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Given the prevalence of duplicate genes and genomes in plant

species, the study of their evolutionary dynamics has

been a focus of study in plant evolutionary genetics over

the past two decades. The past few years have been a

particularly exciting time because recent theoretical and

experimental investigations have led to a rethinking of the

classic paradigm of duplicate gene evolution. By combining

recent advances in genomic analysis with a new conceptual

framework, researchers are determining the contributions

of single-gene and whole-genome duplications to the

diversification of plant species. This research provides

insights into the roles that gene and genome duplications

play in plant evolution.
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Introduction
The evolutionary diversification of genomes and genetic

systems is driven in part by duplication events [1�,2].

Gene duplications contribute to the establishment of new

gene functions [3] and underlie the origins of evolutionary

novelty [4]. Plants are exceptional among eukaryotic

organisms in that duplicate loci compose a large fraction

of their genomes, partly because of the frequent occur-

rence of genomic segmental duplications and polyploidi-

zation events in plants. For example, in the Arabidopsis
thaliana and rice genomes up to 90% and 62% of loci are

duplicated, respectively, and it is estimated that 70–80%

of angiosperm species have undergone polyploidization at

some point in their evolutionary history [5–7,8��,9�].

The high proportion of duplicate genes in plant genomes

reflects the rate of retention of duplicate copies among

plant species [10,11]. The birth rate of genes in A. thaliana
(0.002 duplicates per gene per million years) is in the

same order of magnitude as that observed for yeast and
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Drosophila, although ten-fold slower than that found in

Caenorhabditis elegans. The half-life to silencing and loss of

a gene duplicate in A. thaliana, however, is estimated at

23.4 million years, which is 3–7-fold higher than for

animal genomes [11]. It is not clear why duplicate genes

persist for longer periods in A. thaliana than in animal

genomes, nor is it known whether this is a general

characteristic of plant genomes. Understanding the

mechanisms underlying the retention of duplicate genes

in plant genomes continues to remain a topic of intense

interest [8��,9�,12,13��,14,15].

Theoretical and experimental studies in the past few

years have advanced our understanding of the evolution-

ary dynamics of duplicate loci in plant genomes, and have

led to a rethinking of the paradigm that provided the

conceptual foundations of studies on duplicate gene

evolution [10,13��,16,17��]. The confluence of a new

conceptual framework for gene duplication with new

genomic technologies has allowed investigators to study

gene duplications on a genome-wide scale [8��,9�,12,

14,18��]. This, in turn, has reshaped our understanding

of the evolution of duplicate genes and genomes.

The fates of duplicate genes: a new
paradigm emerges
In the thirty years since the publication of Ohno’s land-

mark book entitled ‘Evolution by Gene Duplication’ [2], the

reigning paradigm regarding the fate of duplicated genes

predicts that one of the duplicates is either lost (pseudo-

genization) or gains a new function (neofunctionalization)

(Figure 1a). Because deleterious mutations are more

probable than advantageous mutations, it has been pre-

sumed that most duplicate copies are lost and only a few

neofunctional loci are maintained by selection.

It has since become apparent that positive selection does

play a key role in preserving some gene copies, and

indeed can act at a very early stage of the gene duplication

process. For example, a population genetic analysis of

three unlinked duplicate gene pairs in A. thaliana that

originated less than 1.2 million years ago (mya) revealed

significantly reduced levels of nucleotide polymorphism

in the progenitor locus, the duplicate locus or both. This

reduced nucleotide variation, which is associated with a

recent selective sweep, is evidence that positive selection

plays a prominent role in the establishment of duplicate

loci [17��]. Although the action of positive selection is

consistent with the process of neofunctionalization, the

precise targets of selection in these duplicate genes are

unclear in the absence of functional data [19]. It will also

be of interest to determine whether selection acts to
www.sciencedirect.com
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(a) Classic Ohno model of duplicate gene fates. Mechanisms of duplication and fates of genes are indicated. Thickness of arrows indicate

relative frequency of possible fates. (b) Recent theoretical work supports a much more complex model for the fates of duplicate genes.
preserve tandem-linked duplicate loci, which are preva-

lent in plant genomes [14,17��] and for which neofunc-

tionalization is theoretically unlikely [20].

Although Ohno’s classic paradigm provides key insights

into duplicate gene evolution, it fails to account for the

preponderance of retained duplicates in whole genomes

[21]. The duplication-degeneration-complementation

(DDC) model [16,22], which harkens to the ‘gene shar-

ing’ concept proposed by Hughes [23], suggests an addi-

tional evolutionary fate for duplicate loci. This model,

also referred to as subfunctionalization, suggests that

duplicate genes acquire debilitating yet complementary

mutations that alter one or more subfunctions of the

single gene progenitor (Figure 1b). The strength of this

model is that it does not rely on the sparse occurrence of

beneficial mutations, but on more frequently occurring

loss-of-function mutations in regulatory regions [16].

