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Keywords: In this paper a recurrence technique for calculating Adomian polynomials is proposed, the
Adomﬁan polynomia‘ls convergence of the series for the Adomian polynomials is discussed, and the dependence of
AdOﬂ{llan decomposition method the convergent domain of the solution’s decomposition series > ju, on the initial compo-
Nonlinear operator nent function ug is illustrated. By introducing the index vectors of the Adomian polynomi-

als the recurrence relations of the index vectors are discovered and the recurrence triangle
is given. The method simplifies the computation of the Adomian polynomials. In order to
obtain a solution’s decomposition series with larger domain of convergence, we illustrate
by examples that the domain of convergence can be changed by choosing a different 1, and
a modified iteration.
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1. Introduction

The Adomian decomposition method [1-3] has been used to give analytic approximation for a large class of linear and
nonlinear functional equations, including differential equations, integral equations, integro-differential equations, etc.
Let us recall the basic principles of this technique by a second order ordinary differential equation in the form

Lu + Ru + f(u) = g(¢), (1)

where L = % R is the remaining linear operator grouping the lower order derivatives, f represents an analytic nonlinear
operator and g is a given function.
Integrating (1) yields

u=u(0)+u(0)t+L"'g—L"Ru—L"f(u), (2)

for the initial value problems, where L' is the two-fold definite integration operator from O to t. For boundary value prob-
lems indefinite integrations are used and constants are evaluated from the given conditions.

The decomposition method consists in looking for the solution in the series form u = ", ju,. The nonlinear operator is
decomposed as

fwy=>" A, 3)
n=0
where A, depends on ug, us,...,u,, called the Adomian polynomials that are obtained by writing
u(l) = ud", f(u(z) => A", (4)
n=0 n=0
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where / is a parameter. From (4) the A,’s are deduced

l dn 00 n
An:n!dln{f<§u,m )]0 n=0,1,2,.... (5)

The first few Adomian polynomials are

AO :f(uo)a
Ay = f'(uo)uy,
2
Az = f'(uo)u2 +f”(uo)%7 (6)

w3
As = f'(uo)us + f" (uo)u1 Uz +f(3)(uo)3—1,7

The decomposition method consists in identifying the u,’s by means of the formulae

o = u(0) + U (0)t +L7'g, (7)
Up,=—L"Ru, 1 — LAy, n=1,2,.... (8)

Convergence of this method was studied in [4-8]. Especially if in (2) the operator L™'R + L™'f is contracting in the suitable
Banach space the scheme (6)-(8) gives a convergent series > u, the sum of which is the unique solution of (1) [4]. For phys-
ical system the solution is assumed to be existing [6]. The m-term approximation ¢,, = Z{i{,] u; serves as a practical solution.

The key of the method is to decompose the nonlinear term in the equation into a series of polynomials A,. How to con-
struct a practical technique for calculating the Adomian polynomials A, has been attracting much attention and a lot of con-
tribution has been made [7-22].

The earlier calculations utilize (5) and the equality (f/%f(u(),)) =30 fO(u(2))c;(v,n) with the recurrence rule for c;(v,n)
[2,9]

.. AN . . .
c;,(l,]):%erlé?)ci(l—ld—l), 1<ig],

letting c;(0,0) = 1, ¢;(0,j) =0( > 1), c;(i,j) = 0(i > j). Rach’s Rule [1,3,10] A, = >5_,fM(uo)C(v,n), n > 0, simplifies the
computation, where C(v,n) are products (or sums of products) of v components of u whose subscripts sum to n, divided
by the factorial of the number of repeated subscripts.

Abbaoui and Cherruault [7] gave a formula for A, by dividing n into all possible decreasing sequences of nonnegative inte-
gers. Biazar et al [12] and Zhu et al [13] used parametrization (4) to get A,. Wazwaz [14] and Abdelwahid [15], without
parametrization, obtained A, by expanding f (>~ u;) and then regrouping such that the sum of the subscripts of the com-
ponents of u in each terms is the same. Babolian and Javadi [16] gave a special operator to derive A, recursively (see also Gu
and Li [17]). Biazar and Shafiof [18] gave a recurrence algorithm through the parameter and derivatives. Azreg-Ainou [19]
studied the properties of the Adomian polynomials through the system of equations. In [8] Rach defined truncating operator
of Taylor expansion to obtain the A,. Symbolic implementation of the algorithms by using software Mathematica or Maple
was considered in [17,19-22].

In the next section we introduce the index vectors for the Adomian polynomials, and discover the recurrence relations of
the index vectors. Thus a new and simple algorithm for the Adomian polynomials A, is obtained. We discuss the convergence
of the Adomian polynomial series and the solution’s decomposition series in Section 3.

