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Abstract 
This paper presents an analytical method considering 
the effects of fiber length and fiber orientation 
distributions for predicting the tensile strength (TS) of 
short-fiber-reinforced polymers (SFRP). Two prob- 
ability density functions are used for modelling the 
distributions of fiber length and fiber orientation. The 
strength of SFRP is derived as a functiolz of fiber length 
and fiber orientation distribution taking into account 
the dependences of the ultimate fiber strength and the 
critical fiber length on the inclination angle and the 
effect of inclination angle on the bridging stress of 
oblique fibers. Then the efscts of the mean fiber length, 
the most probable length (mode length), the critical 
fiber length, the mean fiber orientation, the most 
probable fiber orientation and the fiber orientation 
coefficient on the tensile strength of SFRP have been 
studied in detail. This model provides the necessary 
information to determine what jiber length distribution, 
what jiber orientation distribution and what interfacial 
adhesion are required to achieve a desired composite 
strength. The present theory is then applied to existing 
experimental results and the agreement is .found to be 
satisfactory. 0 1996 Elsevier Science Limited 
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1 INTRODUCTION 

Short-fiber-reinforced polymers (SFRP) are used 
increasingly as a structural material because they not 
only provide superior mechanical properties, but they 
can also be easily produced by the rapid, low-cost 
injection molding process. During the injection 
process of fiber-reinforced molded articles, the 
distributions of fiber length and fiber orientation are 
governed by a variety of factors. These include the 
original length and concentration of fibers, the gate 
design and the processing conditions.‘-’ It was pointed 
out that the mechanical properties of any material 

depend on the details of its structure.8 For example, 
the stiffness and strength of machine-made paper have 
been shown to depend on the fiber length and fiber 
orientation distributions.%” It has also been shown 
that the mechanical properties of injection molded 
SFRP depend critically on the fiber length distribution 

(FLD) and the fiber orientation distribution 
(FOD).7,‘1-1s In order to obtain the high performance 
injection molded short-fiber-reinforced thermoplastics, 
it is therefore of great importance to study the effects 
of the FLD and the FOD on the mechanical 
properties of injection molded SFRP. As a part of our 
research project, we present a theoretical study of the 
tensile strength (TS) of SFRP by considering the 
effects of the FLD and the FOD. 

The modified rule of mixtures (MROM) is often 
used to predict the tensile strength of short-fiber 
composites by assuming a perfect interfacial bond 
between fibers and matrix.‘6-23 The formula of the 
MROM is given by: 

V,” = XlXzVfafu + Vm~rn (1) 

where x1 and xz are, respectively, the fiber orientation 
and fiber length factors, and the product of x1 and xz, 
i.e. x1x2, is the fiber efficiency factor for the strength 
of the composite; a,, and af, are the ultimate strength 
of the composite and fiber, respectively; V, and V, 
denote the volume fraction of the fiber and matrix; 
and u, is the matrix stress at the failure of the 
composite. For unidirectional discontinuous compos- 
ites x1 = 1 and x2 < 1. If the fiber length is uniform 
and equals L, then 

x2 = Ll(2LJ for L CL, (2) 

x2 = 1 - LJ(2L) for L 2 L, (3) 

where L,, the critical fiber length, is given by 
L, = rfa,,/ri, where Zi and rf are the interfacial shear 
stress between matix and fibers and the fiber radius, 
respectively. If the fiber length is not uniform, eqns 
(2) and (3) must be modified. Kelly and Tyson** put 
forward a model considering the effect of fibers, 
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shorter and longer than the critical fiber length. This 
model can be given by:17 

+ C ~“fU[l - Lcl(2Lj)] + VmU, (4) 
L, = L, 

The first and second terms take into account the 
contributions of fibers with sub-critical length shorter 
than L, and of fibers with super-critical length longer 
than L,, respectively. However, the contribution of 
the fiber orientation is not considered. This model is 
modified by the addition of an orientation factor to 
the first two terms of eqn (4), but the orientation 
factor is only fitted empirically:7323 

+ ‘2 yafu,[l - LI(2Lj)JJ + J&U, (5) 
L,=L, I 

The critical damage zone model of Fukuda and 
Chou was also used to predict the tensile strength of 
the SFRP.24 This model goes one step further by 
considering the distribution function of both the fiber 
length and the fiber orientation. However, the 
generalized formulae of both the fiber length 
distribution function and the fiber orientation 
distribution function are not given, thus the effects of 
the fiber length and orientation distributions on the 
strength of SFRP cannot be studied; the dependences 
of the ultimate fiber strength and the critical fiber 
length on the inclination angle 8, which must be 
considered,16325,26 are not taken into account. 

In the present paper two probability density 
functions are used for modelling the fiber length and 
orientation distributions respectively, which have been 
used with the aim of predicting the elastic properties 
of SFRP.12*‘3,27 The strength of SFRP is then derived 
as a function of the fiber length and fiber orientation 
distributions by considering the dependences of the 
ultimate fiber strength and the critical fiber length on 
the inclination angle and the effect of inclination angle 
on the bridging stress of oblique fibers. The effects of 
the fiber length distribution and the fiber orientation 
distribution on the tensile strength of composites are 
discussed in detail. Finally, the present theory is 
applied to existing experimental results.” 