Subsequent empirical studies on expression divergence
www.sciencedirect.com
between duplicate genes suggest that changes in expres-

sion regimes occur both frequently and rapidly, consistent

with the predictions of this model [13��,24,25].

The plant MADS-box gene family: a case study
of the fate of duplicate genes
The diversification of the MADS-box transcription factor

family, whose members control key aspects of plant

vegetative and reproductive development, is a clear

example of the role that subfunctionalization plays in

shaping genetic systems. Indeed, one of the earliest-

documented examples of subfunctionalization in plants

is the lineage-specific duplication of an AGAMOUS (AG)-

like MADS-box gene in maize [26]. In maize, the ances-

tral function of AG (which is expressed in stamens and

carpels) is partitioned between the duplicated genes

ZMM2 (expressed primarily in stamens) and ZAG1
(expressed primarily in carpels) [26]. A more recent

example of subfunctionalization involving MADS genes
Current Opinion in Plant Biology 2005, 8:122–128
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comes from the dioecious plant Silene latifolia, in which

the male sex is determined by the presence of a mor-

phologically distinct Y chromosome. In this species, an

autosomal homolog of the MADS gene APETALA3 (AP3),

which is involved in petal and stamen identity, was

duplicatively transferred to the Y chromosome, and sub-

sequently underwent divergence in gene expression [27].

On a larger evolutionary time-scale, the evolutionary

forces that govern the fates of duplicate genes are respon-

sible for the incredible diversity of MADS-box genes

found in present-day flowering plants. MADS-box genes

are found ubiquitously in eukaryotes as type I and II gene

subfamilies [28]. The proliferation of type II MADS-box

genes, known as the MIKC-class genes, is unique to

plants [29]. A comparative genomic survey indicates that

although the birth rate of type II MADS-box genes in

plants is lower than that of type I genes, the former are

preferentially retained in the genome [30�]. This pattern

suggests that the loss of type II MADS genes is more

deleterious than the loss of type I loci, a prediction

supported by the observation that type II genes tend

to be subject to stronger purifying selection. The lower

death rate of type II MADS genes might be due to

subfunctionalization if the divergence in function that

is observed across this subfamily necessitates the reten-

tion of family members in the genome [31�,32]. The

selective retention of type II MADS genes also creates

a certain degree of redundancy between closely related

paralogs [33], however, suggesting that only partial sub-

functionalization occurs in certain clades.

An examination of the AG subfamily of MADS-box genes,

which controls key aspects of inner whorl floral develop-

ment in flowering plants [34�], reveals evidence of both

subfunctionalization and overlapping redundancy. The

AG subfamily is subdivided via an ancient duplication at

the base of the angiosperms into the C-class and D-class

lineages. The D-class genes are almost all expressed in

the ovules, where they specify ovule identity, whereas the

C-class lineage is primarily involved in carpel and stamen

identity [35]. By contrast, an AG-like gene in gymnos-

perms is expressed in both the female reproductive

structure (megasporophyll) and the ovule [36–39], sug-

gesting that the genetic function of the ancestral gene in

this group was partitioned into two distinct lineages

within the angiosperms.

Another issue raised by this study is whether the parti-

tioning of subfunctions is equally shared between

lineages. The Antirhinnum majus PLENA (PLE) gene

was presumed to be an ortholog of the A. thaliana AG
gene because mutant analysis indicated that both genes

provide the primary C-class function in their respective

species [40,41]. However, the true ortholog of AG in

A. majus is FARINELLI (FAR), which functions redun-

dantly in specifying stamen identity [34�,42]. By contrast,
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the orthologs of PLE in A. thaliana are the SHATTER-
PROOF (SHP) genes, which primarily control differentia-

tion of the seed valve margin while sharing overlapping

redundancy with AG [33,43]. Thus, subfunctions of

the progenitor gene were asymmetrically partitioned

between AG/SHP paralogs in the A. thaliana lineage

relative to the PLE/FAR paralogs in the A. majus lineage.

This functional asymmetry also underscores the possible

difficulties in using functional similarity as evidence for

evolutionary orthology because the latter does not neces-

sarily lead to the former.