We note that the m-term approximation ¢,, requires all the Ap,As,...,An 2. So the recursive computation of the A,’s is
more advisable in order to reduce the volume of calculations. The algorithms in [9,16-18] are recursive, involving parame-
trization and derivatives, which are unnecessary in the present algorithm.

2. Recurrence technique for index vectors

We begin with the following expression for A, (Rach’s Rule) [1,3,10]

n
An =" fY(uo)C(k,m), 9)
k=1
where C(k,n) is homogeneous polynomial of degree k in uy,...,u,, we write it out explicitly
uPryP2 .. yPr
C(k,n) = % (10)
Pr 25y oty py byt ipy=k P12 P
Each summand term of A, corresponds to an n-dimensional vector (p,,p,,...,P,) With nonnegative integer entries. We call

(p1,D2,---,Dy) to be an index vector of A,.
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For given positive integers n, k (k < n), let S‘g denote the set of all nonnegative integer solution vectors (Xq,Xa,...,X,) of
system of indeterminate equations

X1 +2X+ Xy =N, X{+Xp+--+X, =k 11
Then (J]_,SF is the set of all index vectors of A,. If S}, S2,..., S" are obtained then A, can be get
n uP1 uPz . Up"
A — f(p1+pz+~-+pn)(u0) 172 o (12)
" kz:; Z p1lpy!- - py!

(1) €S

Each vector in Sﬁ n-dimensional, and its dimension will not be indicated if no confusion is caused.
The following Lemmas are easy to be verified.

Lemma 1. 53, contains one vector as follows: S} = {(1)}, 5,]1 ={(0,...,0,1)}.

Lemma 2. For each vector (p,,...,p,) € S’;(Z < k <n), the last k — 1 entries are zero, that is p, ., =---=p, =0.
The recurrence relations of the index vectors are given as follows.

Theorem 1. For a given n > 1, if 2 < k < [4] (this happens only if n > 4), then

Si= {01+ 1o Put 0P P Pat) €53 P U{OP1Ps - P O OPrPe o P ) €S54 fs (13)

if [4] < k < n, then

St =Py +1.P20 - Put O)l(Pr Do D) €SET ) (14)

Proof. First, split S into two parts Sk =S¥, Sk, where St , is composed of vectors in Sk with non-zero first entry, while in
sk, the first entry of a vector is 0. We will make certain Sk, and Sh o, Tespectively.

For any (p;,P,...,Pn_1) € SK71, it satisfies

p1+2pp+- o+ m=1p,y=n-1, py+py+-+pg=k-1
Let p, = 0, the above can be written as
P1+1D)+2py+---4+np,=n, P;+1)+py+---+p, =k
This means (p; +1,p,,...,P,1,0) € 5’5,1- Conversely, for any (p;,p,,...,p,) €S, p, = 0 by Lemma 2, accordingly

Pr+2py+ -+ (M=1)Ppg =1, pr+Ppt 4P =k

It follows that (p; — 1,p,,...,Pn ) € S’,jj by subtracting 1 on both sides. Consequently, S’,j_l is determined

Shi = {Pr 4+ 1P2 o P 1 0P P Py ) €K (15)

Suppose ¥, # @ and (0,p,,...,p,) € 5’:1,0- So we have 2p, +---+np, =n, p, +---+p, = k. It follows that 2k < n. Thus
k<13l

Therefore, if [4] < k <n, then 5;’;,0 = @, and this implies 5’; = Sﬁ_l. (14) is proved in light of (15).

If 2 < k < [4] (in this case n > 4), Sﬁ‘o needs to be identified. For any (p;,p,,...,Pn_x) € S’,Lk, it satisfies

Pi+2p A (M=K)py g =n—Kk pi+pyt-+p=k
Adding the two equations yields 2p, +3p, +---+ (n — k+ 1)p,_, = n. This implies (0,p,,p,,---,Pnx,0,...,0) € Sﬁ_o. Con-
versely, for any (0,p,,...,p,) € S¥,. It follows from Lemma 2 that p, ., = --- = p, = 0, moreover

2D, +3ps+ -+ M=K+ 1Py oy =N, Py+P3+ -+ Dy =k

The difference of them implies (p,, s, . .., Pur.1) € St_, Therefore, it is derived that

S’r(l.O = {(Ovphva e 7pn—k707 tr 0)‘(p]vp27 e 7pn—k) € sléfk}' (16)
By using (15) and (16), (13) is proved. The proof of the Theorem is completed. O

Based on Lemmas 1 and 2 and Theorem 1 the recurrence triangle of index vectors for the Adomian polynomials can be
listed easily as Table 1. In the position (n,k) we list the vectors in S’,ﬁ. The column k = 1 is given by Lemma 1. We list 53, 53, S>
by (14), S2 by (13), S3,53 by (14), S2 by (13), 2,52 5% by (14), S2,52 by (13), S, 53,55 by (14), and so on. For a vector in S¢ ; in
(16) it is denoted by italic entries for emphasis. As space is limited we list till n = 6, juxtapose the entries of vectors and omit
the last k-1 zero entries in last three columns.