2 THEORY 

2.1 Fiber length distribution (FLD) 
During the extrusion and injection molding processes, 
the shear stresses exterted by the screw or ram will 
break the fibers and result finally in a fiber length 

distribution with an asymmetric character with a tail at 
long fiber lengths.5*‘2~13~27~28 The mechanical properties 
of SFRP are undoubtedly related to this distribution. 
The fiber length distribution can be described with a 
probability density function. Let us define the fiber 
length probability density function, f(L), so that 
f(L)dL and F(L) are the probability density that the 
length of fiber is between L and L + dL and the 
probability that the length of a fiber is less than or 
equal to L, respectively. Then the relationship of f(L) 
and F(L) is: 

F(L) = lLf(x) & and Imf(x) dx = 1 (6) 
0 

A two-parameter Weibull distribution function has 
been proposed for modelling the fiber length 
distribution and was shown to be effective in 
describing the density distribution for short-glass- 
fiber-reinforced polypropylene:i3 

f(L) = (m/n)(L/n)“-lexp[ - (L/n)“] for L > 0 (7) 

where m and n are shape parameters. Another form 
of Weibull distribution, i.e. the so-called Tung 
distribution has been given:” 

f(L) = abLbwlexp( - aLb) for L > 0 (8) 

where a and b are scale and shape parameters, 
respectively. Inserting b = m and a = 12~~ into eqn (8), 
it then becomes the same as eqn (7). Equation (8) has 
also been used successfully for describing the fiber 
length distribution in short-glass-fiber-reinforced 
polyamide. 27 In the present study, therefore, we adopt 
this probability density function and prefer the form 
of eqn (8) as the fiber length distribution function of 
SFRP since it appears simple. The cumulative 
distribution function, F(L), can be obtained by 
combining eqns (6) and (8): 

F(L) = 1 - exp( - aLb) for L > 0 Pa) 

Therefore, the percentage, (Y, of fibers with lengths 
shorter than L, can be evaluated by: 

(Y = 1 - exp( - aLb,) (9b) 

From eqn (8) we can get the mean fiber length (i.e. 
the number average fiber length): 

m 
L mean = 

i 
Lf (L) dL = a -l’br(l/b + 1) (10) 

0 

where I(X) is the gamma function. The most probable 
length (mode length), Lmod, can be obtained by 
differentiating eqn (8) and letting the resultant 
equation be equal to zero: 

L mod = [l/a - ll(ab)]l” (11) 



Effects of jiber distributions on the strength of SFRP 1181 

2.2 Fiber orientation distribution (FOD) 
During extrusion compounding and injection molding 
processes, progressive and continuous changes in fiber 
orientation throughout the molded components take 
place. The changes are related in a complex way to 
the size and concentration of fibers, the flow behavior 
of melted polymer matrix, the mold cavity and the 
processing conditions. An orientation distribution 
generally requires a three-dimensional description. 
However, when investigating the effect of the fiber 
orientation angle on the strength of short-fiber 
composites, only the angle, 8, between the fiber axis 
and the loading direction needs to be 
considered.19v24*29 For example, the loading direction 
can be placed in the direction parallel to the mold fill 
direction, then this fiber orientation angle is the 
inclination angle or the out-of-plane angle, as defined 
previously,3C32 respectively. A fiber orientation 
distribution function representing the inclination angle 
must have the property such that the variation of its 
function’s shape parameters is able to describe a 
change from a unidirectional distribution to a random 
distribution. 

Let us define a fiber orientation density function 
f(e) such that f(6)de is the probability density that 
the orientation of fiber is between 8 and 8 + de. With 
this assumption, Xia et ~1.‘~ proposed a two-parameter 
exponential function to describe the fiber orientation 
distribution in the injection molded specimens. Similar 
to this definition, the fiber orientation distribution 
function is given as follows: 

{sin(f3)}2p-1{c0s(e)}2~~1 
g(e) = TBmu* (12) 

J {sin(f3))2~-1{c0s(e))2q-’ de e,,,, 

where p and q are the shape parameters which can be 
used to determine the shape of the distribution curve, 
and p 1 l/2 and q 2 l/2. Also, 0 I emin 5 8 I t3,,, 5 
7ri2. 
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Fig. 1. Fiber orientation distribution curves for: (a) 
p = q = 1; (b) p = 1, q = 2; (c) p = 2, q = 1; (d) p = l/2, 

q = 2; (e) p = 2, q = l/2; (f) p = q = 112. 

Differentiating eqn (12) and letting the resultant 
equation be zero we get: 

8 mod = arctan{[(2p - 1)/(2q - l)]‘“} (13) 

Equation (13) represents the most probable fiber 
orientation angle. When p = q = 1, emod = x/4; when 
p = 1 and q > 1, then ornod > n/4; when p 11 and 
q = 1, then emmod > ~14; when p = l/2, ornod = 0; when 
q = l/2, then emod = ~12; when p = q = l/2, then there 
is no emmod and the fibers distribute randomly; the 
corresponding fiber orientation distribution curves are 
shown in Fig. 1. When p = l/2, large q (e.g. 100) 
indicates that fibers have a major preferential 
alignment parallel to the 8 = 0 direction; when 
q = l/2, large p (e.g. 100) expresses that fibers have a 
major preferential orientation normal to the 8 = 0 
direction; this is shown in Table 2. So, all the cases of 
fiber orientation distribution are included in eqn (12). 
Thus eqn (12) is a suitable probability density function 
for describing the fiber orientation distribution and 
will be used in the present study. 

