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Abstract

Symmetric encryption is the oldest branch in the field of cryptology, and is
still one of the most important ones today. This thesis covers several aspects
of the analysis and design of modern symmetric encryption algorithms.
The thesis starts with an overview of the different types of encryption al-

gorithms, pointing out their security requirements and their fundamental dif-
ferences in approach. We then focus on block ciphers and explain the basic
strategies and techniques used in modern cryptanalysis. In order to illus-
trate this, we present some concrete attacks, which are based on a number
of new ideas, but still serve as nice examples of the basic approach. One of the
most generic and powerful analysis techniques is linear cryptanalysis, which
is why we devote a separate chapter to it. We derive a new theoretical frame-
work which allows to rigorously and accurately analyze the performance of
this attack, and at the same time extend the attack to simultaneously exploit
multiple linear approximations.
In the second part of this thesis, we concentrate on design aspects of sym-

metric encryption algorithms. We first present tools to analyze and classify
substitutions boxes, components which play an important role in the design
of block ciphers which resist the attacks discussed in the first part. We then
present a new design strategy for stream ciphers based on techniques similar
to those used to strengthen block ciphers against linear cryptanalysis. This
eventually leads to the specification of a compact and elegant new stream ci-
pher called TRIVIUM.
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Beknopte Samenvatting

Symmetrische encryptie is de oudste discipline in het domein van de cryp-
tologie, en ze is tot op vandaag nog steeds een van de belangrijkste. Deze
thesis behandelt verschillende aspecten die een rol spelen in de analyse en het
ontwerp van moderne symmetrische encryptie-algoritmen.
De thesis start met een overzicht van de verschillende soorten encryptie-

algoritmen. We bestuderen wat hun veiligheidsvereisten zijn, en op welke
verschillende manieren ze die trachten te bereiken. Vervolgens spitsen we
ons toe op blokcijfers en lichten we de basistechnieken en strategieën toe die
gebruikt worden in de moderne cryptanalyse. Om dit te illustreren, stellen
we twee concrete aanvallen voor die steunen op een aantal nieuwe ideeën, en
tegelijkertijd een goed beeld geven van de gangbare algemene aanpak. Een
van de meest algemeen toepasbare en krachtige analysetechnieken is lineaire
cryptanalyse, en om die reden besteden we er een afzonderlijk hoofdstuk aan.
We ontwikkelen een nieuw theoretisch kader dat toelaat om de efficiëntie van
deze aanvallen nauwkeurig te berekenen, en breiden de aanvallen tegelijk ook
uit om simultaan gebruik te maken van meerder lineaire benaderingen.
In het tweede gedeelte van deze thesis, richtenwe ons op ontwerpaspecten

van symmetrische encryptie-algoritmen. Eerst ontwikkelen we algoritmen
om substitutie-boxen (S-boxen) te analyseren en te classificeren. S-boxen spe-
len een belangrijke rol in het ontwerp van blokcijfers die bestand zijn tegen de
aanvallen besproken in het eerste gedeelte van deze thesis. Vervolgens stellen
we een nieuwe ontwerpmethode voor om stroomcijfers te ontwikkelen. De
methode is gebaseerd op technieken die gelijkenissen vertonen met degene
die gebruikt worden om blokcijfers te wapenen tegen lineaire cryptanalyse.
Dit leidt uiteindelijk tot de ontwikkeling van een compact en elegant nieuw
stroomcijfer, TRIVIUM.
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Chapter 1

Introduction

1.1 Cryptology

Over the past decades, information technology has infiltrated more and more
areas of our society. The development of digital information and telecom-
munication systems opened a wide range of new possibilities which were
seized to improve the efficiency of different sorts of processes. Today, an ever-
increasing number of interactions between end users, organizations such as
banks, and governments is carried out electronically. Two of the most remark-
able breakthroughs were the world-wide expansion of the Internet and the
spectacular growth of digital mobile networks (e.g., GSM). The number of
users of both systems, which were nonexistent or confined to research com-
munities until the early 1990s, is now in the order of a billion.
The success of these new technologies can be attributed to a number of in-

trinsic advantages of digital systems: digital information is nearly insensitive
to noise, it can be sent over long distances, copied or modified without any
loss of quality. Moreover, the link between the information and its carrier has
disappeared. The exact same piece of information can be transmitted over a
wireless link, sent over an optical fiber, stored on a hard disk, and printed on
a barcode. This allows a large number of very different devices to interact
seamlessly.
However, the same properties which make digital information systems so

attractive render them particularly vulnerable to a broad range of abuses. In
a traditional mail system, the receiver of a letter can perform some simple
tests to assure himself that the message was not compromised. He can check
that the (sealed) envelope was not opened, study whether the handwriting or
signature matches, and search for anomalies which might indicate that parts
have been rewritten. These tests are all built on the assumption that any ma-
nipulation of the message will necessarily leave some traces on its physical
carrier. Unfortunately, this is exactly what digital systems have tried to avoid.
As was soon understood, the only way to secure digital systems without sac-

1



2 CHAPTER 1. INTRODUCTION

rificing their advantages, is to transform the information in such a way that
it protects itself, independently of how it is transferred or stored. The science
which studies this problem is called cryptology, and an excellent (but maybe
slightly outdated) overview of this field can be found in Menezes et al. [82].
It should be noted that many of the security issues raised by modern in-

formation technology are not new. Still, owing to the large scale of current
information systems and the unprecedented impact they have on our daily
live, cryptology has never been more important than today. Rapidly expand-
ing networks are interconnecting more and more devices all over the globe,
increasing both the number of interesting targets and the number of poten-
tial attackers. Moreover, eavesdropping on these networks has become much
easier with the proliferation of wireless access points. Finally, the growing
complexity of communication and information systems makes their security
much harder to control, giving rise to some rather unexpected new problems
such as computer viruses and worms.

1.2 Symmetric Encryption

The protection of digital information typically involves at least two distinct
problems: secrecy protection (preventing information from being disclosed to
unintended recipients) and authentication (ensuring that received messages
originate from the intended sender, and were not modified on their way).
This thesis is entirely devoted to the first problem, with the exception of the
appendix, which discusses some specific aspects of the second one.
In cryptology, intended senders and recipients are distinguished from un-

intended ones by assuming that they know some secret pieces of information,
called keys. These keys can be shared between the sender and the receiver, or
they can be different, in which case the sender and receiver are also prevented
from impersonating each other. In this thesis, we will concentrate on the first
case, called symmetric cryptography.
Symmetric cryptography addresses the problem of secrecy protection by

using the shared secret key to transform the message in such a way that it
cannot be recovered anymorewithout this key. This process is called symmetric
encryption. Algorithms which perform symmetric encryption are known as
ciphers. Based on the paradigm used to process the message, these ciphers are
typically categorized into one of two classes: block ciphers and stream ciphers.
The security of symmetric encryption algorithms can in general not be

proved (the notable exception being the one-time pad). Instead, the trust in
a cipher is merely based on the fact that no weaknesses have been found af-
ter a long and thorough evaluation phase. This explains the importance of
a strong interaction between cryptography, the field which studies techniques
to protect information, and cryptanalysis, which focuses on methods to defeat
this protection. In this thesis, we will promote simplicity as an effective cata-
lyst to enhance this interaction. While simple designs may be more likely to
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be vulnerable to simple, and possibly devastating, attacks, they certainly in-
spire more confidence than complex schemes, if they survive a long period of
public scrutiny despite their simplicity.

1.3 About this thesis

In this thesis, we will consider several aspects of symmetric encryption, both
from a cryptanalyst’s point of view, and from the perspective of a designer.
The general outline of the thesis, and the main contributions presented in the
different chapters, are summarized below:

• In Chap. 1, we outline the structure of this thesis. (← you are here)

• In Chap. 2, we provide a general introduction to symmetric encryption.
We point out the fundamentally different approach taken by block en-
cryption schemes and stream encryption schemes, review several block
cipher modes and stream cipher constructions, and explain how their
security is assessed.

• In Chap. 3, we concentrate on the cryptanalysis of block ciphers. We
explain the basic attack strategy of building a distinguisher and guess-
ing round keys, and describe three widely used attack techniques based
on this approach: differential cryptanalysis, linear cryptanalysis, and
multiset cryptanalysis. We then present two dedicated attacks (against
SAFER++ and ARIA) which introduce some novel ideas, but still nicely
illustrate the basic attack strategy. Parts of this chapter are based on [34],
and some of the results are published in [19, 20].

• In Chap. 4, we provide a much more rigorous analysis of linear crypt-
analysis. We introduce a general statistical framework, which allows to
analyze and devise attacks exploiting multiple linear approximations.
We show that this extension of linear cryptanalysis can lead to more ef-
ficient attacks, and that it sheds some new light on the relation between
two previously known attacks. The results of this chapter are published
in [21].

• In Chap. 5, we focus on substitution boxes (S-boxes) as an important
building block in the design of ciphers which resist the linear attacks de-
scribed above. We argue that their most relevant properties are invariant
under affine transformations, and present efficient algorithms to detect
the affine equivalence of two S-boxes. We introduce the concept of a lin-
ear representative, and show how this can be used to effectively reduce
the set of all 2× 1013 4× 4-bit S-boxes to a list of 302 candidates. Parts of
this chapter are published in [18].
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• In Chap. 6, we present a new design strategy for stream ciphers based
on the same techniques that are used to protect block ciphers against lin-
ear cryptanalysis. We show that a carefully designed linear structure can
be surprisingly efficient in diffusing the nonlinearity of very few small
nonlinear components. Based on this strategy, we develop a compact
and efficient hardware oriented stream cipher called TRIVIUM. The de-
sign ideas presented in this chapter are published in [30], and TRIVIUM
itself has been submitted to the eSTREAMStreamCipher Project [31]. At
the time of writing, it has successfully passed two selection rounds, and
is amongst the 8 hardware candidates retained for the third evaluation
phase.

• In Chap. 7, we conclude this thesis with some ideas for further research.

• As a supplement to this thesis, we present in App. A some results of
our recent research on hash functions [32]. While these results do not in-
volve symmetric encryption, and are therefore not included in the main
part of this thesis, they do have some relevance in the area of symmet-
ric encryption because of the duality between differential characteristics
in hash functions on the one hand, and linear characteristics in stream
ciphers on the other hand.

As indicated above, the main results presented in this thesis have been
published in [18, 19, 20, 21, 30, 32, 34]. Other results obtained during this
doctoral research, which are not considered in this thesis, can be found in the
publications [5, 16, 33, 35, 109, 114].

Chapter 2

Symmetric Encryption

This chapter introduces what will be the main objects of study in this thesis:
symmetric encryption algorithms. We explain what they are, what properties
they are supposed to have, and what they typically look like.

2.1 Encryption Algorithms

The purpose of an encryption algorithm is to protect the secrecy of messages
which are sent over an insecure channel. A general encryption algorithm con-
sists of two mathematical transformations: an encryption function E, and a
decryption function D = E−1. In order to communicate in a secure way,
the sender (traditionally called Alice) will apply the encryption function to
the original message P (the plaintext), and transmit the resulting ciphertext
C = E(P ) over the insecure channel. Once C is received by the intended
recipient (called Bob), the plaintext is recovered by computing D(C) = P .
In order for this scheme to meet its purpose, i.e., to ensure that Alice’s

message will only be read by Bob, a number of conditions need to be fulfilled.
First, the decryption function D must be known to Bob but kept secret from
anybody else, with the possible exception of Alice. Secondly, the transforma-
tion E must be designed in such a way that an eavesdropper intercepting the
ciphertext (often called Eve) cannot, at least in practice, extract any informa-
tion about the plaintext, except maybe its length. Finally, the implementations
of the transformations E and D should not require a prohibitive amount of
computational resources.

2.1.1 Symmetric vs. Asymmetric Encryption

Until the 1970s, it was intuitively assumed that the previous conditions imme-
diately implied that the encryption function E had to be secret as well. The
reasoning was that if Eve were given E, it would suffice for her to reverse

5
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E D

secure channelK

P P
C

Figure 2.1: Model for symmetric encryption

this transformation to recover D. In the mid-1970s Diffie and Hellman [36]
realized that the secrecy of the encryption function was in fact not required,
at least in theory, provided that one could construct so-called trapdoor one-
way functions. These are functions which are easy to evaluate, but cannot
be inverted efficiently, unless some extra information (the trapdoor) is given.
Examples of trapdoor one-way functions were soon found, and allowed the
development of practical public key encryption algorithms such as RSA [95].

While public key cryptography has the major advantage that Bob does not
need to exchange any secret information with Alice before she can start en-
crypting, schemes which do rely on the secrecy of their encryption function
still play a vital role in practical systems. The reason is that implementations
of secret key or symmetric encryption algorithms, as they are called nowadays,
are orders of magnitude more efficient than their public key (or asymmetric)
counterparts. As its title suggests, this thesis will exclusively deal with sym-
metric encryption algorithms.

2.1.2 Kerckhoffs’ Principle

In most situations, it is fairly hard to keep an encryption or decryption algo-
rithm completely secret: either Alice and Bob have to design and implement
their own algorithm, or they have to trust a designer not to disclose the algo-
rithm to others. Moreover, for each correspondent Alice wants to communi-
cate with, she will need a different algorithm. The solution to this problem is
to introduce a secret parameterK as in Fig. 2.1, and to construct parametrized
encryption and decryption functions, in such a way that DK′(EK(P )) does
not reveal anything about P as long as K ′ 6= K . Instead of repeatedly having
to design new secret algorithms, it now suffices to agree on a secret value for
K , called the key. Typically, this key is a short binary string of 80 to a few
hundred bits. Since the security of the resulting system only relies on the se-
crecy of the key, the functions E and D can now be shared and even made
public. The principle that full disclosure of the underlying algorithms should
never affect the security of a good encryption scheme, as long as the key is
kept secret, is known as Kerckhoffs’ principle.