The algorithm in Theorem 1 is convenient and easy for both hand calculations and computer programs.
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Table 1
Recurrence triangle of index vectors for Adomian polynomials.
k=1 k=2 k=3 k=4 k=5 k=6
n=1 (1)
n=2 (01) (20)
n=3 (001) (110) (300)
n=4 (0001) (1010) (2100) (4.)
(0200)
n=5 (00001) (10010) (20100) (31.) (5..)
(01100) (12000)
n=6 (000001) (100010) (200100) (301..) (41.) (6..)
(010100) (111000) (220..)
(002000) (030000)
Having the S’,j(k =1,2,...,n) in hands one can write out A,. For example, from the rows n = 4,5,6 we get

Ul u;

4
= o+ () (s + 52) + £ ) S 4.1 )

, Y ulus  ugu u u3
s = tos + (o)t + o)+ o) (52 + U512) -+ ) U541 ) 1

u2 3
As :f’(uo)ue+f”(uo)<u1us + Uty + ) +fO(u )( o T Uitz +3,>
@ uus  udul 5)/1, \ Ul us
7o) (M54 52 10 ) 4 £ 0 ]
From Theorem 1 the recursive algorithms of C(k,n) in (9) are as follows.

Corollary 1. Forany n > 1,

C(1,n) = up. (17)

Asn>2and [§] <k<n

Clk.n) = Clk = 1,0 = D)lyy_pr - (18)
Asn>4and 2 <k<[q,
Clk,n) =Ck—1,n=1)[, _, 1 +Clk,n— k)\hu - (19)

pp+1

In the Corollary p; — p; + 1 stands for replacing p‘, by <;1+1 » where p; > 0.
For the nonlinear function f(u) = u™, where m is a positive integer more than 1, the Adomian polynomial A, has special

form if n>m, i.e.

Ao =3 o) Clk. ). (20)
k=1

Especially, for the function f(u) = u? the Adomian polynomials are:

E}

Ay = Ué, A = 2Ugllq, Ay = 2uguy + u%, As = 2upus + 2uq Uy, ..., Ay = Uilly_j. (21)
i=0

3. Discussions for convergence

Compared with the Picard iterative scheme the Adomian decomposition method decomposes the solution into a sequence
of "relatively easier” equations, the difficulty has been transferred to the decomposition of the nonlinear term f{u) [23,24].

The Adomian polynomials are requisite for Wazwaz’s new modification of the Adomian decomposition method [25] and
Adomian’s modified decomposition (i.e. power series solution) [1]. In [26] Adomian polynomials are applied to the varia-
tional iteration method to solve the nonlinear physical models.

On the convergence of the Adomian polynomial series, it is already realized that the series }_,’ jA, is a rearrangement of
the Taylor expansion of f(3> u,) about the solution’s initial component function u, [6,8]. We show this explicitly as
follows.
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Suppose f{u) to be analytic and )}’ ju, absolutely convergent. The Taylor expansion of f (3", ,u,) about uy reads

‘ k
> > Dol
f(Z un) ~ )+ 32 ug) 1) 22)
n=0 k=1
Using the multinomial expansion and then regrouping yield
o0 k ~
(Cw)” Z upul?. . Z upup? -
k! N = p]'p2'7 k oo oo pl'pz'
Zj,lpj:k "= j,lpf:k' 21;1”7]‘:”

Inserting it to (23) and then exchanging the first two sums, and observing that the system of equations
Soipj =k, Y7%jp; =n is equivalent to 37 p; = k, 3. ,jp; =n, and p; = 0 for j > n result in

00 co N . ul]ﬁ ulzlz . uﬁ" ©

f Zun =f(U0)+Z Zf“(%) Z WZf(UO)JFZAn-

n=0 n=1 k=1 E;:]P;:kv Z;:ljpj:n n n=1

The absolute convergence guarantees the sum is invariant.
Now we illustrate by examples that the limitation, and the dependence on the initial component function ug, of the con-
vergent domain of the decomposition series >  un.

Example 1. Consider the nonlinear ordinary differential equation
u+e' =0, u(0)=1. (23)

The solution of the equation is

1

u(t)=1-In(1+et), t>-e'.

Let L, =4, [, = [i(-)dt, the Eq. (23) is written as

u=1-1L7"e" (24)

Let u =3, u,. The Adomian polynomials for f(u) = e" are
n
Ap=e", Aj=e"uy, Ay =e"(uy+ui/2),..., Ay =e" ZC(k, n).

k=1
By the scheme (7) and (8) we have
=1 u=-L"Avy, n=12,....