The mean fiber orientation, e,,,,, can be derived 
from eqn (12) as follows: 

I 
%ax 

e = 
IlEa” e(e) de (14) 

@nun 

The fiber orientation coefficient, fe, can be definied 
as follows:16,29 

fe = 2&s(s)cos’(e) de - i (15) 

When fe = - 1, all fibers lie perpendicular to the 
loading direction; fe = 0 corresponds to a random 
distribution in the angle 6; fe = 1 implies all fibers are 
aligned parallel to the loading direction. 

The cumulative distribution function of fiber 
orientation is then given by: 

c(e) = Ie g(e) de 
%U. 

I 

e 

{sin(e)}2~-1{c0s(e)}2q--I de 
= %I,” 

I 

%a 
{sin( e)}2P-1{cos( e)}2q-1 de 

%,” 

(16) 

2.3 Bridging stress of fibers 
When an applied load is exerted on a short-fiber- 
reinforced polymer, the interfacial shear stress 
between fibers and matrix will increase with the 
applied stress.33 In order to estimate the force 
required to break the composite at some random 
cross-section, the bridging stress of fibers across the 
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failure plane needs to be evaluated16 and the single 
fiber bridging case will be considered first. 

When a fiber crosses the crack plane and the fiber 
orients parallel to the normal of the crack plane or the 
applied load, F (see Fig. 2(a)), then the bridging 
stress, af, of the fiber across the crack is given by: 

(Tf = L,27wfzil(n$) = 2L,Zi/rf for L, < LJ2 (17a) 

uf = ofU for L, 2 LJ2 (I7b) 

where L, is the length of shorter embedded fiber 
segment and ri denotes the interfacial shear stress 
which we assume to be constant. However, when a 
fiber crosses obliquely with a crack plane (see Fig. 
2(b)), then the bridging stress, a,, can be given 

by:=’ 

U fe = 2L(?lrf)eXp(p~) for L, < LO/~ (18) 

where 8 is the angle between the fiber and the crack 
plane normal; lu. is the snubbing friction coefficient 
between fiber and matrix at the crossing point, which 
has been defined elsewhere;34,3s and L,, denotes the 
critical fiber length for an obliquely crossed fiber. 
When L, 2 L,,/2, the bridging stress of the oblique 
fiber is then given by:16,25 

(T fe = ufuB for L, 2 L,J2 (19) 

where afUe denotes the fracture stress of the oblique 
fibers, i.e. the inclined tensile strength of fibers.26 
Since the flexural stresses cause an apparent loss of 
fiber strength, then the fracture strength for the 
oblique fiber is reduced.‘6,25 Furthermore, the pull-out 
test of oblique steel fibers also indicated that the 
inclined tensile strength of oblique steel fibers is 

F 

- 

Fibre 
-F 

- 

-I I I- 

F- -F 

h b 

Fig. 2. Schematic drawing of a fiber across a crack: (a) the 
fiber which orients parallel to the crack plane normal; (b) 

the fiber which crosses obliquely with the crack plane. 

reduced significantly and decreases with the increase 
of inclination angle. So the introduction of the 
inclined tensile strength of fibers can undoubtedly 
help to predict better the mechanical behavior of 
short-fiber composites. If the fibers are brittle (e.g. 
glass fibers, etc.), then crfUe can be expressed using the 
following formula:‘6~25 

ufUe = afU[l - Atan( (20) 

where A is a constant for a specific fiber/matrix 
system. Obviously, there will be a maximum fiber 
orientation angle for a,,, 2 0: 

0 max = arctan( l/A) (21) 

When 8 2 e,,,, then crfUe = 0. With the consideration 
of the snubbing friction effect and the fiber flexural 
effect the critical length of oblique fibers can be 
derived from eqns (18)-(20): 

L,, = LJl - A tan(@)]/exp(@) (22) 

If the effect of snubbing friction is neglected, i.e. 
k = 0, then eqn (22) becomes: 

L,, = L,[l - A tan(e)] (23a) 

Equation (23a) is the same as that given in 
previously.‘” If the effect of fiber flexural is neglected, 
i.e. A = 0, then eqn (22) becomes: 

LCO = LJexp(p@ (23b) 

Equation (23b) is the same as that given 
elsewhere.37.38 If both the snubbing friction effect and 
the fiber flexural effect are neglected, i.e. Al. = 0 and 
A = 0, then eqn (22) becomes: 

LC, = L, (23~) 

2.4 Average fiber stress in the aligned composites 
First, we consider an aligned fiber composite. The 
fibers all have the same length, L, and diameter, d, 
and are perfectly aligned in the direction of the 
applied load, F. It is assumed that the fibers distribute 
uniformly in the composites. We will estimate the 
stress required to break the composite at some 
random cross-section, such as that shown in Fig. 3(a). 
The fiber length of the shorter fiber segment across 
the failure plane ranges from 0 to L/2. When the fiber 
length of the shorter segment across the crack plane is 
less than LJ2, then the fibers will debond fully and 
pull out against the shear stress, Zi, at the failure of 
composites. Otherwise, the fibers will break. 