All is not lost: redundancy remains
One of the predictions of the subfunctionalization model

is that duplicate genes will share overlapping redundant

functions early in the process of functional divergence,

and phylogenetic and functional analyses clearly support

this prediction [16,33,34�,43,44]. Within A. thaliana, the

C-class genes AG and SHP1/SHP2, along with the D-class

gene SEEDSTICK (STK), share overlapping functions in

carpel identity, a remnant of their shared ancestral role

[33]. Given that these paralogs diverged at the base of the

angiosperm lineage, it is clear that duplicate genes can

exist stably in at a partially redundant state over a pro-

tracted evolutionary period. Although subfunctionaliza-

tion can occur rapidly, it is not clear when the transition to

complete functional partitioning occurs. Indeed, theore-

tical considerations of redundancy predict that duplicate

genes will reach an evolutionarily stable equilibrium of

partial redundancy, potentially delaying the transition to

complete subfunctionalization [45].

Although complete functional redundancy is difficult to

confirm, numerous examples of paralogous genes in

plants for which the deletion of one copy yields no

observable phenotype do exist [46–52], including the

three SEPALLATA1/2/3 (SEP1/2/3) and two SHP1/
SHP2 MADS-box paralogs [43,44,53]. The protein

changes in these paralogous redundant genes show no

evidence of functional divergence, suggesting that amino-

acid replacements are functionally constrained [54].

Although purifying selection apparently constrains diver-

gence between paralogs, population genetic analyses

indicate that significant heterogeneity in nucleotide

diversity, suggestive of positive selection, occurs within

the transcriptional unit of SHP1 and the promoter of

SHP2. By contrast, SEP2 and SEP1 appear to be evolving

neutrally [55]. These differences in evolutionary

dynamics between paralogs might be a consequence of

the position of these genes in the floral developmental

pathway. The SEP loci are involved in the highly con-

served function of floral patterning, whereas the SHP loci

control the more variable trait of seed shattering.

Duplicate and defend
The duplication of genes within or between closely

related species might lead to phenotypic variation in
www.sciencedirect.com
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specific traits, and manifest itself as functionally relevant,

ecologically significant polymorphisms. Gene duplica-

tion, for example, contributes to the ability of plants to

mount a defense response against disease and herbivory

by allowing the functional diversifcation of genes that are

involved in pathogen recognition and herbivory defense.

This diversification is most evident in the large family of

disease resistance (R) genes that encode the nucleotide-

binding site plus leucine-rich repeat (NBS–LRR) pro-

teins. The Arabidopsis genome contains more than 150

NBS–LRR genes found as isolated genes or in tandemly

arrayed clusters that are dispersed throughout the gen-

ome. Gene duplication of NBS–LRRs followed by posi-

tive selection for diverse amino acids in the LRR protein-

recognition domain might provide the means by which

the plant’s recognition of novel pathogens evolves [56].

Interestingly, a genomic analysis of the history and chro-

mosomal locations of NBS–LRR gene duplications

revealed that tandem duplications have contributed to

the birth of the majority of NBS–LRRs in the Arabidopsis
genome, whereas the duplicative transfer of NBS–LRRs

to dispersed chromosomal locations is largely the result of

segmental duplication [55]. Because tandemly arrayed

NBS–LRRs are subject to frequent intergenic exchange,

it is believed that those genes found in different chro-

mosomal regions have a greater chance of evolving new

pathogen recognition functions [56]. Moreover, a recent

study of the NBS–LRR Cf-2 pathogen-resistance gene

family in the wild species Solanum pimpinellifolium sug-

gests that complex evolutionary dynamics surround

duplicate Cf-2 genes, including the differential selection

of gene copies [57].
Figure 2
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The genotypic frequencies and structural organization of the MAM

duplicate loci from a survey of 25 A. thaliana ecotypes. The MAM loci

modify the carbon length of the glucosinolate basic side chain; MAM2

adds three methylene groups ([CH2]3), whereas MAM1 adds four

methylene groups ([CH2]4). Slanted lines indicate the loss of particular

duplicate copies. (Based on Figure 1 of [59�].)
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Gene duplication also plays a significant role in the

evolutionary dynamics of anti-herbivory genes. In A.
thaliana, resistance to generalist insect herbivores is con-

ferred in part by glucosinolates, a class of plant secondary

metabolites. The composition and quality of glucosinlate

production varies between Arabidopsis accessions. This

variation is due, in part, to the tandemly duplicated

methylthioalkylmalate synthase (MAM) genes, MAM1
and MAM2, that are involved in glucosinolate biosynth-

esis [58]. MAM1 and MAM2 are functionally divergent

duplicates: the MAM2 locus is a stronger deterrent against

generalist herbivores than the MAM1 locus [59�]. A popu-

lation genetic analysis of the MAM genes found evidence

of differential gene loss and differential selection

between the MAM loci within A. thaliana accessions

(Figure 2; [59�]). These data support the action of balanc-

ing selection on the MAM2 locus but not on MAM1.