Calculating Ao, uy,A1, Uy, ... in tern yields

2 3 4
u, = —et, up :%, us = 7@, U4:%,...‘
Thus the decomposition seriesisu =1 — et + # - (T + --- with the domain of convergence —e~! < t < e~! and the radius of
convergence e,
In order to obtain a solution’s decomposition series with larger domain of convergence we try to change the choice of u,
since all the u,’s are derived from uj.

We take arbitrarily up < 1+1n2. Let ug = 1 —In(1 + eto), to > — . Write the Eq. (24) as

u=1 ln(1+et)+§:1< elo ) L e
1 . 1 CLen,
<= n\1+eto t

Applying the iterative scheme

n
uo=1—1In(1 + eto), un:%( eto > LA, n=1.2,...

1+ety
leads to
e e(t—to)
o= Wi=——7"—,
1+ety 1 + ety

2 2
B e 1 /e(t —to)
Al_i(l#‘eto) (t*to), uz_i(l‘l’&'l’o ’

3 3
_ e 2 _ T /e(t—to)
Az*(ueto) (E=to), 5= 3(1+et0
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In this case the decomposition series u = Y ju, bears the domain of convergence —e~! < t < 2ty + e~! and the radius of
convergence to + e~!. The radius of convergence is a function of uy as p = e~%.
Example 2. Consider the first-order nonlinear partial differential equation

ur+uuy =0, u(x,0)=x. (25)
This equation has the solution u(x, t) = t>-1.

Let L; =

1+t’
L, = 2. Applying the integration operator L;! to both sides yields
u :x-%L;le(uz). (26)

Decomposing u and using (21), applying the scheme (6)-(8) one obtains

d[’

1
Uy = X, ulz—iLtlLXAO:—xt, Uy = Xt2, Us = —xt>, uy =xt*, ...

The decomposition series u = x — xt + xt> — xt> 4 - .- converges for |t| < 1.
Now we consider the effect of different choice for uy on the domain of convergence.
We take 1y = where to > — 1. Adapt the Eq. (26) as

o X = to " 1 P
U=t + 3= Z: (1 HO) — 5L L),
Applying the scheme

X X to \" 1, ., B
u°71+t0’u"71+t0<1+t0> jLz LA, n=12,...,

yields
x(t — to) x(t — to)? x(t — o)’
(1+to) (1+to) (1+to)
Now the decomposition series u = ", ju, converges for |t — to| < 1 + to. The radius of convergence depends on up : p =X

The examples indicate we can improve the domain of convergence by a suitable choice .
In following example the decomposition series contains the fractional power.

Example 3. Let us consider the linear (m = 1) and nonlinear (m = 2) integral equations with the weakly singular kernel

u(r):w/t%um(s)ds, t>0,
0

where 0.5 < u < 1, T is the Gamma function.

The equation is equivalent to a fractional differential equation [27]. Denote Lu(t) = fé (’}3&1’)" u(s)ds.
Linear case (m =1): If u =1 the integral equation has the solution u(t) = e".

If 0.5 < it < 1 we have successively uo = 1, s = Lulo = iy, U = Lty = %, -y Un = Lty 1 = ;. The solution is

00 tku

t) = -
uo) Tk + 1)

=E,(t"), t=0,

where E, is the Mittag-Leffler function [27]. As p = 1 the solution degenerates to the exponential function u(t) = e'.
Nonlinear case (m = 2): In this case we limit 0 < t < 1. If u =1 the integral equation has the solution u(t)y=1/(1-t).
If05<ux<i depending on the Adomian polynomials (21) we have uy =1, u; =LAy = Uy = [A; = 2

= Teu+)’
2u+1) 31 2ru+1) 4r(3u+1) tAn
(4 + r2<u+1>) T3utl)’ (8 + T2(ut1) + T(p+1)r (2u+1>) F(4p+1)

The five-term appr0x1mat10n of the solution is ¢5 = Zﬁzouk, which degenerates to 1+t +t2 +t3 +t* as u=1.
For the applications subsuming boundary value problems in physical equations, even for stochastic systems and modifi-
cations for the decomposition methods see [1-3,25,28].

,u+1)

4. Conclusion

The index vectors of the Adomian polynomials are introduced in this article and their recurrence relations are found out.
Thus a convenient recurrence algorithm for the Adomian polynomials is obtained. The recurrence operations are simpler
than the existing algorithms, do not require parametrization, expanding, derivatives, etc. In addition, we deduce explicitly
that the series for the Adomian polynomials > (A, is a rearrangement of the Taylor expansion of f (3" ju,) about the
solution’s initial component function uy. We also indicate by examples the limitation of the domain of convergence of the
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decomposition series > ,u, , further the domain of convergence can be changed by choosing a different u, and a modified
iteration. So a suitable u, can lead to a larger domain of convergence.
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