When the fiber length, L, is less than the critical 
fiber length, L,, then the fiber will be pulled out due 
to the fact that the fiber length of the shorter segment 
is certainly less than LJ2. The fiber length of the 
shorter segment in the matrix crossing the crack plane 
varies from 0 to L/2 and the average fiber length of 
shorter segment across the crack plane is L/4 because 
of the assumption that the fibers distribute uniformly 
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Fig. 3. Schematic drawing of a crack which has developed 
across fibers: (a) the fibers aligned in the direction 
perpendicular to the cross-section; (b) the fibers crossed 

obliquely with the cross-section. 

in the matrix. Then the average bridging stress of 
fibers across the crack plane is: 

thus 
(24) 

where 
(+f = a,LI(2L,) (25) 

(26) 

When the fiber length, L, is greater than L,, then the 
shorter segment of fibers will be pulled out if the 
shorter segment length is less than LJ2, and the 
shorter segment length of fibers will vary from 0 to 
LJ2. Thus, the average length of shorter segments is 
LJ4 and the corresponding fraction of fibers is LJL. 
If the shorter segment length of fibers is greater than 
LJ2, then the fibers will not be pulled out and will 
break at the failure of composites and the fraction of 
fibers is 1 - LJL. Thus the average bridging stress of 
fibers with a length greater than L, can be given by: 

(Tf = [(Lc/L)(Lc/4)2mf2i + (1 - L~/~)~$~fu]/(~) 

= a& - LJ(2L)) (27) 

It is easily seen that eqns (26) and (27) are the same as 
eqns (2) and (3). This indicates that our derivation 
process is reasonable. In the above derivation, for 
simplicity we neglect the stresses across the fiber ends, 

and the effect of the crack diversion for the very short 
embedded segment case which was considered by 
Piggott.16 

Secondly, we consider composites with the fibers 
oriented obliquely at an angle 0 with the crack plane, 
a part of which is shown schematically in Fig. 3(b). 
Similar to the above derivation, we get the average 
bridging stress of fibers crossing the crack plane as 
follows: 

gf0 = (L/4)2Krfriexp(p@)/(Z$) 

= af,Lexp(kf3)/(2L,) for L < LCB (28) 

gfe = {(L,,/L)(Lc,/4)2RrfzeXP(~~) 

+ (I- LfJL)~fuddl/(ti) 

= 
af,,(l - Ll(2L)) for L 2 LB (29) 

When 0 equals zero, eqns (28) and (29) are the same 
as eqns (2) and (3). 

2.5 Strength of SFRP 
Based on the above discussion it becomes possible to 
derive the strength of SFRP. The composite strength 
can be evaluated in two different ways. 

2.5.1 Method 1 
We assume that the fibers distribute uniformly in the 
composite, then the failure strength of any cross- 
section of composite can represent the composite 
strength. If N denotes the total number of fibers in the 
composites, Ni is the number of fibers with a length 
from L to L + dL and the orientation angle from 8 to 
8 + de. f(L) and g(8) are the functions of the fiber 
length distribution and the fiber orientation distribu- 
tion respectively, where f(L) and g(e) are indepen- 
dent. Then: 

NJN = f (L)g(B)dLde (30) 

The volume subfraction, vi, of the fibers of a length 
from L to L + dL and an orientation angle from 8 to 
8 + de can be obtained: 

K = V,[(N,L~~)I(NL,,,,~~)l 
= KWWI(NLmean)I (31) 

where Vf is the volume fraction of fibers in the 
composites and L,,,, is the mean fiber length of all 
the fibers in the composites. The composite strength is 
contributed by all the fibers of length from Lmin to 
L lnax and the orientation angle from Bmin to e,,, and 
the matrix, then: 

%aX &X 
(+CU = c c VI@&9 + fl,V, (32) 

8=0,, L=L_ 

Combining eqns (30)-(32) and replacing the summa- 
tion by the integral, we get: 

UCU = v, f(L)g(e)(L/Lmean)(+fe dLde + o,V, 

(33) 
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Substituting eqns (20), (22), (28) and (29) into eqn 
(33), we get the strength of SFRP: 

%m 

I I 
Lmx 

x exp(@) dLd6J + f(Lk(~)(LILl-M”) 
%ul &ll 

X (+r,(l -A tan(e))(l - L,(l -A tan(e)) 

/(2Lexp(@))) dLd6J f v,,,Vm 
I (34) 

Equation (34) can be rewritten in the following form: 

where 

U,” = x1x2 V,a, + aIn% (35) 

%ax L&l 
x1x2= 

I I 
f(L)g(e)(LIL,,,,)(Li(2L,)) 

8 nun L,i" 

&mx 

I I 

-Llax 

X exp(p8) dLd0 + f m(e) 
%UC Lo 

x WLd1 -A tan@)) 

x (1 - L,(l -A tan(f3))/(2Lexp(pcle))) dLd0 

(36) 

The larger the value of x1x2, the higher is the 
composite strength. If 8 = 0, x1 should be equal to 1 
and it is the case for unidirectionally aligned 
short-fiber composites. Then the fiber length factor is: 

x2 = I Lc [L*/W&mm)1f @ML 
Lu” 

I 
&I., 

+ (LIL,,,,)[l - LJ(2L)lf (L) dL (37) 
.& 

2.5.2 Method 2 
Suppose a rectangular shaped specimen with the 
lengths of the three mutually perpendicular edges 
denoted by a, b and c is considered. The c axis is 
chosen to be parallel to the loading direction. The 
volume of the specimen is: 

V=abc (38) 

In accordance with the definition, the fiber volume 
fraction is given by: 

v, = NA~L,,,,IV (39) 

where Af is the fiber cross-sectional area. The length 
of the projection of fibers of length L and angle 8 with 

respect to the loading direction 
loading direction) is: 

L,= k0qe) 

on the c axis (i.e. 