2.1. ENCRYPTION ALGORITHMS 7

EK

P1

C1

EK

P2

C2

EK

P3

C3

· · ·

Figure 2.2: A block cipher in so-called ECB mode (see p. 11)
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Figure 2.3: A stream cipher

2.1.3 Stream and Block Encryption

Let us now take a closer look at the boxesE andD in Fig. 2.1. In practice, these
boxes will not take a complete text as input and then transform it at once, but
rather operate in a sequential fashion. With this respect, symmetric encryp-
tion algorithms are traditionally divided into two categories: stream ciphers
and block ciphers. A block cipher divides the plaintext into separate blocks of
fixed size (e.g., 64 or 128 bits), and encrypts each of them independently using
the same key-dependent transformation. A stream cipher, on the other hand,
takes as input a continuous stream of plaintext symbols, typically bits, and en-
crypts them according to an internal state which evolves during the process.
The initialization of this state is controlled by the secret keyK and a public ini-
tial value IV . The differences between both systems are illustrated in Fig. 2.2
and Fig. 2.3.

While the definitions above would at first sight allow to draw a clear the-
oretical distinction between stream ciphers and block ciphers based on the
presence of a state, the situation is a bit more blurred in practice. The fact is
that block ciphers are rarely used in the way shown in Fig. 2.2. Instead, the
output of the key-dependent transformation is typically kept in memory and
used as a parameter when encrypting the next block. While this approach,
known as cipher block chaining (see Sect. 2.1.5), would fall into the category
of stream encryption according to the previous definition, it is still commonly
called block encryption.

In order to resolve this apparent inconsistency, wewill followDaemen’s [26]
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suggestion, and make a distinction between a block cipher, which is just an in-
vertible key-dependent transformation acting on blocks of fixed length, and a
block encryption scheme, which encrypts plaintexts of arbitrary length and will
typically use a block cipher as a component. While a block cipher is stateless
by definition, this is rarely the case for a block encryption scheme.
The need for a state in a block encryption scheme arises from a fundamen-

tal difference in approach between block ciphers and stream ciphers. A stream
cipher tries to defeat the adversary by making the encryption of a plaintext
symbol depend in an unpredictable way on the position in the stream. A block
cipher, on the other hand, aims to make its output depend in an unpredictable
way on the value of the plaintext block. A consequence of the latter approach
is that repeated blocks in a plaintext message are easily detected at the output
of a block cipher, thus providing the adversary with possibly useful informa-
tion. The purpose of the state in a block encryption scheme is precisely to
make such repetitions unlikely, by first “randomizing” the plaintext blocks
before they are fed into the block cipher.
The different roles played by the internal states of block and stream en-

cryption schemes are reflected in the following informal definitions:

Definition 2.1 (block encryption). A block encryption scheme is an encryp-
tion scheme whose state, if it has one, can be kept fixed without significantly
reducing its security, provided that the plaintext symbols are independent and
uniformly distributed.

Definition 2.2 (stream encryption). A stream encryption scheme is an encryp-
tion scheme whose state cannot be kept fixed without severely reducing its
security, even if the plaintext symbols are independent and uniformly dis-
tributed.

It is interesting to note that the two branches in symmetric cryptology have
evolved in rather different circumstances. Block ciphers owe much of their
popularity to a few successful designs (such as DES [86] and its successor,
AES [85]) which are standardized, freely available, and can be deployed in
many different applications. The most widely used stream ciphers, on the
contrary, are proprietary designs (e.g., RC4, A5/1), closely tied to a particu-
lar application (e.g., GSM). Many of these designs were kept secret, until they
eventually leaked out, or were reverse-engineered. This explains why, in the
1990s, stream ciphers have tended to receive less attention from the open re-
search community than block ciphers.

2.1.4 Anatomy of a Block Cipher

Whereas stream ciphers are based on a variety of principles, most block ci-
pher designs follow the same general approach. They typically consist of a
short sequence of simple operations, referred to as the round function, which is
repeated r times (called rounds). The first round takes an n-bit plaintext block
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Figure 2.4: Feistel cipher vs. SP network

as input, and the last round outputs the ciphertext. Additionally, each round
depends on a subkey (or round key) which is derived from a k-bit secret key
(this derivation process is called the key schedule). Since the receiver must be
able to uniquely decrypt the ciphertext, the round function has to be bijective
for any value of the secret key. This is usually achieved in one of the following
ways:

Feistel Ciphers. The round function of a Feistel cipher (named after H. Feis-
tel, one of the IBM researchers who designed LUCIFER and DES) splits
the input block into two parts Li−1 and Ri−1. The right part Ri−1 is left
unchanged and forms the left part of the output Li. The right part of the
output is constructed by adding a modified copy of Ri−1 to the left part
of the input Li−1, i.e.,

Li = Ri−1 ,

Ri = Li−1 + f(Ri−1,Ki) .

It is not hard to see that this operation can be inverted by subtracting
f(Li,Ki) from Ri, no matter how the function f is constructed. Many
block ciphers are based on this structure, including DES.

SP Networks. Another approach consists in building a round function by
combining layers of simple invertible functions: substitutions (called
S-boxes) and permutations. The substitution layers act on small units
of data (rarely more than 8 consecutive bits), and their highly nonlin-
ear properties introduce local confusion into the cipher. The permutation
layers, on the other hand, are simple linear transformations, but they
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operate on the complete block, and thus diffuse the effect of the substi-
tutions. The terms confusion and diffusion, which were introduced by
Shannon [100], will be a recurrent theme in this thesis.

The most prominent block cipher based on an SP network is the Ad-
vanced Encryption Standard (AES). Notice also that the f -functions of
many Feistel ciphers consist of a small SP network.

2.1.5 Modes of Operation

As we already mentioned in Sect. 2.1.3, a block cipher in itself is just a com-
ponent which describes a set of invertible transformations on blocks of fixed
length n. Before Alice can actually start encrypting data, she needs to turn
this block cipher into an encryption scheme. The different ways in which this
can be achieved are called modes of operation. The purpose of a mode of op-
eration is to extend the cryptographic properties of a block cipher to larger
messages. The property which this thesis mainly focuses on is confidentiality,
but modes providing message integrity and authenticity, possibly in addition
to confidentiality, exist as well.
Although security obviously remains the primary criterion, other (non-

cryptographic) considerations often play an equally important role in the se-
lection of a mode of operation:

Data expansion. Some constructions require the plaintext length to be an ex-
act multiple of the block length n. This implies that the original message
may have to be expanded with extra padding bits, which is usually un-
desirable.

Error propagation. Single bit transmission errors may have different effects
on the decrypted ciphertext. Either the error only affects a single bit or
block of the recovered plaintext, or it might propagate to one, a few or
all subsequent blocks.

Random access. A number of modes allow ciphertext blocks to be decrypted
(or even modified) at arbitrary positions without first having to process
all preceding blocks. This is particularly useful for storage encryption.

Parallel processing. Some modes allow different blocks to be processed si-
multaneously, which may be an interesting way to increase the through-
put in certain applications.

We now shortly review some of the most common confidentiality modes.
Except for the OCB mode, all of these modes have been standardized by
NIST in the first part of Special Publication 800-38 [87]. The remaining three
parts of SP800-38, which describe authentication and authenticated encryp-
tion modes, are definitely a recommended read, but lie beyond the scope of
this thesis.
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Figure 2.5: A block cipher in ECB mode

Block Encryption Modes

The first three modes in this section turn a block cipher into a block encryption
scheme as defined in Sect. 2.1.3.

Electronic Codebook Mode (ECB). The ECBmode is without doubt the most
straightforwardway to encrypt messages whose length exceed the block
length: themessage is simply partitioned into n-bit blocks, each of which
is encrypted independently. The scheme is depicted in Fig. 2.5 and can
be described as follows:

Encryption: Decryption:

Ci = EK(Pi) . Pi = DK(Ci) .

The advantages of this mode are its simplicity and its suitability for par-
allel processing. Blocks at arbitrary positions can be encrypted or de-
crypted separately and errors do not propagate from one block to an-
other. As mentioned in Sect. 2.1.3, however, the major problem of this
approach is that it does not hide all patterns in the plaintext: i.e., when-
ever the plaintext contains identical blocks, so will the ciphertext. This
limits the applications of the ECB mode to those (rare) cases where all
blocks encrypted with a single key are guaranteed to be different.

Cipher-Block ChainingMode (CBC). The CBCmode, which is presently the
most widely used mode of operation, masks each plaintext block with
the previous ciphertext block before applying the block cipher (see Fig. 2.6):

Encryption: Decryption:

C0 = IV , C0 = IV ,

Ci = EK(Ci−1 ⊕ Pi) . Pi = DK(Ci)⊕ Ci−1 .

Since the output of a good block cipher is supposed to be completely
unpredictable for anyone who does not know the key, all consecutive
values of Ci−1 ⊕ Pi will appear to be independent and uniformly dis-
tributed,1 and this regardless of the plaintext (assuming that the text

1Note that this is not automatically the case for i = 0, and hence, when different messages are
encrypted under the same key, care should be taken that the initial values (IV ’s) are sufficiently
unpredictable as well.
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Figure 2.6: A block cipher in CBC mode

itself does not depend on the key). Repetitions at the input of the block
cipher are therefore unlikely to occur, which remedies the main short-
coming of the ECB mode. However, when the message length exceeds
2n/2 blocks, repeated values start to be unavoidable because of the birth-
day paradox. For this reason, the CBC mode (and in fact all modes in
this section) should never be used to encrypt more than 2n/2 blocks with
the same key.

The cost of masking the plaintext in CBC is that the ciphertext feedback
in the encryption part prevents the blocks from being processed in par-
allel. The decryption, on the other hand, depends only on two consecu-
tive ciphertext blocks, and can still be performed independently for each
block. This has the additional benefit that a bit error in the ciphertext can
only affect the decryption of two blocks.

Offset Codebook Mode (OCB). The masking in CBC effectively destroys all
dependencies in the plaintext. However, if the only purpose is to pre-
vent repeated input blocks, then it suffices to require that the blocks are
pairwise independent, or even weaker, just pairwise differentially uni-
form, i.e., that the difference between any two input blocks is uniformly
distributed. The IAPMmode by Jutla [57] and, derived from it, the OCB
mode by Rogaway et al. [96] are block encryption modes based on this
observation. Bothmodes are variants of the ECBmode inwhich a stream
of words Zi is added before and after the encryption (see Fig. 2.7):

Encryption: Decryption:

Ci = EK(Pi ⊕ Zi)⊕ Zi . Pi = DK(Ci ⊕ Zi)⊕ Zi .

In the case of OCB, the words Zi are distinct multiples of a secret param-
eter L, which is derived from the key K by encrypting a nonce (i.e., a
value used only once).

A first advantage of OCB compared to CBC is that it is completely paral-
lelizable, both for encryption and decryption. But what makes the mode
particularly attractive is the fact that it provides message authenticity
at a very small additional cost: it suffices to compute a simple (non-

2.1. ENCRYPTION ALGORITHMS 13

E

P1

Z1

Z1

C1

E

P2

Z2

Z2

C2

E

P3

Z3

Z3

C3

D

C1

Z1

Z1

P1

D

C2

Z2

Z2

P2

D

C3

Z3

Z3

P3

Figure 2.7: A block cipher in OCB mode

E

P1

C1

E

P2

C2

E

P3

C3

IV

E

C1

P1

E

C2

P2

E

C3

P3

IV

Figure 2.8: A block cipher in OFB mode

cryptographic) checksum of the plaintext, and to encrypt it with the
same keyK .

A drawback for the deployment of OCB is its intellectual property situa-
tion, which is somewhat unclear. This explains why the OCB mode was
relegated to optional status in the IEEE802.11i standard, in favor of the
mandatory CCMmode, which is not encumbered by patents.

Stream Encryption Modes

Block ciphers can also be used to perform stream encryption, as illustrated by
the three modes below. A noteworthy feature of these modes is that they only
use the encryption function of the block cipher.

Output FeedbackMode (OFB). The OFBmode, depicted in Fig. 2.8, encrypts
plaintext blocks by combining them with a stream of blocks called key
stream, which is generated by iterating the block cipher:

Encryption: Decryption:

Z0 = IV , Z0 = IV ,

Zi = EK(Zi−1) , Zi = EK(Zi−1) ,

Ci = Pi ⊕ Zi . Pi = Ci ⊕ Zi .

The generation of key stream blocks in OFB is independent of the plain-
text. This means that the stream can be precomputed as soon as the IV
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is known, a feature which may be useful in real-time applications. The
mode is strictly sequential, though: the decryption of a single block at
an arbitrary position in the ciphertext requires all preceding key stream
blocks to be computed first.

Owing to the invertibility ofEK , all Zi will necessarily be different, until
one of them hits the value of Z0 again, at which point the sequence will
start repeating itself. A secure n-bit block cipher is not expected to cycle
in much less than 2n−1 blocks, which implies that this periodicity has
no practical consequences for a typical 128-bit block cipher. The mere
fact that all Zi within a cycle are different leaks some information as
well, though. As a consequence, it is not recommended to encrypt much
more than 2n/2 blocks with a single key.