Because glucosinolates can also stimulate feeding in

specialist herbivores, selection at the MAM2 locus might

be caused by the ecological trade-off between protection

against generalist insect herbivores and increased sus-

ceptibility to specialists.

Variable patterns of evolution exist in another class of anti-

herbivory genes, the tandemly arrayed family of six A.
thaliana trypsin inhibitor (ATTI) genes. The expression of

these six genes varies significantly between loci, among

allelic classes within A. thaliana, and in response to her-

bivory [60]. These data suggest that subfunctionalization is

acting to maintain divergent functions between duplicate

loci. Despite their close proximity to each other (within

10 kb), population genetic analyses suggest that evolu-

tionary history also varies between ATTI loci, although

the flanking loci, ATTI1 and ATTI6, which are separated

from the core loci by recombination, have the greatest

opportunity to be acted upon by natural selection [60,61].

Polyploids: ancient and new
Polyploidization is a major mechanism by which duplicate

genes are introduced into plant genomes, and this is

reviewed elsewhere in this issue (see review by Adams

and Wendel). Several aspects of polyploidization do, how-

ever, highlight several interesting facets that surround the

evolutionary dynamics of duplicate genes in plants. In a

recent genomic analysis of 14 model plant species, nine

species were documented to have one or more whole-

genome duplication events in their evolutionary past

[18��]. Up to four whole-genome duplication events appear

to have occurred in A. thaliana [6,7,8��,62,63]. Genomics

technologies might now provide a systematic explanation

of the fates of duplicate genes on a whole-genome level.

As predicted by theory [20,64,65], the majority of dupli-

cated genes resulting from polyploidization events are

lost in the transition to diploidy, although the percentage

of retained duplicates varies between species [10,11].

The type of duplicate genes lost or retained after
Current Opinion in Plant Biology 2005, 8:122–128
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polyploidization is correlated with function. Among the

retained duplicates from the last whole-genome duplica-

tion event in A. thaliana, genes involved in signal

transduction and transcriptional regulation are over repre-

sented, whereas DNA-repair genes have been preferen-

tially lost [13��,15]. The majority of duplicates retained

(57%) tend to have divergent expression patterns as

predicted by the DDC model, whereas over 20% have

asymmetric rates of protein evolution; both are suggestive

of functional divergence [13��].

Functional divergence can occur rapidly after polyploi-

dization, perhaps even within a generation, and this

phenomenon has been studied in both naturally occur-

ring recent polyploids and in synthetic polyploids. For

example, among 40 homeologous gene pairs in natural

tetraploid cotton (which was the result of a whole-

genome duplication event that occurred 1–2 mya), nine

gene pairs exhibited biased expression, with the homeo-

log from one parental genome contributing more to the

transcriptome than the other [66��]. Interestingly, 11 of

these 18 homeologs showed tissue-specific silencing or

biased expression in at least one of 10 organs tested,

indicating that they were at an early phase of subfunc-

tionalization. Similar patterns of biased expression were

observed in synthetic Gossypium polyploids, demonstrat-

ing that functional divergence could occur within one

generation of polyploidization [66��]. Similar conclusions

were reached in a study of synthetic Arabidopsis allote-

traploids produced in a cross between A. thaliana and

Arabidopsis arenosa [67,68�].

Conclusions
A new conceptual framework for gene duplication com-

bined with emerging genomic data and technologies has

advanced our understanding of the contributions of gene

and genome duplication to the evolution of plants. Care

must be taken, however, in interpreting the influx of

genomic data in a proper functional and phylogenetic

context. For instance, although gene expression can

diverge rapidly between duplicate genes, expression data

alone cannot reveal whether the combined expression

domains of the duplicates reflect that of the progenitor

gene or whether one or both of the duplicates have gained

a novel expression regime. Indeed, in a comparative study

of lineage-specific duplicates in humans and mice, changes

in expression were more often associated with the gain of

novel expression domains, consistent with neofunctiona-

lization [69�]. Similarly, inferring patterns of plant genome

evolution requires a ‘phlyogenomics’ approach; genomic

data on the structural arrangements of extant genes must

be compared to that from related taxa to determine the

extent and timing of genome duplication events [9�]. Only

when such comparative approaches are used will we be

able to truly understand the contribution of single-gene

and whole-genome duplications to the emergence and

diversification of plant species.
Current Opinion in Plant Biology 2005, 8:122–128
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