(40) 

Thus the average number of fibers of length from L to 
L + dL and an angle from 8 to 8 + de, which cross an 
arbitrary section in the specimen, can be given by: 

where N, is 
L + dL and 
eqn (30). 
obtained: 

NC = NiLp/c (41) 

the number of fibers of length from L to 
an angle from 8 to 0 + de as that given by 
Then the composite strength can be 

where A, is the cross-sectional area of the specimen 
and equals ab; A, is the cross-sectional area of 
oblique fibers of an angle 8 with respect to the c axis 
(i.e. the loading direction) and equals A,/cos (0). 
Substituting eqns (30) (38)-(41) into eqn (42) and 
replacing the summation sign with the integral sign, 
we finally obtain: 

%a.? 

I i 

L,, 
g’cu = v, f (Lk(~>(LILean)~w dLde + a,Vrn 

%m Lnm 
(43) 

It can be seen that eqns (33) and (43) are the same, 
therefore methods 1 and 2 give identical results. 

3 RESULTS AND DISCUSSION 

Initially, unidirectional composites k1 = 1) are con- 
sidered. In this case the effect of fiber length 
distribution on the strength of composites can be 
studied by using eqn (37). 

From eqn (37) the value of x2 can be estimated if 

Lmin, Lma.x, L, and f(L) are given, then the tensile 
strength of short-fiber composites can be evaluated 
with eqn (35). Assuming Lmod = O-2 mm and a set of 
the values of the parameter b, then we get a set of 
values of the parameter a from eqn (ll), the mean 
fiber length L,,,, from eqn (lo), and the probability 
density function f(L) from eqn (8), respectively. The 
percentage of the fibers with a length shorter than L,, 
can be evaluated with eqn (9b). Assuming L,i, and 
L max to be 0 and m mm, respectively, and L, = 0.2, O-4 
and O-8 mm, then the calculated results are shown in 
Figs 4 and 5. The percentage of the fibers with 
subcritical fiber length decreases dramatically with the 
increase of mean fiber length at small mean fiber 
lengths (in the vicinity of L,) and reaches gradually a 
plateau level as L,,,, increases at large mean fiber 
lengths (greater than about 5LJ (see Fig. 4). Since the 
supercritical fibers with lengths longer than L, would 
have a larger contribution to the composite strength 
than that of subcritical fibers, the value of x2 increases 
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b: L, = 0.4 mm 

IC: L, = 0.8 mm 
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Mean fibre length, L,,,, [mm] 

Fig. 4. Variation of the percentage, LX, of fibers with L -C L, 
as mean fiber length, L,,,, varies for the cases of different 

LC (kIlod = 0.2 mm, L_ = 0 mm and L,,, = m mm). 

rapidly with the increase of mean fiber length, L,,,,, 
at small mean fiber lengths (in the vicinity of L,) and 
approaches gradually a plateau level at large mean 
fiber lengths (greater than about 5L,) (see Fig. 5). 
Thus the tensile strength of short-fiber composites 
increases rapidly as the the mean fiber length, L,,,,, 
increases for the cases of small mean fiber lengths and 
approaches ,a plateau level as L,,,, increases for the 
cases of large mean fiber lengths. This is consistent 
with the existing experimental results.39 Moreover, the 
smaller critical fiber length corresponds to the lower 
content of fibers with subcritical length (see Fig. 4) 
and hence to the higher value of x2 (see Fig. 5). So the 
smaller critical fiber length brings about a higher 
composite strength. The effect of the critical fiber 
length on the value of fiber length factor, x2, and 
hence on the composite strength is further shown in 

0 2 4 6 8 10 

Mean fibre length, L,,, [mm] 
Fig. 5. Effects of mean fiber length, L,,,,, and critical fiber 
length, L,, on fiber length factor, x2, for the case of 
unidirectional composites (Lmod = 0.2 mm, L,, = 0 mm and 

L max = m mm). 

0 0.1 0.2 0.3 0.4 0.5 0.6 

Critical fibre length, L, [mm] 
Fig. 6. Variation of the percentage, (Y, of fibers with L CL, 
as critical fiber length, L,, varies (L,,,, = 0.4 mm, 

L _, = 0.213 mm, Lmin = 0 mm and L,,, = m mm). 

Figs 6 and 7, where L,, = 0, L,, = ~0, L,,,, = 
0.4 mm, Lmod = 0.213 mm for various L,. It can easily 
be seen that the percentage of fibers with subcritical 
length increases with the critical fiber length (see Fig. 
6) and hence xz decreases with the increase of critical 
fiber length (see Fig. 7); therefore, the tensile strength 
of SFRP decreases with the critical fiber length. This is 
consistent with the experimental results.17 Due to the 
fact that the critical fiber length is inversely 
propotional to the interfacial adhesion strength, 
namely L, = rfaC,/q, the strength of SFRP increases 
with the increase of interfacial adhesion strength. 