Counter Mode (CTR). The CTR mode takes a similar approach as the OFB
mode, but this time the key stream is generated by encrypting a counter:

Encryption: Decryption:

Z0 = IV , Z0 = IV ,

Ci = Pi ⊕ EK(Zi) , Pi = Ci ⊕ EK(Zi) ,

Zi+1 = Zi + 1 . Zi+1 = Zi + 1 .

As opposed to the OFB mode, the CTR mode allows data blocks at ar-
bitrary positions to be processed independently, both during encryption
and decryption. This also allows pipelining in hardware, which can re-
sult in significant efficiency gains. Apart from this feature, the OFB and
the CTR mode have very similar properties.

Cipher FeedbackMode (CFB). Both OFB and CTR (or OCB for that matter)
require perfect synchronization during decryption, i.e., in order to de-
crypt a ciphertext block, the receiver needs to know the block’s exact
position in the stream. The CFB mode eliminates this requirement, and
is similar to CBC in this respect.

The CFB mode is designed to process messages in r-bit segments, with
1 ≤ r ≤ n (typically r = 1, r = 8, or, as in Fig. 2.10, r = n). The encryp-
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Figure 2.10: A block cipher in CFB mode

tion mode consists in shifting successive r-bit ciphertext segments back
into an internal state block Si, and combining the leftmost bits ofEK(Si)
with the plaintext:

Encryption: Decryption:

S1 = IV , S1 = IV ,

Ci = Pi ⊕ EK(Si)[1 · · · r] , Pi = Ci ⊕ EK(Si)[1 · · · r] ,
Si+1 = (Si ≪ r) + Ci . Si+1 = (Si ≪ r) + Ci .

The feedback in CFB prevents the parallel encryption of plaintext blocks.
Still, arbitrary ciphertext blocks can be decrypted independently, pro-
vided that the ⌈n/r⌉ preceding blocks are available. As a direct conse-
quence, single bit errors in the ciphertext cannot propagate over more
than ⌈n/r⌉ successive blocks.
Again, and for similar reasons as in CBC, a single key should not be used
to encrypt more than 2n/2 blocks. For small values of r, additional pre-
cautions should be taken in order to avoid weak IV values. In particular,
if the bits of the IV were to form a periodic sequence, then this would
considerably increase the probability of repeated values at the input of
the block cipher.

2.1.6 Dedicated Stream Ciphers

In its most general form, a stream cipher consists of a transformation which
takes as input a plaintext symbol and the current state, and combines both to
produce two outputs: a ciphertext symbol and the next state. This general
construction was depicted in Fig. 2.3. In the vast majority of practical ciphers,
however, the transformation E can be further decomposed into separate func-
tions in either of the three ways shown in Fig. 2.11.

Synchronous Stream Ciphers

The first and by far most common approach is to update the state indepen-
dently from the plaintext, in which case the stream cipher is said to be syn-
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Figure 2.11: Three types of stream ciphers
(a) binary additive, (b) self-synchronizing, and (c) accumulating

chronous. The computations performed by a synchronous stream cipher can
be described by three functions f , g, and h. The function f computes the next
state, the function g produces key stream symbols zi, and the function h out-
puts ciphertext symbols by combining plaintext and key stream symbols:

Encryption: Decryption:

zi = g(Si) , zi = g(Si) ,

ci = h(pi, zi) , pi = h−1(ci, zi) ,

Si+1 = f(Si) . Si+1 = f(Si) .

In addition to being synchronous, most modern stream ciphers are also binary
additive, which means that their combining function h is simply defined as
ci = pi ⊕ zi, as in Fig. 2.11 (a).
Note that we already saw two special examples of synchronous stream ci-

phers in the previous section, namely the OFB mode and the CTR mode. A
notable common feature of these block cipher based constructions is the way
in which they use their state: one part of the state (the key K) is kept secret,
but stays constant during the whole encryption process; the other part is con-
tinuously updated, but is either known to the attacker, or directly used as key
stream and thus easily derived from fragments of known plaintext. With re-
spect to the functions f and g, OFB and CTR take diametrical approaches. The
OFB mode uses an extremely simple h-function, and relies completely on the
strength of f for its security. The CTR mode works the other way around.
In order to keep deriving unpredictable key stream bits from a state whose

bits are all either constant or known, the OFB and CTR constructions have to
place heavy demands on either f or g, and this justifies the need for a rela-
tively complex component such as a block cipher. Of course, nothing forces a
synchronous stream cipher to use its state in this particular way. In fact, most
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dedicated synchronous stream ciphers will make sure that none of the state
bits stay constant for more than a few iterations, and that only a fraction of
these bits are revealed to the attacker at any time. This strategy, as opposed
to the OFB and CTR constructions, allows the cipher to gradually accumulate
unpredictable bits in its state. The advantage of this approach is that its secu-
rity depends more on the interaction between f and g, than on the individual
functions themselves. In principle, neither of these functions is required to
be particularly strong on its own, which explains why dedicated synchronous
stream ciphers have the potential to be significantly more efficient and com-
pact than block cipher based schemes, as will be illustrated in Chapt. 6.
Examples of synchronous stream ciphers include modern stream ciphers,

such as the widely used RC4 [94] and A5/1 [1], but also historical rotor-based
machines such as Enigma (the latter is an illustration of a non-additive syn-
chronous stream cipher). Note that even though all these ciphers share the
same high-level structure, the design of their components is often based on
very different principles.

Self-Synchronizing Stream Ciphers

The synchronous stream ciphers in the previous section derive their name
from the fact that their state must be perfectly synchronized with the incom-
ing ciphertext stream in order to recover the plaintext. On unreliable channels,
this requires an external synchronization mechanism, which can be impracti-
cal in certain applications. In these cases, self-synchronizing stream ciphers
can come in handy. The underlying idea of self-synchronizing stream ciphers
is to use the ciphertext stream itself to synchronize the state. The encryption
and decryption operations are defined as follows:

Encryption: Decryption:

zi = g(Si) , zi = g(Si) ,

ci = h(pi, zi) , pi = h−1(ci, zi) ,

Si+1 = f(Si, ci) . Si+1 = f(Si, ci) .

The function f is non-injective with respect to Si, and defined in such a way
that the state Si can always be computed as a function of the initial state and
the last t ciphertext symbols, i.e.,

Si = f(f(· · · f(S0, ci−t) · · · ), ci−1) , ∀i ≥ t . (2.1)

Fig. 2.11 (b) shows the encryption mode of a self-synchronizing stream cipher
where h(pi, zi) = pi ⊕ zi. The narrowing shape of f symbolizes the non-
injective nature of the function.
Block ciphers in CFB mode (see p. 14) are the most widely used self-syn-

chronizing stream ciphers. The state in this case consists of a constant part
which stores the secret key, and a variable part which contains the last t =
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⌈n/r⌉ ciphertext symbols. The state update function f is just a shift of this
second part. As in CTR mode, the security of CFB completely relies on the
strength of g.
Dedicated (as opposed to block ciphers based) self-synchronizing stream

ciphers are relatively rare. The reason for this is that the switch to a dedicated
self-synchronizing stream cipher is not likely to result in the same efficiency
gain as in the synchronous case. A first limitation is that self-synchronizing
stream ciphers cannot accumulate unpredictability in their state to the same
extent as synchronous stream ciphers, simply because (2.1) does not allow f
to perform any computation that would affect the state for more than t iter-
ations. The second complication is that the state update depends on cipher-
text symbols, which means that an adversary who can influence the cipher-
text (either by corrupting the communication channel, or by controlling parts
of the plaintext), can also influence how the state is updated. In particular,
the adversary can force the decrypting cipher to return to any previous state
by replaying fragments of the ciphertext. This allows chosen-ciphertext (or -
plaintext) attack scenarios which do not apply to synchronous stream ciphers
(see Sect. 2.2.1). Because of these two structural properties, self-synchronizing
designs still have to rely to a large extent on the individual strength of the
combined function g ◦ f , which limits the potential for large efficiency gains.

Accumulating Stream Ciphers

A third class of stream ciphers, which has only started to appear very recently,
follows the structure of Fig. 2.11 (c), and can be described by the following
equations:

Encryption: Decryption:

zi = g(Si) , zi = g(Si) ,

ci = h(pi, zi) , pi = h−1(ci, zi) ,

Si+1 = f(Si, pi) . Si+1 = f(Si, pi) .

The expressions above resemble somewhat the equations of a self-synchroniz-
ing stream cipher, but in fact, the construction serves the opposite purpose.
Whereas a self-synchronizing stream cipher aims to limit the effect of com-
munication errors (bit flips, insertions, or deletions), the goal of the current
construction is to make sure that any modification in the ciphertext (be it acci-
dental or malicious) would have a very high probability to permanently dis-
turb the state. In order to achieve this, condition (2.1) is dropped, allowing the
function f to be invertible with respect to both Si and pi. The class of ciphers
based on this construction has not been given a special name in the literature
so far, but in this thesis we will refer to them as accumulating stream ciphers.
The main use of accumulating stream ciphers is to perform authenticated

encryption. When used for this purpose, the state has to undergo some addi-
tional processing at the end of the encryption process, and the result is used as
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a message authentication code (MAC). Phelix [110] and Shannon [50] are two
ciphers based on this paradigm.
An issue that complicates the design of efficient and secure accumulating

stream ciphers is the fact that the scheme provides the adversarywith a means
to influence the state, just as in self-synchronizing stream ciphers. This time,
however, there is no obvious way for the adversary to reset the state. That
is, unless she can force a reinitialization of the cipher with the same key and
IV. If this possibility cannot be excluded, g ◦ f would need the same kind of
strength as in a self-synchronizing stream cipher in order to resist attacks such
as those presented byWu and Preneel [112], and there would be little hope for
the cipher to attain the same efficiency as a synchronous cipher.

2.2 Security Considerations

In the previous sections, we have introduced different types of symmetric en-
cryption schemes. In several places, we have pointed out, in a rather infor-
mal way, which issues need to be considered in order for these schemes to be
secure. However, although it was to some extent implied in the earlier dis-
cussion, we have not yet explicitly defined what we understand by a “secure”
encryption scheme. Before we address this point, let us first identify possible
attack scenarios.

2.2.1 Attack Scenarios

In the case of encryption, the task of the adversary Eve consists in recovering
unknown parts of the plaintext, or better yet, recovering the secret key. Dif-
ferent attack scenarios can be distinguished depending on what information
Eve can obtain, and to what extent she can interfere in the communication
between Alice and Bob.

Ciphertext-only attack. This type of attack only assumes that Eve is capable
of capturing encrypted text. As this is likely to be the case (otherwise
there would be little reason to encrypt the messages in the first place),
encryption schemes succumbing to cipher-text only attacks are consid-
ered to be particularly insecure.

Known-plaintext attack. A known-plaintext attack requires Eve to have ac-
cess to (parts of) the plaintext corresponding to the captured ciphertext.
This additional requirement is typically rather easy to fulfill. A good ex-
ample is an online payment on the Internet: while the browser and the
server will exchange several kilobytes of encrypted data, it is likely that
the only unknown part is a 16-digit credit card number.

Chosen-plaintext attack. Some attacks only succeedwhen the plaintexts have
a specific form. In order to mount such attacks, Eve must find a way to
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influence the encrypted plaintexts. A practical example is a secure con-
nection between Alice and her mail server. By sending carefully crafted
mails to Alice, Eve can get the server to encrypt the plaintexts she needs.

Chosen-ciphertext attack. This attack requires Eve to have control over the
ciphertexts sent to Bob, and to be capable of monitoring how they are
decrypted. For example, Eve could try to attack a pay TV decoder by
feeding it with special ciphertexts and analyzing its output. Notice that
such attacks will not work if the receiver has a means to check the in-
tegrity of the ciphertexts.

Chosen-IV attacks. If the encryption scheme takes as input an IV, Eve might
have means to control this value as well. At the receiver side, the IV typ-
ically needs to be derived from a header which is prefixed to the cipher-
text. Hence, if Eve can corrupt ciphertexts, she can most likely modify
the IV used during decryption as well.

Adaptively chosen-plaintext/ciphertext/IV attack. In order to mount one of
the attacks described above, Evewill typically need to obtain the encryp-
tions or decryptions of a whole series of chosen data blocks. When the
choice of a certain block depends on the results obtained from previous
blocks, the attack is called adaptive.

One could still imagine other attack scenarios. Related key attacks, for in-
stance, where an attackermanages to obtain pairs of plaintexts and ciphertexts
encrypted with different but related secret keys. Such attacks are worth study-
ing when block ciphers are used to construct hash algorithms, for example.
However, in the context of encryption schemes, these attacks are of limited
relevance, since they can easily be prevented by choosing an appropriate key
generation procedure, without affecting the efficiency of the scheme in any
significant way.

2.2.2 Measuring Security

The security of symmetric encryption schemes has been analyzed from several
perspectives in the literature.

Perfect Secrecy

The first rigorous treatment is given by Shannon [100], who introduces the
concept of perfect secrecy.

Definition 2.3 (perfect secrecy). An encryption scheme is called perfectly (or
unconditionally) secure if the observation of the ciphertext does not change
the a priori probability distribution of possible plaintexts, i.e., the plaintext
and the ciphertext are statistically independent.
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Shannon shows that this property is realized by the Vernam scheme (a.k.a.
the one-time pad), but also proves that perfect secrecy can only be achieved
by encryption schemes whose secret key is at least as long as the message.
Clearly, such a requirement is highly inconvenient in practice, and this sug-
gests the need for a more relaxed notion of security.

