection

of MATa haploids and the selection of resistant segregants into two steps.

Microarray description. We designed our array using 21,994 BY and RM allele-

specific probe pairs. These pairs cover 17,566 SNPs that differentiate BY and RM,

at an average spacing of one marker every ,700 bp. The BY-specific probes were

designed as part of a separate study of optimal probe design parameters for DNA

genotyping arrays and were chosen to minimize the variance in Tm values across

probes14. For this study, we used the previously designed BY-specific probes and

made an additional probe specific to the RM sequence. To maximize the sens-

itivity of our genotyping array, probes were chosen to have the interrogated SNP

within the middle five bases of a given probe. Our custom two-colour microarray

was manufactured by Agilent.

DNA extraction, labelling and microarray hybridization. DNA was extracted

from parental strains and segregating pools using Genomic-tip 100/G columns

(Qiagen; 10243). DNA was labelled using the BioPrime Array CGH Genomic

Labeling Module (Invitrogen; 18095-012) with the sample being labelled with

Cy3 dUTP and the reference being labelled with Cy5 dUTP in most cases. We

used a BY/RM diploid as the reference for all hybridizations. Hybridization

intensities were extracted and normalized using the rank invariant method in

the Agilent Feature Extraction software package.

Comparison of microarray data to sequencing data. DNA from the same

control and 4-NQO-selected segregating pools was hybridized to the microarray

and sequenced on the Illumina Genome Analyzer using 75-bp reads. Two bio-

logical replicate control and two biological replicate 4-NQO-selected pools were

sequenced. Except for one of the replicate controls that was sequenced in a single

lane, each sample was sequenced in two lanes. To analyse the Genome Analyser

data, sequencing reads were mapped to the BY genome using ELAND and the

Illumina EXPORT files were converted into SAM format using SAMTOOLS29.

The PILEUP function in SAMTOOLS was used to reformat the sequence data.

Sequence data at polymorphic sites included on the genotyping microarray were

extracted from the PILEUP file and only these sites were analysed. The poly-

morphic sites were subjected to a quality filter, with only sites having a quality

score of 10 or higher used. The coverage was ,603 per site in each lane.

Supplementary Fig. 3 shows only one lane (,603) of sequence data from a

4-NQO selection, four aggregated lanes of sequence data (,2403) from both

4-NQO selections, and a single microarray. Even at 603 sequencing coverage,

peaks are discernible, although the variance in measured allele frequencies is

high. 2403 coverage provides results comparable to the genotyping microarray.

Our results suggest that both X-QTL and X-QTL-seq are useful approaches to

genetic mapping in pools of cross progeny.

Mapping results for drug traits. Before analysis, each array was subjected to a

quality check that both allele-specific probes for a given probe set had success-

fully hybridized. Bad probe sets were excluded from downstream analyses. We

conducted separate analyses for the drug selection and FACS-based selection

experiments.

The difference in the log10 ratios of the intensities of the BY and RM allele-

specific probes on a single array was computed for a given SNP, and this metric

was used in downstream analyses. In cases where a SNP was represented by two

probe sets, the probe sets were used as separate data points. For the drug selec-

tions, t-tests were conducted comparing results from two independent selection

experiments to results from 13 independent control experiments. t-tests were

conducted with the variances of the two groups set to be equal. The –log10(P)

values were then used for unsupervised peak calling. We found that an approach

that scanned the genome for inflection points in the slope of the average –

log10(P) values worked best. By definition, a peak is a point at which the slope

of the data changes sign. When scanning –log10(P) values, which are always

positive, a peak is represented by a positive to negative sign change.

To identify inflection points, we first smoothed the data by averaging the –

log10(P) values within 50-kb sliding windows. We then scanned the genome

chromosome-by-chromosome by resistance trait using sliding window linear

regression. We fit linear regressions over 100-kb sliding windows and used the

slope of these regressions to estimate the locations of peaks. A special case was

allowed at the ends of chromosomes in which peaks were recorded if the slope

was negative at the top of the chromosome or positive at the bottom of the

chromosome. The average –log10(P) value at estimated peaks was recorded

and used for thresholding. The same approach was used to analyse 1,000 per-

mutations of the chemical resistance data set, in which two randomly chosen

arrays (‘selections’) were compared to 13 randomly chosen arrays (‘controls’). A

requirement was set on the permuted data sets that the selection arrays never be

biological replicates of the same real trait selection. Because of uncertainty about

what constitutes a distinct peak under cases of close linkage, we set a requirement

that two peaks could not occur within 200 kb of each other. Increasing or

decreasing this proximity threshold results in a slightly different number of

called peaks, but does not affect the general findings of the paper. Inflection

points detected in the permutations were used to set an empirical FDR threshold

of 0.05. We used a global FDR threshold, as opposed to a trait-level FDR, as most

observed expected–observed peak relationships at the trait level were very close

to the global relationship (Fig. 3d). Average 2log10(P) plots, as well as significant

peaks, are provided for each trait in Supplementary Fig. 5a–q.

For the FACS experiment, three low, three high and three whole-population

biological replicates were generated. Because of the small number of arrays in the

experiment, permutations were unlikely to be useful for setting an empirical FDR

threshold. Furthermore, because the data structure of the FACS experiment,

which used two tails of the segregant distribution, was different from the drug

selections, which used only one tail of the segregant distribution, we could not

use the drug selections in permutations of the FACS data. For these reasons, we
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used QVALUE28, which estimates the FDR using the distribution of P values in

an experiment, to determine probes that were significant at an FDR of 0.05. We

show this threshold in Fig. 4.

All analyses were conducted in R.

29. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics
25, 2078–2079 (2009).
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