Assuming L,i,, L,,, and L,,,, to be 0, m and 0.4, 
and L, to be 0.2, 0.4 and 0.8 mm, respectively, the 
calculated results for the percentage, CX, of fibers with 
subcritical lengths and the fiber length factor, x2, are 
presented in Figs 8 and 9, respectively. From Fig. 8 it 

1.2 

0.2 

1 

1 J 
0 0.1 0.2 0.3 0.4 0.5 0.6 

Critical fibre length, L, [mm] 
Fig. 7. Effect of critical fiber length, L,, on fiber length 
factor, xz, for the case of unidirectional composites 
(Lrn,,” = O-4 mm, Lmod = O-213mm, L,,=Omm and L,,,= 

00 mm). 
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Fig. 8. Variation of the percentage, CY, of fibers with L CL, 
as mode fiber length, Lmod, varies for different L, 

(Lmm = 0.4 mm, L,,, = 0 mm and L,,, = ~0 mm). 

can be seen that the content of the fibers with 
subcritical fiber length decreases with the increase of 
L mod for smaller critical fiber length, i.e. L, = 0.2 and 
0.4 mm. However, the content of the fibers with 
subcritical fiber length increases with the increase of 
L mod for larger critical fiber length, i.e. L, = 0.8 mm. 
Figure 9 shows that x2 decreases with Lmod, thus the 

tensile strength of short-fiber composites decreases 
with the mode fiber length. However, the effect of the 
mode fiber length on the tensile strength is small, 

especially for the case of L,< L,,,,, e.g. L, = 
O-2 mm < L,,,, = 0.4 mm, this effect is very small (see 
Fig. 9). 

When the values of L,,,,IL, and LmodlLc are given, 
for example L,,,,/Lc = 2 or 0.5 and Lm,JL, = 1~06.5 
or 0,266, respectively, the calculated results are given 
in Table 1, where Lmin = 0 and L,,, = m mm. An 

a- 
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5 0.6 
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0 0.1 0.2 0.3 0.4 

Mode fibre length, Lmod [mm] 

Fig. 9. Effects of mode fiber length, L,,, and critical fiber 
length, L,, on fiber length factor, xz, for the case of 
unidirectional composites (L,,,, = O-4 mm, Lmin = 0 mm and 

L mar = 00 mm). 

Table 1. Parameters b and a, mean fiber length, mode 
fiber length, critical fiber length, the content of fibers with 

a subcritical fiber length and fiber length factor, ,yz 

b l-5 1.5 1.5 1.5 1.5 
a 3.390 1.846 1.199 0.858 0.653 
L ITlCi” 0.4 0.6 0.8 1 .O 1.2 
L mod 0.213 0.320 0.426 0.533 0,639 

LC 0.2 0.3 0.4. 0.5 0.6 
% of L < L, 26.2 26.2 26.2 26.2 26.2 
x2 0.766 0.766 0.766 0.766 0.766 

LC 0.8 1.2 1.6 2.0 2.4 
% of L < L, 91.2 91.2 91.2 91.2 91.2 
x2 0.355 0.355 0.355 0.355 0.355 

interesting phenomenon is found in that the content of 
fibers with subcritical fiber length and the value of x2 
are the same for all the five cases of each group. Thus 
the composite strength is the same if the ratios of 

L,,,IL and JL,,,~IL are the same for a given 
composite system no matter how large the mean fiber 
length, the critical fiber length and the mode fiber 
length are. This demonstrates that both the ratio of 
L,,,,IL, and that of Lmod/L, determine the tensile 
strength of SFRP. 

Now we consider the effect of fiber orientation 
distribution on the strength of non-unidirectional 
reinforced composites (& # 1). 

Tables 2 and 3 give the effect of fiber orientation 
distribution on the value of x1x2 and hence the 
composite strength, where p = 0.1, A = O-4, Lmin = 0, 
L max = ~0, L,,,, = O-4, Lmod = 0.213 and L, = O-2 mm, 
respectively. The results in Table 2 show that the 
value of x1x2 and hence the composite strength 
increases with the decrease of mean fiber orientation 
angle and with the increase of fiber orientation 
coefficient. However, for the same fiber orientation 
coefficient, fe, the values of x1x2 are different for 
different mean fiber orientation angles (see Table 3); 
when f_ > 0, then the value of x1x2 increases with the 
increase of mean fiber orientation angle: on the 

Table 2. Tbe effect of fiber orientation distribution on the 
TS of SFRP 

No. p 4 k,,, emod & XlXZ 

1 100 0.5 1.514 K/2 -0.99 0 
2 16 1 1.351 1.393 -0.88 0.013 
3 8 1 1.262 1.318 -0.78 0.068 
4 4 1 1.141 1.209 -0.6 0.174 
5 2 1 0.982 1.047 -0.33 0.308 
6 0.5 0.5 0.785 0 0.417 
7 0.5 1 0.571 0.; 0.33 0.549 
8 1 4 0.430 0.361 0.6 0.652 
9 1 8 0.308 0.253 0.78 0.693 

10 1 16 0.220 0.178 0.88 0.717 
11 0.5 10 0.179 0.0 0.91 0.726 
12 0.5 100 0.056 0.0 0.99 0.755 
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Table 3. The effect of fiber orientation distribution on the 
TS of SFRP 