Computational Security

A concession, which is perfectly reasonable given the practical reality, is to
require protection only against adversaries with bounded computational re-
sources. The amount of resources that would be required to break this protec-
tion can then be used as a measure for the so-called computational security of
an encryption scheme.

Definition 2.4 (computational security). An encryption scheme is said to pro-
vide n bits of (computational) security if the most efficient attack requires a
computational effort equivalent to an exhaustive search over 2n values.

As opposed to perfect secrecy, which can typically easily be proved or
(more likely) disproved, the computational security of a scheme is in general
very hard to evaluate. Although an increasing number of encryption schemes
follow design principles which allow to derive lower bounds on the computa-
tional cost of a successful attack, each of these bounds eventually relies either
on an unproven assumption or on a restricted attack model. Based on the na-
ture of these assumptions or restrictions, we can distinguish different types of
lower bounds:

• The first type of bounds are those that consider only a restricted, well
defined subset of attacks. This is a common practice in the design of
symmetric primitives. Many recent block ciphers, for instance, come
with provable bounds on the expected linear and differential probabili-
ties of linear approximations and differentials. Provided that a number
of additional assumptions are valid, these bounds can be translated into
bounds on the efficiency of attacks based on standard differential and
linear cryptanalysis (see Chap. 3). Of course, and as has been demon-
strated more than once [29, 54, 104], this does not rule out the existence
of efficient attacks based on different principles.

• A second type of bounds relies on the assumed security properties of
one of the components of the scheme. They are derived by first model-
ing an attack scenario (preferably giving the adversary as much freedom
as possible), and then proving that any efficient attack within this model
would imply a violation of the component’s assumed properties. This
approach can be used to analyze the strength of general constructions
such as the Feistel structure [73], or to reduce the security of modes of
operation to the security of the underlying block cipher [9]. Reductions
of this type provide interesting insights in how to use secure primitives
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in a secure way; however, when it comes to designing these secure prim-
itives, they are of relatively little help.

• The third type of bounds is based on the conjectured hardness of well-
studied mathematical problems, such as factoring large composite num-
ber, computing discrete logarithms, or solving systems of multivariate
quadratic equations. While such bounds are still not to be considered
as absolute and conclusive security proofs, they do provide the assur-
ance that no adversary will break the scheme without a major break-
through in mathematics. This type of proofs has become an essential
element in the design of asymmetric primitives. In the world of sym-
metric cryptography, they remain notoriously rare, though. The reason
is that primitives which allow this sort of security reductions tend to be
significantly slower than symmetric schemes designed in the traditional
way. This effect is often reinforced by the need for relatively large secu-
rity margins (see for instance [113]) to compensate for the fact that the
exact complexity of several of these mathematical problems is difficult
to evaluate, even though they are widely agreed to be asymptotically
hard.

Encryption schemes which allow these sorts of reasoning are sometimes
called “provably secure”. However, as should be clear from the discussion
above, such security proofs should always be interpreted with caution, and
certainly they should not be seen as suggesting that there is no need for fur-
ther analysis. The literature contains several examples of “provably secure”
schemes which were eventually broken. In some cases, the discovered weak-
nesses can be traced back to errors in the proofs (which are sometimes rather
complex), but more often the attacks do not invalidate the proofs themselves,
but rather the assumptions which they rely on. Although security proofs can
be very useful guidelines during the design stage, the most convincing indi-
cation of the security of a scheme remains the fact that it has survived a long
period of scrutiny by the cryptographic community.

2.2.3 How Secure Should a Scheme Be?

In the previous section, we showed how the security of encryption schemes
is measured by estimating how much computational effort it would take to
break them. The next question is: how large should this estimated effort really
be for a scheme to be considered secure?
From a practical point of view, it suffices for Alice and Bob to ensure that

the computational effort exceeds, by some safety margin, what can be af-
forded by Eve. Estimates for the minimum level of security required to de-
fend against different types of adversaries are listed in Table 2.2. The figures
were derived by the ECRYPT NoE in 2007 [37] by estimating the amount of
computation that can be carried out within a given budget over a limited pe-
riod of a few months. Based on these numbers, it seems that a security level
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of 80 bits should be considered a minimum requirement for achieving an ac-
ceptable degree of protection. Clearly, this level of security does not provide
long-term protection against intelligence agencies or large organizations, but
it is still amply sufficient for those applications where a single plaintext has
relatively little value, and the purpose of the encryption is not so much to
make plaintext recovery attacks absolutely infeasible, but rather to make the
cost of performing such an attack completely unjustifiable.
For applications which do require long-term protection, it is recommended

to aim for 128-bit or 256-bit security. A 128-bit security level is expected to
resist for a period of at least 30 years. Schemes providing 256 bits of secu-
rity should remain secure in the “foreseeable future”, even in the advent of a
breakthrough in quantum computing.
In general, it takes only a linear increase in implementation cost to increase

the security level of a symmetric encryption scheme from 80 bits to 128 bits (or
from 128 bits to 256 bits). Hence, unless efficiency is absolutely crucial, there
is often little reason not to opt for the higher security levels.

2.2.4 Generic Attacks and Ideal Ciphers

In addition to the more pragmatic approach of matching the security of an en-
cryption scheme against the computational capabilities of the adversary, there
exists a tradition in symmetric cryptography to link the security requirements
of a cipher to its external dimensions. The ambition is to design ciphers which
are optimal in the sense that they cannot be attacked in a significantly more
efficient way than any other conceivable cipher with the same external di-
mensions. Or with other words, that their security can only be increased by
increasing at least one external dimension. If a cipher fails to satisfy this re-
quirement, then this is considered to be a certificational weakness, regardless of
the practical implications.
The discussion above raises two questions: (1) what exactly do we con-

sider to be the external dimensions of a cipher? And (2) what is the maximal

Table 2.1: Some reference numbers

Reference Magnitude
Seconds in a year 225

Age of solar system in years 232

Clock cycles per year on 2GHz computer 256

Floating point operations per year on BOINCa 274

Capacity of 120GB hard disk in bits 240

Information generated or replicated in 2006 in bitsb 270

ahttp://www.boincstats.com/
bhttp://www.emc.com/about/destination/digital universe/



24 CHAPTER 2. SYMMETRIC ENCRYPTION

Table 2.2: Minimum security for various adversaries in 2007 [37]

Attacker Budget Hardware Min. security
Hacker 0 PC 52bit

< $400 PC(s)/FPGA 57bit
0 Malware 60 bit

Small organization $10k PC(s)/FPGA 62bit
Medium organization $300k FPGA/ASIC 67 bit
Large organization $10M FPGA/ASIC 77 bit
Intelligence agency $300M ASIC 88 bit

security level that can be expected from a cipher with given dimensions? In
the next two sections we briefly address these questions for the two most com-
mon types of symmetric primitives.

The Ideal Block Cipher

There is little discussion possible about what constitute the external dimen-
sions of a block cipher: clearly, the two relevant parameters are the block
length n and the key length k. As explained earlier, the purpose of a block
cipher is to realize an unpredictable invertible mapping from n-bit plaintext
blocks to n-bit ciphertext blocks, controlled by a k-bit secret key. Consider-
ing this, and disregarding all practical implementation issues, it appears that
the ideal block cipher would simply consist of a collection of 2k permutations,
picked at random from the set of all possible permutations over n-bit blocks.
Despite the fact that this hypothetical cipher would lack any exploitable

structure, it is still susceptible to a number of generic attacks. The most obvi-
ous attack, which applies to any cipher with a k-bit secret key, is exhaustive key
search. If Eve is given a small number of plaintext/ciphertext pairs, she could
encrypt the plaintexts with all possible keys and compare the result with the
previously observed ciphertext. On average, the correct key will reveal itself
after 2k/2 trials. In certain circumstances, it will be possible to reduce this
workload. For example, if a single plaintext is encrypted under 2t different
keys, Eve can attack all keys simultaneously, and is expected to find the first
match after only 2k−t trials.
A second possible improvement, proposed by M. E. Hellman [51], is a

time-memory trade-off based on a precomputed table of 22·k/3 entries. The
precomputation itself still takes 2k steps, but once the table is completed, any
subsequent key can be recovered within 22·k/3 steps. It is important to note
here that the large amount of memory required for this approach has a signifi-
cant impact on the cost of the attack. A rigorous analysis by M. J. Wiener [111]
shows that even without taking into consideration the precomputation, the
full cost of recovering a specific key is in fact not significantly lower than the
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cost of a regular exhaustive search. On the other hand, a parallel implementa-
tion of this trade-off allows to recover a large number of keys simultaneously
without increasing the total cost, in which case the cost per key is effectively
reduced (see also [10]).
Another generic attack is related to the block length n. If Eve manages to

capture the ciphertexts of all 2n possible plaintext blocks, she can construct
a dictionary which allows her to decrypt any future message encrypted with
the same secret key. In fact, Eve does not necessarily need a complete dic-
tionary: whenever a block cipher outputs the same ciphertext block twice, it
leaks information about the plaintexts. Since repetitions in a random set of n-
bit blocks start to occur frequently when the number of blocks exceeds 2n/2 (a
consequence of the birthday paradox, as mentioned earlier), it is not advisable
for Alice and Bob to encrypt more than 2n/2 blocks with the same secret key.

The Ideal Synchronous Stream Cipher

It is maybe slightly less obvious which parameters should be considered as
external dimensions in a synchronous stream cipher. Clearly, the key length
k and the IV length v should be included. However, if we would only con-
sider these two parameters, then our ideal synchronous stream cipher should
logically consist of a collection of 2k+v infinite streams of independent and
uniformly distributed bits. The problem is that there is no way to implement
such an ideal cipher on a finite device, which makes it an unfair reference for
practical stream ciphers. In order to avoid this problem, we choose to intro-
duce a third parameter d, which restricts the maximum allowed key stream
length to 2d symbols.
One might wonder why the state size was not taken into consideration

in the previous discussion. Until recently, it was indeed common practice to
link the security of a stream cipher to its state size (which was often equal to
the key length). The main argument against this approach is that the state size
does not directly affect the external interface of a cipher (as opposed to the key
length, the IV length, or the maximum key stream length), and hence it is bet-
ter left as an internal implementation property. This reasoning is supported by
the fact that the most efficient stream ciphers often use states which are con-
siderably larger than what would be expected from their security level. Ar-
tificially restricting the state sizes of these ciphers would seriously hurt their
performance. On the other hand, it is clear that the parameters k, v, and d do
affect the minimal state size of a cipher. An ideal synchronous stream cipher,
implemented as a large static table of independent and uniformly distributed
bits, would have to store at least the key, the IV, and the current position in the
stream, which suggests that stream ciphers should have a minimal state size
of k + v + d bits.
The generic key recovery attacks discussed in the previous section also ap-

ply to synchronous stream ciphers. Several other trade-offs are possible, and
we refer the interested reader to [53] for an extensive overview. However, if
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the state size satisfies the bound given above, none of these attacks are sig-
nificantly more efficient than the parallel trade-off attack mentioned in the
previous section.

2.3 Conclusions

In this chapter, we have reviewed several types of symmetric encryption al-
gorithms. We have clarified the distinction between block ciphers and stream
ciphers, and have tried to explain the intuition behind the different designs.
We have identified different possible attack scenarios, and have discussed cri-
teria to evaluate the security of encryption algorithms.

Chapter 3

Block Cipher Cryptanalysis

At the end of the previous chapter, we saw a number of generic attacks which
apply to any cipher, and are solely based on the cipher’s limited dimensions.
In this chapter, we concentrate on block ciphers, and consider attack tech-
niques which try to exploit the specific structure of practical block cipher con-
structions.

3.1 General Attack Strategy

Once our adversary Eve has convinced herself that the block and key lengths
of a block cipher make all generic attacks infeasible, she will search for spe-
cial properties in the cipher’s internal structure. Attacks which reduce the
complexity of exhaustive search by exploiting internal properties are called
shortcut attacks. In the last two decades, cryptanalysts have started to develop
systematic methods to search for shortcut attacks. Many of the successful tech-
niques boil down to the same two-step strategy:

Step 1: Build a distinguisher. Given a sequence of plaintext-ciphertexts pairs,
Eve will always be able to tell from the encryption of an unknown plain-
text block whether or not it is equal to one of the previous plaintexts.
In order to make sure that this is also the only information that Eve can
extract, a secure block cipher must present itself as a completely random
permutation to any adversary which does not know the key and has a
limited amount of computational resources. Conversely, any property
which allows Eve to distinguish the block cipher from a random permu-
tation is an interesting weakness, which, as explained below, is typically
only one step away from a key recovery attack.

Step 2: Recover round keys. Let us consider a reduced encryption function
constructed by omitting the last round of the block cipher, and let us
suppose that Eve is able to efficiently distinguish whether or not a given

27
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sequence of input/output blocks could have been produced by this re-
duced function for some secret key. If Eve is now given plaintext-cipher-
text pairs from the original cipher, she can guess (parts of) the last round
key, (partly) decrypt the last round, and use her distinguisher on the first
r − 1 rounds to check whether the guess could have been correct. Once
she has obtained a correct round key, she can proceed with an exhaus-
tive search for the remaining key bits, or peel off one round and start
again.

In the next three sections, we first discuss three general analysis techniques
based on these ideas. As a further illustration, we will then present two con-
crete attacks against the block ciphers SAFER++ and ARIA. Although these
dedicated attacks use some new ideas and hence deviate somewhat from the
general techniques that will be presented in the first part of this chapter, we
will see that they still follow the same basic two-step strategy.

3.2 Differential Cryptanalysis

Differential cryptanalysis has been, and still is, one of the most influential
techniques in block cipher cryptanalysis. It was developed by E. Biham and
A. Shamir in the late 1980s and was originally used to demonstrate weak-
nesses in the block cipher FEAL. The technique was first published in a gener-
alized form in 1990, and illustrated with attacks on reduced-round versions of
DES [12, 14]. After a few additional improvements it eventually led, in 1991,
to the first attack on the full 16-round DES which was faster than exhaustive
search [13].

3.2.1 A Differential Distinguisher

Constructing an efficient distinguisher essentially consists in finding a distinc-
tive property in the input and output blocks which would indicate the use of
the block cipher regardless of the value of the secret key.1 This suggests that
the attacker should somehow eliminate the effect of the unknown key. Dif-
ferential cryptanalysis attempts to do exactly that, by studying differences of
input and output blocks encrypted with the same key.

In many block ciphers (including FEAL, DES, and AES), the secret key bits
are injected in the encryption function by XORing them to intermediate data
blocks at different stages in the computation. Let X1 and X2 be the values of
such an intermediate data block for two different plaintexts P1 and P2. As-

1Efficient distinguishers which only work for specific values of the key (called weak keys), are
also useful, provided that the fraction of these keys is sufficiently large. We will see an example
later in this chapter.
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suming that both plaintexts are encrypted with the same key, we can write

{
Y1 = X1 ⊕Ki

Y2 = X2 ⊕Ki

⇒
∆Y = Y1 ⊕ Y2

= (X1 ⊕Ki)⊕ (X2 ⊕Ki)

= X1 ⊕X2 = ∆X .

This simple observation illustrates the purpose of a differential approach: while
the adversary cannot compute the values Y1 and Y2 without knowing the
round key Ki, she can easily determine their difference ∆Y , given ∆X . The
idea of differential cryptanalysis is to try to extend this property over multi-
ple rounds. If Eve manages to predict the output difference ∆C by tracing
how the input difference ∆P evolves through the cipher, then this obviously
distinguishes the cipher from a random permutation.

3.2.2 Differential Characteristics

In practice, a cipher does not only consist of key additions (which, as shown
above, are completely transparent to differences); it also contains diffusion
components and nonlinear S-boxes. Linear diffusion layers do not pose a se-
rious problem. Although they do not preserve differences, they do transform
them in a predictable way:

{
Y1 = A ·X1

Y2 = A ·X2

⇒ ∆Y = A ·∆X . (3.1)

Unfortunately for Eve, this is not true for S-boxes (or any other nonlinear com-
ponent the cipher may have). Unless the difference ∆X at the input of the
S-box is 0, Eve can typically not determine the output difference∆Y without
knowing the actual value of X1. However, given ∆X and assuming that X1

is uniformly chosen, she can compute the statistical distribution of possible
output differences (we will see an example later). In order to proceed, Eve
will simply pick one of these output differences, compute the probability that
her choice was correct, and continue her analysis. Eventually, she will reach
the output of the cipher, and will have described one of the possible ways in
which the difference ∆P at the input could have propagated through the ci-
pher. This is called a differential characteristic. The probability p that a given
pair of plaintexts actually follows this characteristic is the product of the prob-
abilities of all choices that Eve had to make (assuming that these probabilities
are independent).

3.2.3 Minimizing the Data Requirements

In order to use the probability p to distinguish the block cipher from a random
permutation, Eve will need the encryptions of a sufficient amount of plaintext
pairs with a fixed difference∆P . Notice that this assumes that she can choose
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the plaintexts. Eve will then count the number of pairs which produce the
output difference predicted by her characteristic. For N pairs of plaintexts
encrypted with the block cipher, this number is expected to be at least2 p ·N .
In the random case, Eve expects the predicted output difference to appear only
pR ·N times, with pR in the order of 1/2

n. In order to clearly distinguish both
cases, the numbers must differ by at least a few standard deviations:

|p ·N − pR ·N | ∝
√
N · p(1− p) +N · pR(1− pR) . (3.2)

Hence, assuming that pR ≪ p≪ 1, we obtain the condition

N ∝ 1

p
.

This clearly shows that the larger the probability of Eve’s characteristic, the
more efficient the distinguisher will be. Searching for the most probable char-
acteristic typically involves a tradeoff between two objectives: Eve’s first goal
is to select the differences at the inputs and outputs of the diffusion layers in
such a way that they affect as few S-boxes in the neighboring layers as pos-
sible. Whenever an S-box is kept inactive this way, its output difference does
not need to be guessed (it can only be 0). Secondly, in all places where the dif-
ferences do affect an S-box (called an active S-box), Eve will try to choose the
pair of input and output differences that has the largest possible probability.
To facilitate this task, she will construct a difference distribution table, which lists
the probabilities of all possible pairs of differences at the input and the output
of the given S-box.
Table 3.1 gives an example for a 3-bit S-box. For each input difference∆X ,

the table contains a row showing the distribution of possible output differ-
ences ∆Y . Notice that in this specific example, ∆X = 2 results in ∆Y = 6
with probability 1. Such a weakness is not likely to exist in a larger S-box.

3.2.4 Applications and Extensions

In their original attack, E. Biham and A. Shamir used a 13-round distinguisher
to recover key bits from the last two rounds of a DES variant reduced to 15
rounds. The distinguisher was based on a 13-round differential characteristic
with probability 2−47. In 1991, the two researchers realized that they could
allow an extra round at the input of the distinguisher by imposing additional
restrictions on the plaintexts. This observation, together with an improved
procedure to eliminate wrong key candidates, eventually resulted in the first
theoretical break of the full 16-round DES cipher. The attack required an im-
practical amount of data (247 chosen plaintexts), but was significantly more

2As an input difference might propagate to the same output difference in multiple ways, this
number is sometimes significantly higher. The set of all characteristics with the same input and
output differences is called a differential.
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Table 3.1: Difference distribution table for a 3-bit S-box Y = S(X)

X Y
0 7
1 5
2 1
3 3
4 2
5 6
6 4
7 0

∆X\∆Y 0 1 2 3 4 5 6 7
0 1 0 0 0 0 0 0 0
1 0 0 1/2 0 1/2 0 0 0
2 0 0 0 0 0 0 1 0
3 0 0 1/2 0 1/2 0 0 0
4 0 0 0 1/2 0 1/2 0 0
5 0 1/2 0 0 0 0 0 1/2
6 0 0 0 1/2 0 1/2 0 0
7 0 1/2 0 0 0 0 0 1/2

efficient than exhaustive search (i.e., trying out about half of all 256 possible
keys).
After the publication of these first differential attacks, various improve-

ments and extensions have been proposed. Techniques have been developed
to exploit truncated differences [64] (differences which leave a number of bits
undetermined), impossible differentials [15] (combinations of input and output
differences that can never occur), and higher-order differences [69] (differences
of differences). Another interesting development is the boomerang attack [104],
which builds an adaptive attack using two separate differential characteristics,
each covering half of the cipher.

3.3 Linear Cryptanalysis

The second powerful technique developed in the early 1990s is linear crypt-
analysis. The attack in its current form was introduced by M. Matsui in 1993
[76], and was first applied to DES. However, as was the case with differential
cryptanalysis, early variants of the attack were already used in 1992 to break
FEAL [79]. Linear cryptanalysis will be the main topic in the next chapter, but
we already outline the basic ideas here.

3.3.1 Linear Approximations

Whereas differential cryptanalysis focuses on differences in data blocks, lin-
ear cryptanalysis studies the relation between linear combinations of plaintext
and ciphertext bits. The attack relies on the existence of a linear approximation
of the cipher. This is a linear expression of the form

ΓT

P · P ⊕ ΓT

C · C = ΓT

K ·K , (3.3)

which holds with probability p 6= 1/2, where C is the encryption of P under
the key K . The column vectors ΓP , ΓC , and ΓK are called linear masks and
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represent a particular linear combination of bits.

The motivation to study differential properties in the previous section was
that it allowed to eliminate the secret key. In linear cryptanalysis this goal
is only partly achieved: the secret key is reduced to a single unknown bit,
ΓT

K · K . As a result, three cases can be distinguished. Assuming that Eve is
given the encryptions of N arbitrary plaintexts, let T be the number of texts
such that the left-hand side of (3.3) is 0. If Eve finds that T is close to p ·N , she
will conclude that the block cipher was used with a secret key K satisfying
ΓT

K ·K = 0. On the other hand, if T converges to (1 − p) ·N , she will assume
that ΓT

K ·K = 1. Finally, a value of T close to 1
2 ·N (which is what Eve would

expect in the random case) indicates that the plaintext-ciphertext pairs were
probably not generated by the block cipher. The number of texts required
to accurately distinguish these three cases can be computed using (3.2). This
time, we have p ≈ pR = 1/2, resulting in the condition

N ∝ 1

(p− 1/2)2
.

As can be noticed in the previous paragraph, an important advantage of
linear cryptanalysis over differential cryptanalysis, is that it does not impose
restrictions on the plaintexts: it is a known instead of a chosen plaintext at-
tack. Moreover, the procedure described above does not only allow Eve to
distinguish the block cipher from a random permutation, it also immediately
provides her with (the equivalent of) one secret key bit. Nevertheless, we will
see in Chap. 4 that, in order to recover the complete key efficiently, the distin-
guisher will still have to be used as explained in Sect. 3.1.

3.3.2 Linear Characteristics

When mounting a linear attack, Eve’s first task consists in finding a useful
linear approximation. As deduced above, the more the probability of the ap-
proximation differs from 1/2, the lower the number of plaintexts required by
the attack. Finding the best linear approximation for an arbitrary cipher is in
general not a trivial task. However, if the cipher is composed of simple com-
ponents (as is mostly the case), one could try to approximate the complete
cipher by combining linear approximations for individual components.

Finding linear relations between the input and the output bits of compo-
nents which are linear already, is obviously very easy. For example, in order
to write a linear expression which holds with probability 1 for a key addition,
it suffices to choose masks ΓX , ΓY , and ΓK in the following way:

Y = X ⊕Ki ⇒
ΓT

Y · Y = ΓT

Y ·X ⊕ ΓT

Y ·Ki

⇑
ΓX = ΓK = ΓY .
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Table 3.2: Linear approximation table for a 3-bit S-box Y = S(X)

X Y
0 7
1 5
2 1
3 3
4 2
5 6
6 4
7 0

ΓX\ΓY 0 1 2 3 4 5 6 7
0 1/2 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 −1/2
2 0 0 −1/4 −1/4 −1/4 1/4 0 0
3 0 0 −1/4 1/4 1/4 1/4 0 0
4 0 −1/2 0 0 0 0 0 0
5 0 0 0 0 0 0 1/2 0
6 0 0 1/4 1/4 −1/4 1/4 0 0
7 0 0 −1/4 1/4 −1/4 −1/4 0 0

Similarly, if Eve wants to construct a linear relation for a linear diffusion layer,
she can choose the masks as follows:

Y = A ·X ⇒

ΓT

Y · Y = ΓT

Y ·A ·X
= (AT · ΓY )T ·X
⇑

ΓX = AT · ΓY .

(3.4)

S-boxes, which are designed to be highly non-linear, can typically not be
approximated very accurately with a linear expression. The linear approx-
imation with the best correlation can be found by constructing a linear ap-
proximation table, which is the equivalent of the difference distribution table
used in differential cryptanalysis. An example is given in Table 3.2. For all
pairs (ΓX ,ΓY ), the table lists the value of (p − 1/2), with p the probability
that ΓT

X · X = ΓT

Y · Y . The more this value differs from zero, the better the
approximation.
When comparing equations (3.1) and (3.4), we notice that there is a certain

duality between differential and linear cryptanalysis: the first equation de-
scribes how differences propagate from the input to the output of a diffusion
layer; the second equation shows a similar property for linear masks, but this
time the masks propagate from the output to the input, and they are multi-
plied with AT instead of A. A result of this duality is that chains of approxi-
mations, called linear characteristics can be constructed in exactly the sameway
as differential characteristics. This is illustrated in Fig. 3.1.

3.3.3 Piling-up Lemma

The only missing link in the construction of linear characteristics is a rule for
computing the total probability of a chain of approximations. This is where
the so-called Piling-up Lemma comes into play.



34 CHAPTER 3. BLOCK CIPHER CRYPTANALYSIS

∆L = 0 ∆R

f

K1

∆X ∆R

∆X ∆R

f

K2

∆R ∆X
∆Y ∆X

∆X ∆R ⊕ ∆Y

ΓX ΓR ⊕ ΓY

f

K1

ΓX ΓY

ΓX ΓR

f

K2

ΓR ΓXΓR ΓX

ΓL = 0 ΓR

Figure 3.1: Propagation of differential and linear characteristics in a Feistel
cipher. The difference∆R propagates from the input to the output; the linear
mask ΓR takes the opposite direction

Lemma 3.1. If n independent linear approximations of the form ΓT

i ·Xi = ΓT

i−1 ·
Xi−1 are each satisfied with a probability pi = 1/2+ǫi, then the combined probability
of the approximation ΓT

n ·Xn = ΓT

0 ·X0 is given by p = 1/2 + ǫ with

ǫ = 2n−1
n∏

i=1

ǫi . (3.5)

The values ǫi used above are called the biases of the linear approximations.
The lemma can be further simplified by defining ci = 2 ·ǫi, known as the corre-
lation or the imbalance. With this notation, (3.5) reduces to c =

∏
ci. The square

of the correlation, appropriately called the linear probability, makes the similar-
ity between linear and differential cryptanalysis even more apparent: linear
probabilities can be multiplied as before, and just as in differential cryptanal-
ysis, the inverse of their product is proportional to the number of plaintexts
required by the distinguisher.