No. p q %lean %lmod fe x1x2 

1 0.5 1 0.571 0.0 0.33 0.549 
2 1 2 0.589 0.524 0.33 0.569 
3 2 4 0.601 0.580 0.33 0.588 
4 4 8 0.608 0.599 0.33 0.595 
5 0.5 0.5 0.785 0 0.417 
6 1 1 0.785 0%5 0 0.416 
7 2 2 0.785 0.785 0 0.415 
8 4 4 0.785 0.785 0 0.414 
9 8 4 0.962 0,972 -0.33 0.351 

10 4 2 0.970 0.991 -0.33 0.330 
11 2 1 0.982 1.047 -0.33 0*308 
12 1 0.5 0.999 l-57 -0.33 0.290 

contrary, when fe < 0, then the value of x1x2 decreases 
with the increase of mean fiber orientation angle. 
When fe = 0, there is almost no change in the mean 
fiber orientation angle and the value of x1x2. No direct 
relationship is found between the value of x1x2 and 
the most probable fiber orientation angle, ornod. 

When adding the consideration of the fiber 
orientation distribution, since the inclined tensile 
strength and critical fiber length of oblique fibers are 
related to the inclination angle, the effect of the fiber 
length distribution on the TS of SFRP can be studied 
based on eqn (36). 

Figure 10 shows the effects of the mean fiber length 

on the fiber efficiency factor, x1x2, where p = 0.1, 
A ~0.4, Lmin=O, L,,,= 00, L,,,=0*2mm and 
L, = O-2 mm, the parameters a and b are the same as 
in Figs 4 and 5 for the fiber length distribution 
function, p = O-5 and q = 10 for the fiber orientation 
distribution function. It can be seen from Fig. 10 that 
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Fig. 10. Effect of mean fiber length, L,,,,, on fiber 
efficiency factor, x1x2, for the case of non-unidirectional 
composites (p = 0.1, A = 0.4, L, = 0.2 mm, L,, = 0.2 mm, 
Lmin = 0 mm, L,,, = CC mm, p = 0.5 and q = 10 (@,,,,, = 

0.179 rad)). 

the value of x1x2 and hence the strength of composites 
increases rapidly with the mean fiber length at small 
mean fiber lengths (in the vicinity of L,) and 
approaches gradually a plateau level at large mean 
fiber lengths (greater than about 5LJ. This is the same 
as that for the case of unidirectional composites (see 
Fig. 5). 

Figure 11 represents the effects of the mode fiber 
length and the critical fiber length on the value of 
x,x2. It shows that the value of x1x2 and hence the 
composite strength increases with the decrease of 
critical fiber length; moreover, the value of x1x2 and 
hence the composite strength decreases slightly with 
the increase of mode fiber length. These are the same 
as those for the case of unidirectional composites (see 
Figs 5, 7 and 9). 

Figure 12 shows the effect of the snubbing friction 
coefficient on xa2, where A = 0.4, Lmin = 0, L,,, = ~0, 
L ,_,,, = 0.4 mm, L, = O-2 mm and Lmod = 0.213 mm, 
and p = 0.5 and q = 10 for the fiber orientation 
distribution function, respectively. It becomes clear 
that the value of x1x2 increases slightly with the 
snubbing friction coefficient, which demonstrates that 
the snubbing friction has only a small effect on the 
strength of composites. 

Figure 13 shows the effect of the constant A on the 
value of x1x2. It becomes clear that the value of the 
fiber efficiency factor, x1x2, decreases with the 
increase of the constant, A. This indicates that if the 
fiber flexural effect on the fracture strength of oblique 
fibers is smaller, then the composite strength would be 
higher. Otherwise, the composite strength would be 
lower. So the inclined tensile strength of fibers is a 
very useful parameter for the development of 
non-unidirectional SFRP. 
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Fig. 11. Effects of mode fiber length, Lmod, and critical fiber 
length, L,, on fiber efficiency factor, x1x2, for the case of 
non-unidirectional composites (p = 0.1, A = 0.4, L,,, = 
0.4 mm, L,, = 0 mm, L,, = 30 mm, p = 0.5 and q = 10 

( kl,,, = 0.179 rad)). 
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Fig. 12. Effect of snubbing friction coefficient, p, on fiber 
efficiency factor, x1x2 (A = O-4, L,,, = 0:4mm, L, = 
O-2 mm, Lmod = 0.213 mm, L,, = 0 mm, L,,, = ~0 mm, p = 

0.5 and q = 10 (e,,,,,, = O-179 rad)). 

4 APPLICATION OF THE PRESENT THEORY 

The purpose of developing a theoretical model is to 
explain and predict the experimental results. Con- 
versely, the theoretical model should also be able to 
be verified by the experimental results. The present 
theory is applied to published experimental results.” 
As described in the preceding section the strength of 
composites can be estimated by eqns (35) and (36) for 
a given composite system if the fiber length 
distribution, the fiber orientation distribution, the 
critical fiber length, the snubbing friction coefficient 
and the inclined strength of fibers are given. The 
required quantities for predicting the composite 
strength are given in Table 4 except the snubbing 
friction coefficient and the inclined strength of fibers. 
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Fig. 13. Effect of constant A on fiber efficiency factor, x1x2 
(p = O-1, L,,, = 0.4 mm, L, = 0.2 mm, Lmod = 0.213 mm, 
L,,=O mm, L,,, = ~0 mm, p = O-5 and q = 10 (@,,_,, = 

0.179 rad)). 

The snubbing friction coefficient and the inclined 
strength of fibers will be adjusted in the prediction of 
the TS of SFRP. 