3.3.4 Applications

In his original paper, M. Matsui presented two different attack algorithms for
DES. The first, called Algorithm 1, used one large characteristic covering all 16
rounds, and allowed to recover the value of ΓT

K ·K . The second algorithm, Al-
gorithm 2, was a key recovery attack based on a 15-round linear distinguisher.
In 1994, Matsui proposed an improved variant of Algorithm 2, using a 14-
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round linear characteristic. The attack required 243 known plaintexts and was
the first attack on DES that was verified experimentally.
Today, Matsui’s attack is still considered to be amongst the most efficient

attacks on DES. A number of interesting variants of linear cryptanalysis have
been proposed in the last decade, including attacks using chosen plaintexts [65],
non-linear approximations [66, 101], or, as wewill see in the next chapter, mul-
tiple linear approximations [21, 59]. When applied to DES, however, none of
these approaches improves Matsui’s attack with more than a factor 4.

3.4 Multiset attacks

After the discovery of linear and differential cryptanalysis, cryptographers
started to design ciphers which minimized both the maximum probability of
differential characteristics and the maximum correlation of linear characteris-
tics. One of these ciphers was SQUARE, designed by J. Daemen and V. Rijmen
in 1997. However, during the analysis of a preliminary version of this block
cipher, L. Knudsen discovered that it was vulnerable to a new type of attack.
This forced the designers to increase the number of rounds, and the resulting
cipher was published in [29], together with the new attack, which was from
then on referred to as the “SQUARE attack.”
Differential and linear attacks are in general very sensitive to the exact

specification of each component in the cipher. This is much less the case for
the type of cryptanalysis described in this section: the SQUARE attack is not
affected by specific design choices for individual components, but relies only
on how these components, which are considered as black boxes, are intercon-
nected. Another interesting feature of the attack is that it is not probabilistic:
if Eve does not detect the special property which the distinguisher relies on,
then she knows for sure that the plaintext-ciphertext pairs were not generated
by the block cipher.
The general technique used in the SQUARE attack has been given different

names in the last few years. S. Lucks proposed the name saturation attack [74],
A. Biryukov and A. Shamir treated the technique as a special case of struc-
tural cryptanalysis [17], and L. Knudsen and D. Wagner referred to it as integral
cryptanalysis [67].

3.4.1 Multisets

The key idea behind the SQUARE attack is somewhat similar to the differential
approach in Sect. 3.2. However, instead of analyzing pairs of related plain-
texts, the attacker will now study the behavior of complete sets of carefully
chosen plaintexts. In order to analyze these sets, the text blocks are first split
into m-bit words whose size matches the internal structure of the cipher. The
different values taken by each individual word are then treated as multisets.
A multiset is a list of values, each of which can appear multiple times, but the
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Figure 3.2: An example of how multisets might propagate through an SP net-
work. The labels C, P , E, and B respectively stand for constant, permutation,
even, and balanced

order of which is irrelevant. The goal of the attack is to keep track of multisets
with special properties. The following properties are of particular interest:

Constant multiset. A multiset consisting of a single value repeated an arbi-
trary number of times.

Permutation or saturated multiset. Amultiset which contains all 2m possible
values for the word exactly once.

Even multiset. A multiset in which each value, if present, occurs an even
number of times.

Balanced multiset. A multiset such that the XOR of all values (taking into
account their multiplicity) is zero.

Notice that some of these properties are implied by others. For example, a
constant multiset with an even number of elements is also an even multisets,
and any saturated or even multiset is automatically balanced.

3.4.2 How Multisets Propagate

In order to distinguish a block cipher from a random permutation, the ad-
versary will first construct a set of plaintexts such that the values at different
positions form special multisets. For example, when analyzing an SP network
consisting of 8× 8-bit S-boxes, Eve might choose 256 plaintexts which take on
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all possible values in the first byte (a saturated multiset), but are constant in
the others. Her task is then to trace how these multisets are transformed as the
plaintexts are encrypted. Interestingly, most of the transformations commonly
found in a block cipher preserve or translate at least some of themultiset prop-
erties described above. A constant or an even multiset, for example, retains
its special properties after having been transformed by an arbitrary function
over m-bit values (e.g., an S-box). Similarly, a saturated multiset is preserved
by any bijective function, and a balanced multiset by any linear transforma-
tion. Finally, if a saturated and a constant multiset are combined in a linear
way, the result will be either saturated or even.

Using the propagation rules described above, Eve can typically keep track
of the multiset properties over 2 to 4 rounds (see for example Fig. 3.2). If the
multisets at the output of the last round do not exhibit the predicted prop-
erties, then this indicates that the output texts were generated in a different
way.

3.4.3 Applications

Multiset attacks are of particular significance today because of their applica-
bility to RIJNDAEL. The RIJNDAEL cipher, designed by J. Daemen and V. Rij-
men in 1998 [28], is a successor of SQUARE. It was submitted to the U.S. Na-
tional Institute of Standards and Technology3 (NIST) in response to an open
call for 128-bit block ciphers. It was, together with 14 other candidates, exten-
sively evaluated during two years, before NIST announced in 2000 that RIJN-
DAEL would replace DES and become the new Advanced Encryption Stan-
dard (AES).

Just as its predecessor SQUARE, RIJNDAEL was specifically designed to re-
sist differential and linear cryptanalysis. As of today, multiset attacks have
shown to be the most effective in breaking reduced versions of RIJNDAEL.
The SQUARE attack, which was also applicable to the RIJNDAEL structure, al-
lowed to break 6 rounds out of 10. It recovered the 128-bit key using a set of
232 special plaintexts, and it required a computational effort of 272 steps. The
work factor was later reduced to 244 by performing the calculations in a more
efficient way [40]. Ferguson et al. [40], as well as H. Gilbert andM.Minier [43],
have developed more sophisticated multiset attacks that could be applied to
7 rounds. However, when RIJNDAEL is used with a 128-bit secret key, both
attacks are only marginally faster than generic attacks. If the reduced cipher is
used with a larger key, it takes one or twomore rounds before the complexities
of the currently best attacks exceed the complexity of exhaustive search.

3Previously called the National Bureau of Standards (NBS).
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3.5 Example 1: Attacking 3 Rounds of SAFER++

In the remaining two sections, we try to convey a sense of what it takes to
devise an attack against a practical block cipher by considering two concrete
examples of dedicated attacks. Both attacks nicely illustrate the concepts of
Sect. 3.1, while at the same time introducing some new ideas.
The first attack targets a 3-round reduced variant of the block cipher SAFER++.

Although we demonstrate considerably more powerful attacks covering up to
5.5 rounds in [19], we choose to concentrate on this 3-round attack because of
its instructive simplicity.

3.5.1 Description of SAFER++

SAFER++ [75] is a block cipher which was submitted to the European NESSIE
competition in 2000, where it made it to the second phase. It is the latest
member of a family of block ciphers designed by J. Massey which includes
SAFER-K, SAFER-SK, and SAFER+. The latter is an AES candidate which is
currently widely used owing to its important role in the authentication and
key generation algorithms specified in the Bluetooth standard.
The standard version of SAFER++ operates on 128-bit blocks and is based

on a 7-round SP network. The round function, which consists exclusively of
byte operations, is depicted in Fig. 3.3. It can be subdivided into four layers: a
first key addition layer, an S-box layer, another key addition layer, and finally
a linear diffusion layer. As can be seen in the figure, the key addition layers
alternate XORs (‘⊕’) and integer additions (‘⊞’), and the S-box layer uses two
different S-boxesX and L defined as follows:

X(a) = (45a mod 257)mod 256 ,

L(a) = X−1(a) .

The linear diffusion layer consists of a composition of two identical linear
transforms, which successively reorder the bytes, split them into segments of
four consecutive bytes, and feed each of those into a linear component called
4-point Pseudo Hadamard Transform (4PHT). The complete diffusion layer is
designed to make sure that a change in a single input byte propagates to at
least ten output bytes. It is interesting to note that this does not hold anymore
during decryption: when the diffusion layer is used in reverse direction, and a
single byte difference is applied, only five bytes are guaranteed to be affected.
The round keys are derived from a 128-bit key according to a simple key

scheduling algorithm. Since the exact details of this algorithm are irrelevant
to our attack, we will not discuss them here.

3.5.2 A Two-round Distinguisher

As mentioned earlier, changes propagate relatively slowly through the linear
layer in decryption direction. Most byte positions at the input of a decryption
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Figure 3.3: One round of SAFER++
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Figure 3.4: A 3-round attack

round affect only 6 bytes at the output, and conversely, most byte positions
at the output are affected by only 6 bytes at the input. After one more round,
this property is destroyed, i.e., a change in any input byte can induce changes
in any output byte after two rounds (complete diffusion on byte level). The
number of different paths through which the changes propagate is still small,
however, and this property allows us to build an efficient distinguisher.

The structure of a 2-round distinguisher is shown in Fig. 3.4. First, a mul-
tiset of 216 texts is constructed, constant in all bytes except in byte 4 and 6, in
which it takes all possible values. After one decryption round, these texts are
still constant in 8 positions, due to the weak diffusion properties of the linear
layer. We now focus on byte 13 at the top of the distinguisher. This byte is af-
fected by 6 bytes of the preceding round, 5 of which are constant. This implies
that the changes in the two bytes at the input essentially propagate through a
single path.
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As a closer look reveals, this path has some additional properties: in Round 2,
the two input bytes are first summed and then multiplied by 4 (modulo 256)
before they reach S-box 7. The byte at this position is then again multiplied by
4 in Round 1. The effect of the first multiplication is that the two least signifi-
cant bits at the input of S-box 7 remain unaffected; the second multiplication,
on its turn, causes the two most significant bits at the output of this same S-
box to be discarded. Due to the special algebraic structure of the S-box, this
results in a reduction of the number of different values that can be observed
at the top to exactly 48. Clearly, this is extremely unlikely to happen if the ci-
pher were a random permutation, in which case all 256 possible values would
almost certainly be observed.

3.5.3 Adding a Round at the Bottom

The distinguisher above is very strong, but is unfortunately hard to use as
such when a round is added at the bottom. Initiating the desired multiset at
the input of the distinguisher (see Fig. 3.4) would require half of the key bytes
(those that are XORed) to be guessed in the final key addition layer.

Instead, we use a better approach and consider small multisets of 24 texts
that are constant except in the two most significant bits of the fifth and the
seventh byte. In order to control suchmultisets from the bottom, we only need
to guess the second most significant bit of the 8 key bytes that are XORed in
the final key addition layer and generate sets of 24 ciphertexts of the form

(x ·A⊞ y · B ⊞ C)⊕K (3.6)

with (x, y) ∈ {0, 64, 128, 192}2, C any fixed 128-bit word, and

A = (4, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1) ,

B = (1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 4, 2, 2, 1, 1, 1) ,

K = (K6
3 , 0, 0,K

9
3 ,K

10
3 , 0, 0,K13

3 ,K14
3 , 0, 0,K0

3 ,K
1
3 , 0, 0,K

4
3) .

Note that only the second most significant bits of theKi
3 are relevant (because

of carries) and that the effect of the other bits can be absorbed in the con-
stant C.

Now the question arises whether we can still distinguish the set of 16 val-
ues obtained in byte 13 of the plaintexts from a random set. An interesting
characteristic that can be measured is the number of collisions in the sets,
should they appear at all. If this number depends in a significant way on
whether the key bits were correctly guessed or not, then this would allow us
to recover the key. This question is easily answered by deriving a rough esti-
mation of the number of collisions.

First, we deduce the expected number of collisions µ0 in case the guess
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was correct. Assuming that all 48 possible values are equally likely, we obtain

µ0 =

(
16

2

)
· 1

48
≈ 2.50 and σ0 =

√(
16

2

)
· 1

48

(
1− 1

48

)
≈ 1.56 ,

with σ0 the expected deviation. In order to estimate the number of collisions
given a wrong guess, one could be tempted to assume that the sets at the
output of the distinguisher are random. This is not the case however.4 One
can easily see, for example, that whetherK6

3 is correctly guessed or notmatters
only for half of the (x, y) pairs, i.e., when the second most significant bit of
4 · x ⊞ y is set. In all these (and only these) cases an incorrect carry bit will
appear in themost significant bit. If we absorb this wrong bit in a new constant
C′, we obtain two subsets of 8 texts, both of which still satisfy (3.6), but with
two different fixed values C and C′. Hence we find

µ1 = 2 ·
(

8

2

)
· 1

48
+ 82 · 1

256
≈ 1.42 ,

σ1 =

√

2 ·
(

8

2

)
· 1

48

(
1− 1

48

)
+ 82 · 1

256

(
1− 1

256

)
≈ 1.19 .

The value of µ1 is indeed considerably higher than what we would expect for
a random set (about 0.47 collisions). Exactly the same situation occurs for 17
other combinations of wrong key bits, and similar, but less pronounced effects
can be expected for other guesses.
The result above can now be used to predict the complexity and success

probability of our 3-round attack. The attack consists in running through all
28 possible partial key guesses and accumulating the total number of colli-
sions observed after decrypting α sets of 16 texts. The maximum number of
collisions is then assumed to correspond to the correct key. Taking this into
consideration, we obtain the estimations below:

Time and data complexity ≈ 28 · 16 · α ,

Success probability ≈ 1− 17 ·Φ
(
√
α · µ0 − µ1√

σ2
0 + σ2

1

)
,

where Φ(·) represents the cumulative normal distribution function. Evalu-
ating these expressions for α = 16, we find a complexity of 216 and a corre-
sponding success probability of 77%. Similarly, for α = 32we get a complexity
of 217 and an expected probability as high as 98%. In order to verify these re-
sults, we performed a series of simulations and found slightly lower success
probabilities: 70% and 89% for α = 16 and α = 32 respectively. This difference
is due to the fact that our estimation only considers wrong guesses that have
a high probability of producing many collisions.