Since the composite strength, the fiber volume 
fraction and the matrix strength have been given 
experimentally,” then the experimental values of 
k1~z)e can be estimated through eqn (35) and the 
corresponding results are given in Table 4. Also, the 
mean fiber length is given, I9 then with eqn (10) we can 
get the parameter a by arbitrarily setting b = 1.2 (the 
arbitrary setting will not result in a large error since 
the differently set value of b may result in the different 
mode fiber length; however, as shown in the preceding 
section (see Figs 9 and 11) the effect of mode fiber 
length on the TS of SFRP is very small for the case of 
L mea” > L, and the values in Table 4 show that 
L mean > L,). The parameter q can be evaluated from 
eqn (1.5) by arbitrarily setting p = 1 since the fiber 
orientation coefficient is given, this arbitrary setting 
may bring about only a small error if the evaluated 
fiber orientation distribution from eqn (12) deviates 
from the real fiber orientation distribution, as given in 
Table 3. The snubbing friction coefficient, p, can be 
arbitrarily assumed to be O-1 since p has only a very 
small effect on the value of x1x2. The constant A can 
be adjusted and then we can get the theoretical value 
of (X,X& The final results are given in Table 4, when 
varying the parameters a, b, p and q under the given 
L mean and fe, it is found that there is only a very small 
change in the value of hI& (in order to limit the 
length of Table 4 it is not listed in the table) so that it 
can be neglected, which demonstrates that the above 
settings and assumption are suitable. The comparison 
shows that the present theory agrees well with the 
experimental results. The constant A, and hence the 
inclined strength of fibers, has a fixed value for a given 
composite system, and the inclined strength of fibers is 
related to the matrices which is consistent with that 
described by eqn (20).25 

5 CONCLUSIONS 

The effects of the fiber length distribution and the 
fiber orientation distribution on the strength have 
been studied in detail for SFRP. The results show that 
the strength of SFRP increases rapidly with the 
increase of the mean fiber length at small mean fiber 
lengths (in the vicinity of the critical fiber length, L,) 
and approaches a plateau level as the mean fiber 
length increases for the cases of large mean fiber 
lengths ( > 5LJ. And the composite strength increases 
with the decrease of critical fiber length and hence 
with the increase of interfacial adhesion strength and 
slightly with the decrease of the mode fiber length. 
When the ratios of L,,,,/L, and L,,/L, are the same 
for a given fiber/matrix system, the strength of SFRP 
will be the same no matter how large L,,,,, Lmod and 
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Table 4. Comparison of the present theory with the existing experimental resdts’9 

ID 

Nylon-l 
Nylon-2 
Nylon-3 
PP-1 
PP-2 
PP-3 
PBT-1 
PBT-2 
PBT-3 

ID 

Nylon-l 
Nylon-2 
Nylon-3 
PP-1 
PP-2 
PP-3 
PBT-1 
PBT-2 
PBT3 

Fiber Matrix Fiber Critical Mean fiber 
strength strength volume length length 

(ksi) (ksi) fraction (mm) (mm) 

400 10.82 0.176 0.5613 0.8814 
400 10.82 0.186 0.5994 1.1862 
400 10.82 0.186 0.5994 0.8712 
400 4.513 0.100 1.4554 2.4714 
400 4.513 0.100 1.3995 2.4841 
400 4.513 0.100 1.3995 2.4866 
400 4.959 0.181 0.6807 0.9144 
400 4.959 0.181 0.8407 0.9931 
400 4.959 0.181 0.6807 1.0007 

a b P 4 f 

1.0813 1.2 1 2.5294 0.1 
0.7571 1.2 1 2.0586 0.1 
1.0964 1.2 1 2.3870 0.1 
0.3138 1.2 1 1.6175 0.1 
0.3118 1.2 1 l-5091 0.1 
0.3115 1.2 1 1.8510 0.1 
1.0346 1.2 1 2.1611 0.1 
0.9370 l-2 1 2-0335 0.1 
0.9284 1.2 1 2.0637 0.1 

A 

1.2 
1.2 
1.2 
1.7 
1.7 
1.7 
1.3 
1.3 
1.3 

Fiber Composite 
orientation strength 
coefficient (ksi) 

0.4333 29.22 
O-3461 27.70 
0.4095 28.40 
0.2359 8.92 
0.2029 8.42 
0.2985 10.89 
0.3673 20.60 
0.3407 19.98 
0.3472 20.41 

(XI& (X1X*)1 

0.2884 0.2826 
0.2539 0.2550 
0.2633 0.2682 
0.1215 0.1262 
0.1090 0.1197 
0.1707 0.1425 
0.2284 0.2237 
0.2199 0.2082 
0.2258 0.2202 

L, are. In general the strength of composites increases 
with the increase of fiber orientation coefficient, fe, 
and the decrease of mean fiber orientation angle; 
however, when the fiber orientation coefficients are 
the same, the strength of composites increases with 
the increase of mean fiber orientation angle for fe > 0 
and increases with the decrease of mean fiber length 
for fe < 0. No direct relationship is found between the 
strength of SFRP and the most probable fiber 
orientation angle. The effect of the snubbing friction 
between fiber and matrix on the strength of SFRP is 
small. The inclined tensile strength of fibers has a 
great effect on the strength of composites. The present 
theory is successfully applied to the existing 
experimental results. 
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