4Note that this property is useful if one does not care about recovering the key, but just needs
a 3-round distinguisher.
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1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0
1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1





·X

Figure 3.5: A type-1 round of ARIA version 0.8

3.6 Example 2: Weak Key Attacks Against ARIA

The target in this second example is the block cipher ARIA. This time, we will
pursue an attack strategy which bears some similarities with linear cryptanal-
ysis, but instead of considering biases of linear combinations of bits, we will
concentrate on linear combinations of bytes.

3.6.1 Description of ARIA

ARIA is a 128-bit block cipher designed by a team of South Korean researchers.
The first version (later called ARIA version 0.8) was published in 2003 [3, 88].
After the attack described in the next sectionwas presented, the algorithmwas
slightly modified by first increasing the number of different S-boxes [68], and
then augmenting the number of rounds [89]. In 2004, the ARIA block cipher
was adopted as a standard by the South Korean Agency for Technology and
Standards (ATS).

ARIA version 0.8 comes in three flavors which only differ in their key
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lengths (128, 192, or 256 bits), their number of rounds (10, 12, or 14), and their
key schedule. The latter does not play a significant role in our attack, and
hence will not be considered here. The round structure is depicted in Fig. 3.5.
It is a classical SP network consisting of a key addition layer, a layer of sixteen
8×8-bit S-boxes similar to the ones used in AES, and a diffusion layer which is
described as a 16× 16-byte binary matrix. As can be seen in Fig. 3.5, the S-box
layers consist of two halves which are each others inverse. The odd (type-1)
rounds use the S-box layer shown in figure. In the even (type-2) rounds, the
roles of S and S−1 are reversed.

3.6.2 A Dedicated Linear Distinguisher

As mentioned earlier, the attack presented in this section will be based on the
analysis of linear combinations of bytes. More in particular, we will focus on
the sum (in GF (28)) of the first four bytes of the state. The core of the attack is
a distinguisher based on the following observation: if we denote the bytes at
the input and the output of an S-box layer by xi and yi, respectively, then

Pr

[
4∑

i=1

yi = 0 |
4∑

i=1

xi = 0

]
≈ 3 · 2−8 = 2−8 + 2−7 . (3.7)

This property does not depend on the choice of the S-boxes and holds as long
as the 4 S-boxes involved in the expression above are equal. This can easily
be explained by noting that, out of the 224 combinations (x0, x1, x2, x3)which
satisfy x0 + x1 + x2 + x3 = 0, about 3 · 216 are of the form (a, a, b, b), (a, b, a, b),
or (a, b, b, a). These special patterns are preserved by the S-box layer, such that
the yi sum to 0 as well.

In order to build an r-round distinguisher based on the observation above,
we also need to cross diffusion layers and key additions. Analyzing the diffu-
sion matrix used in ARIA, one can easily see that this transformation preserves
the sum of the first four bytes, but in order to cross the key additions, we need
the first four bytes of the round keys to sum to zero. This implies that the
attack will only succeed for a limited number of weak keys.

We first analyze the strength of a distinguisher spanning r S-box layers and
r − 1 key additions. The input bytes of the first S-box layer are denoted by x1

i ,
and the outputs after the last S-box layer by yr

i . If the first 4 bytes of each of
the r−1 round keys sum to zero— this happens with probability 2−(r−1)·8 for
random round keys — one can recursively derive that

Pr

[
4∑

i=1

yr
i = 0 |

4∑

i=1

x1
i = 0

]
≈ 2−8 + 2−r·7 . (3.8)
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3.6.3 Adding Rounds at the Top and at the Bottom

In a next step we append additional key layers at the top and the bottom of
the distinguisher. The bytes of the round keys of these two layers are de-
noted by k0

i and k
r
i respectively. In order to distinguish the cipher from a

random permutation, an attacker could calculate s0 =
∑4

i=1 (x1
i + k0

i ) and

sr =
∑4

i=1 (yr
i + kr

i ) for n known plaintext-ciphertext pairs, and construct a
distribution table of (s0, sr). In the random case, we would expect each pair
(s0, sr) to occur with probability 2−16, but for ARIA we can deduce from (3.8)
that

Pr

[
4∑

i=1

yr
i = 0 and

4∑

i=1

x1
i = 0

]
≈ 2−16 + 2−8 · 2−r·7 , (3.9)

which directly implies that the pair (
∑4

i=1 k
0
i ,
∑4

i=1 k
r
i ) has a slightly higher

probability. This causes a peak in the distribution table which will stick out of
the surrounding noise as soon as

2−8 · 2−r·7 > Q−1(2−16) ·
√

2−16

n
, (3.10)

where Q−1 denotes the inverse complementary cumulative normal distribu-
tion function, or

n > 18 · 22·r·7 . (3.11)

Since n is limited by the block size of 128 bits, we conclude that the distin-
guisher is in principle effective up to r = 8 rounds. However, in order to be
useful, the time complexity of the attack cannot exceed the size of the weak
key class (if it does, a simple exhaustive searchwould be more efficient). Since
the time complexity includes at least the time required to encrypt the neces-
sary data, we find the following additional condition for the 128-bit key ver-
sion:

18 · 22·r·7 < 2128 · 2−(r−1)·8 , (3.12)

or r ≤ 5. Similarly, for the 192-bit and 256-bit version we obtain r ≤ 8 and
r ≤ 11 (note however that r cannot exceed 8 because of the block size).

3.6.4 Appending Two More Rounds

We can now append twomore rounds to the current distinguisher by guessing
the first 4 key bytes of two additional key layers at the top and the bottom of
the cipher (64 bits in total). For each guess, we can apply a partial encryption
at the top and a partial decryption at the bottom, and compute the distribution
table described above. If no peak is observed, we know that the guess was
probablywrong. In order to filter out all wrong guesses, we need to strengthen
the distinguisher. Considering the fact that the distinguisher is applied 264

times and that Q−1(2−16 · 2−64) ≈ 10, we find

n > 100 · 22·r·7 ≈ 22·r·7+7 . (3.13)
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Table 3.3: Complexities of a dedicated linear attack

Key length: 128 192 256
Rounds: 7 10 10
Weak keys: 296 2136 2200

Data: 277 2119 2119

Memorya: 264 264 264

Counting complexity: 288 288 288

Recovered round key bits: 112 136 136

aMeasured in number of counters. For the 128-bit version, 16-bit counters should suf-
fice. The 192-bit and 256-bit versions require 64-bit counters.

Hence, for attacking a 128-bit key version of ARIA reduced to 7 rounds, using
a 5-round distinguisher, 277 known P/C pairs should suffice.

In order to avoid having to process all n plaintexts for each of the 264 key
guesses, we will build tables of counters and gradually transform them into
distribution tables by guessing the key bytes one by one and partially evalu-
ating the sums s0 and sr. The first table contains 2

64 entries and is constructed
by running through the n data pairs and increasing the counter corresponding
to the value of the first 4 bytes of the plaintext and the ciphertext (64 bits in
total). In the next step, we guess the 2 first key bytes at the top, apply a partial
encryption, compute the sum of the first 2 terms of s0, and create a table con-
taining 256 counters corresponding to the value of this sum, the 2 remaining
bytes of the plaintext, and the first 4 bytes of the ciphertext (56 bits in total).
In the next step, one more key byte is guessed and the previous table is used
to compute a smaller table of 248 counters, and so on. It can be shown that the
total computational complexity of this approach is about n+ 264 · 224 (in stead
of n · 264). The attack requires 264 counters to be stored in memory.

The 7-round attack on the 128-bit key version recovers the values of 2 × 4
round key bytes at the top and the bottom and the sum of the first 4 key bytes
used in the 6 inner key layers (112 bits in total). Table 3.3 summarizes the
complexities for different key sizes.

3.7 Conclusions

In this chapter, we have discussed several general techniques to mount at-
tacks against block ciphers. We have seen that differential cryptanalysis, linear
cryptanalysis, and multiset attacks all take the same fundamental approach of
devising a distinguisher for the inner rounds, which can then be used to re-
cover round keys in the outer rounds. As an additional illustration of this
idea, we have presented two new attacks on practical block ciphers. The first
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one, which attacks a round-reduced variant of SAFER++, is based on multi-
sets, but uses them in a rather unconventional way. The second attack targets
ARIA, and can be seen as a new variant of linear cryptanalysis which analyzes
biases on byte level instead of on bit level.
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Chapter 4

Linear Cryptanalysis
Revisited

In Sect. 3.3 we already introduced the main concepts behind linear cryptanal-
ysis. In this chapter, we try to generalize these basic ideas by approaching
them from a slightly different angle.

4.1 Background and Objectives

Developed in 1993, linear cryptanalysis quickly became one of the most pow-
erful attacks against modern cryptosystems. In 1994, Kaliski and Robshaw
[59] proposed the idea of generalizing this attack using multiple linear ap-
proximations (the previous approach considered only the best linear approxi-
mation). However, their technique was mainly limited to cases where all ap-
proximations derive the same parity bit of the key. Unfortunately, this ap-
proach imposes a very strong restriction on the approximations that can be
considered, and the additional information gained by the few surviving ap-
proximations is often not significant. In a subsequent paper [60], the same au-
thors present some preliminary ideas for a more general approach, but leave
its analysis as an open problem. Another, more recent treatment of the same
problem is given by Choi et al. [24].
In this chapter, we will start by developing a theoretical framework for

dealing with multiple linear approximations. We will first generalize Mat-
sui’s Algorithm 1 based on this framework, and then reuse these results to
generalize Matsui’s Algorithm 2. This approach will allow to derive compact
expressions for the performance of the attacks in terms of the biases of the ap-
proximations and the amount of data available to the attacker. The relevance
of these theoretical expressions is twofold. Not only will they provide an an-
swer onwhether the use of multiple approximations can significantly improve
classical linear attacks, they will also shed a new light on the relations between

49
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Algorithm 1 and Algorithm 2.

Our main objective is to derive a generally applicable cryptanalytic tool,
which performs strictly better than standard linear cryptanalysis. In order
to illustrate the potential of this new approach, we will apply our ideas to
reduced-round versions of DES, using this cipher as a well established bench-
mark for linear cryptanalysis. We will see that the experimental results, dis-
cussed in the second part of this chapter, are in almost perfect correspondence
with our theoretical predictions.

4.2 General Framework

As we saw in the previous chapter, many of the most powerful attacks against
block ciphers, including differential and linear cryptanalysis, are largely based
on statistics. In this section, we try to identify the main principles of what
could be subsumed under the term statistical cryptanalysis, and set up a gener-
alized framework for analyzing block ciphers based on maximum likelihood.
This framework can be seen as an adaptation or extension of earlier frame-
works for statistical attacks proposed by Murphy et al. [83], Junod and Vau-
denay [55, 56, 103] and Selçuk [99].

4.2.1 Attack Model

Let us consider a block cipher EK which maps a plaintext P ∈ P to a cipher-
text C = EK(P ) ∈ C. The mapping is by definition invertible and depends
on a secret key K ∈ K. We now assume that an adversary is given N differ-
ent plaintext-ciphertext pairs (Pi, Ci) encrypted with a particular secret key
K∗ (a known plaintext scenario), and his task is to recover the key from this
data. A general statistical approach—also followed byMatsui’s original linear
cryptanalysis—consists in performing the following three steps:

Distillation phase. In a typical statistical attack, only a fraction of the infor-
mation contained in the N plaintext-ciphertext pairs is exploited. A first
step therefore consists in extracting the relevant parts of the data, and
discarding all information which is not used by the attack. In our frame-
work, the distillation operation is denoted by a function ψ : P × C → X
which is applied to each plaintext–ciphertext pair. The result is a vector
x = (x1, . . . , xN ) with xi = ψ(Pi, Ci), which contains all relevant infor-
mation. If |X | ≪ N , which is usually the case, we can further reduce
the data by counting the occurrence of each element of X in x and only
storing a vector of counters t = (t1, . . . , t|X |). In this thesis we will not
restrict ourselves to a single function ψ, but consider m separate func-
tions ψj , each of which maps the text pairs into different sets Xj and
generates a separate vector of counters tj .
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Analysis phase. This phase is the core of the attack and consists in generat-
ing a list of key candidates from the information extracted in the pre-
vious step. Usually, candidates can only be determined up to a certain
equivalence relation. In the concrete examples below, the keys will be
determined up to a fixed number of bits, resulting in a set Z of equiva-
lence classes, each with equal cardinality. In general, the attack defines
a function σ : K → Z which maps each key k onto an equivalent key
class z = σ(K). The purpose of the analysis phase is to determine which
of these classes are the most likely to contain the true key K∗ given the
particular values of the counters tj .

Search phase. In the last stage of the attack, the attacker exhaustively tries
all keys in the classes suggested by the previous step, until the correct
key is found. Note that the analysis and the searching phase may be
intermixed: the attacker might first generate a short list of candidates,
try them out, and then dynamically extend the list as long as none of the
candidates turns out to be correct.

4.2.2 Attack Complexities

When evaluating the performance of the general attack described above, we
need to consider both the data complexity and the computational complexity.
The data complexity is directly determined by N , the number of plaintext-
ciphertext pairs required by the attack. The computational complexity de-
pends on the total number of operations performed in the three phases of the
attack. In order to compare different types of attacks, we define a measure
called the gain of the attack:

Definition 4.1 (Gain). If an attack is used to recover a k-bit key and is expected
to return the correct key after having checked on the average M candidates,
then the gain of the attack, expressed in bits, is defined as:

γ = − log2

2 ·M − 1

2k
. (4.1)

Let us illustrate this with an example where an attacker wants to recover a
k-bit key. If he does an exhaustive search, the number of trials before hitting
the correct key can be anywhere from 1 to 2k. The average numberM is (2k +
1)/2, and the gain according to the definition is 0 bits. On the other hand,
if the attack immediately derives the correct candidate, M equals 1 and the
gain is γ = k bits. One should observe that γ does not fully characterize the
practical applicability of an attack. Let us consider two attacks which both
require a single plaintext-ciphertext pair. The first deterministically recovers
one bit of the key, while the second recovers the complete key, but with a
probability of 1/2. In this second attack, if the key is wrong and only one
plaintext-ciphertext pair is available, the attacker has no other choice than to
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perform an exhaustive search. According to the definition, both attacks have a
gain of 1 bit in this case. Of course, by repeating the second attack for different
pairs, the gain can be made arbitrary close to k bits, while this is not the case
for the first attack.

4.2.3 Maximum Likelihood Approach

The design of a statistical attack consists of two important parts. First, we
need to decide on how to process the N plaintext-ciphertext pairs in the dis-
tillation phase. We want the counters tj to be constructed in such a way that
they concentrate as much information as possible about a specific part of the
secret key in a minimal amount of data. Once this decision has been made, we
can proceed to the next stage and try to design an algorithm which efficiently
transforms this information into a list of key candidates. In this section, we
discuss a general technique to optimize this second step. Notice that through-
out this chapter, we will denote random variables by capital letters.
In order to minimize the amount of trials in the search phase, we want the

candidate classeswhich have the largest probability of being correct to be tried
first. If we consider the correct key class as a random variable Z and denote
the complete set of counters extracted from the observed data by t, then the
ideal output of the analysis phase would consist of a list of classes z, sorted
according to the conditional probability Pr [Z = z | t]. Taking a Bayesian ap-
proach, we express this probability as follows:

Pr [Z = z | t] =
Pr [T = t | z] · Pr [Z = z]

Pr [T = t]
. (4.2)

The factor Pr [Z = z] denotes the a priori probability that the class z contains
the correct key K∗, and is equal to the constant 1/|Z|, with |Z| the total num-
ber of classes, provided that all classes have the same size, and the key was
chosen at random. The denominator is the probability that the specific set of
counters t is observed, taken over all possible keys and plaintexts. The only
expression in (4.2) that depends on z, and thus affects the sorting, is the factor
Pr [T = t | z], compactly written as Pz(t). This quantity denotes the probabil-
ity, taken over all possible plaintexts, that a key from a given class z produces
a set of counters t. When viewed as a function of z for a fixed set t, the ex-
pression Pr [T = t | z] is also called the likelihood of z given t, and denoted by
Lt(z), i.e.,

Lt(z) = Pz(t) = Pr [T = t | z] .

This likelihood and the actual probability Pr [Z = z | t] have distinct values,
but they are proportional for a fixed t, as follows from (4.2). Typically, the
likelihood expression is simplified by applying a logarithmic transformation.
The result is denoted by

Lt(z) = logLt(z)
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and called the log-likelihood. Note that this transformation does not affect the
sorting, since the logarithm is a monotonously increasing function.

Assuming that we can construct an efficient algorithm that accurately es-
timates the likelihood of the key classes and returns a list sorted accordingly,
we are now ready to derive a general expression for the gain of the attack.
Let us assume that the plaintexts are encrypted with a k-bit secret keyK∗,

contained in the equivalence class z∗, and letZ∗ = Z\{z∗} be the set of classes
different from z∗. The average number of classes checked during the searching
phase before the correct key is found, is given by the expression

∑

z∈Z

Pr [LT(z) ≥ LT(z∗) | z∗] = 1 +
∑

z∈Z∗

Pr [LT(z) ≥ LT(z∗) | z∗] ,

where the random variable T represents the set of counters generated by a
key from the class z∗, given N random plaintexts. The reason why we do not
include the correct key class in the sum, is that this class will have to be treated
differently later on. In order to compute the probabilities in this expression,
we define the sets Tz = {t | Lt(z) ≥ Lt(z

∗)}. Using this notation, we can write

Pr [LT(z) ≥ LT(z∗) | z∗] =
∑

t∈Tz

Pz∗(t) .

Knowing that each class z contains 2k/|Z| different keys, we can now derive
the expected number of trialsM∗, given a secret keyK∗. Note that the number
of keys that need to be checked in the correct equivalence class z∗ is only
(2n/|Z|+ 1)/2 on the average, yielding

M∗ =
2k

|Z| ·
[

1

2
+
∑

z∈Z∗

∑

t∈Tz

Pz∗(t)

]
+

1

2
. (4.3)

This expression needs to be averaged over all possible secret keysK∗ in order
to find the expected value M , but in many cases1 we will find that M∗ does
not depend on the actual value of K∗, such thatM = M∗. Finally, the gain of
the attack is computed by substituting this value ofM into (4.1).
At this point, the reader might be somewhat confused by the several sets,

vectors, and sums introduced in this section. Their concrete meaning will
hopefully become clear in the next section.

4.3 Application to Multiple Approximations

We now apply the ideas discussed above to construct a general framework for
analyzing block ciphers using multiple linear approximations.

1In some cases the variance of the gain over different keys would be very significant. In these
cases it might be worth to exploit this phenomenon in a weak-key attack scenario, like we did in
Sect. 3.6.
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As we saw in Sect. 3.3, the starting point in linear cryptanalysis is the exis-
tence of unbalanced linear expressions involving plaintext bits, ciphertext bits,
and key bits. In this paper we assume that we can usem such expressions (we
will show how to find them in practice in Sect. 4.6):

Pr
[
PT · Γj

P ⊕ CT · Γj
C ⊕KT · Γj

K = 0
]

=
1

2
+ ǫj , j = 1, . . . ,m , (4.4)

with (P,C) a randomplaintext-ciphertext pair encryptedwith a randomkeyK .2

Asmentioned earlier, the deviation ǫj is called the bias of the linear expression.
We now use the framework of Sect. 4.2.1 to design an attack which exploits

the information contained in (4.4). The first phase of the cryptanalysis consists
in extracting the relevant parts from the N plaintext-ciphertext pairs. The lin-
ear expressions in (4.4) immediately suggest the following functions ψj :

xi,j = ψj(Pi, Ci) = PT

i · Γj
P ⊕ CT

i · Γj
C , i = 1, . . . , N ,

with xi,j ∈ Xj = {0, 1}. These values are then used to construct m counter
vectors tj = (tj , N − tj), where tj and N − tj reflect the number of plaintext-
ciphertext pairs for which xi,j equals 0 and 1, respectively.

3

In the second step of the framework, a list of candidate key classes needs to
be generated. We represent the equivalent key classes induced by them linear

expressions in (4.4) by anm-bit word z = (z1, . . . , zm)with zj = KT ·Γj
K . Note

that m might possibly be much larger than k, the length of the key K . In this
case, only a subspace of all possible m-bit words corresponds to a valid key
class. The exact number of classes |Z| depends on the number of independent
linear approximations (i.e., the rank of the corresponding linear system).

4.3.1 Computing the Likelihoods of the Key Classes

We will for now assume that the linear expressions in (4.4) are statistically
independent for different plaintext-ciphertext pairs and for different values
of j (in the next section we will discuss this important point in more details).
This allows us to apply the maximum likelihood approach described earlier
in a very straightforward way. In order to simplify notations, we define the
probabilities pj and qj , and the correlations or imbalances cj of the linear ex-
pressions as

pj = 1− qj =
1 + cj

2
=

1

2
+ ǫj .

We start by deriving a convenient expression for the probability Pz(t). To
simplify the calculation, we first give a derivation for the special key class
z′ = (0, . . . , 0). Assuming independence of different approximations and of

2For notational convenience, we have switched the order of the scalar products compared to
Sect. 3.3.
3The vectors tj are only constructed to be consistent with the framework described earlier. In

practice of course, the attacker will only calculate tj (this is a minimal sufficient statistic).
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Figure 4.1: Geometrical interpretation for m = 2. The correct key class z∗

has the second largest likelihood in this example. The numbers in the picture
represent the number of trialsM∗ when ĉ falls in the associated area

different (Pi, Ci) pairs, the probability that this key generates the counters tj
is given by the product

Pz′(t) =
m∏

j=1

(
N

tj

)
· ptj

j · q
N−tj

j . (4.5)

In practice, pj and qj will be very close to 1/2, and N very large. Taking this
into account, we approximate them-dimensional binomial distribution above
by anm-dimensional Gaussian distribution:

Pz′(t) ≈
m∏

j=1

e−
(tj−pj ·N)2

N/2

√
π ·N/2

=
m∏

j=1

e−
N
2 (ĉj−cj)

2

√
π ·N/2

=
e−

N
2

P

(ĉj−cj)
2

(√
π ·N/2

)m .

The variable ĉj is called the estimated imbalance and is derived from the coun-
ters tj according to the relationN · (1 + ĉj)/2 = tj . For any key class z, we can
repeat the reasoning above, yielding the following general expression:

Pz(t) ≈
e−

N
2

P

(ĉj−(−1)zj ·cj)
2

(√
π ·N/2

)m . (4.6)

This formula has a useful geometrical interpretation: if we take a key from a
fixed key class z∗ and construct an m-dimensional vector ĉ = (ĉ1, . . . , ĉm) by
encrypting N random plaintexts, then ĉwill be distributed around the vector
cz∗ = ((−1)z∗

1 c1, . . . , (−1)z∗

mcm) according to a Gaussian distribution with a

diagonal variance-covariancematrix 1/
√
N ·Im, where Im is anm×m identity

matrix. This is illustrated in Fig. 4.1. From (4.6) we can now directly compute
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the log-likelihood:

Lt(z) = logLt(z) = logPz(t) ≈ C −
N

2

m∑

j=1

(ĉj − (−1)zj · cj)2 . (4.7)

The constant C depends onm andN only, and is irrelevant to the attack. From
this formula we immediately derive the following property.

Lemma 4.1. The relative likelihood of a key class z is completely determined by the
Euclidean distance |ĉ − cz|, where ĉ is anm-dimensional vector containing the esti-
mated imbalances derived from the known texts, and cz = ((−1)z1c1, . . . , (−1)zmcm).

The lemma implies that LT(z) > LT(z∗) if and only if |ĉ − cz| < |ĉ − cz∗ |.
This type of result is common in coding theory.

4.3.2 Estimating the Gain of the Attack

Based on the geometrical interpretation given above, and using the results
from Sect. 4.2.3, we can now easily derive the gain of the attack.

Theorem 4.2. Given m approximations and N independent pairs (Pi, Ci), an ad-
versary can mount a linear attack with a gain equal to:

γ = − log2

[
2 · 1

|Z|
∑

z∈Z∗

Φ

(
−
√
N · |cz − cz∗ |

2

)
+

1

|Z|

]
, (4.8)

where Φ(·) is the cumulative normal distribution function, |Z| is the number of key
classes induced by the approximations, and cz = ((−1)z1c1, . . . , (−1)zmcm).

Proof. The probability that the likelihood of a key class z exceeds the likeli-
hood of the correct key class z∗ is given by the probability that the vector ĉ

falls into the half space Tc = {c | |c− cz| ≤ |c− cz∗ |}. We know that ĉ de-
scribes a Gaussian distribution around cz∗ with a variance-covariance matrix
1/
√
N · Im, and by integrating this Gaussian over the half plane Tc, we can

easily compute the desired probability. Due to the zero covariances, we im-
mediately find:

Pr [LT(z) ≥ LT(z∗) | z∗] = Φ

(
−
√
N · |cz − cz∗ |

2

)
.

By summing these probabilities as in (4.3) we find the expected number of
trials:

M∗ =
2k

|Z| ·
[

1

2
+
∑

z∈Z∗

Φ

(
−
√
N · |cz − cz∗ |

2

)]
+

1

2
. (4.9)

The gain is obtained by substituting this expression for M∗ in equation (4.1).
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The formula derived in the previous theorem can easily be evaluated as
long as |Z| is not too large. In order to estimate the gain in the other cases as
well, we need to make a few approximations.

Corollary 4.3. If |Z| is sufficiently large, the gain derived in Theorem 4.2 can accu-
rately be approximated by

γ ≈ − log2

[
2 · |Z| − 1

|Z| · Φ
(
−
√
N · c̄2

2

)
+

1

|Z|

]
, (4.10)

where c̄2 =
∑m

j=1 c
2
j .

Proof. In order to show how (4.10) is derived from (4.8), we just need to con-
struct an approximation for the expression

1

|Z∗|
∑

z∈Z∗

Φ

(
−
√
N · |cz − cz∗ |

2

)
=

1

|Z∗|
∑

z∈Z∗

Φ
(
−
√
N/4 · |cz − cz∗ |2

)
.

(4.11)
We first define the function f(x) = Φ(−

√
N/4 · x). Denoting the average

value of a set of variables by E[·] = ·̂, we can reduce (4.11) to the compact
expression E[f(x)], with x = |cz − cz∗ |2. By expanding f(x) into a Taylor
series around the average value x̂, we find

E[f(x)] = f(x̂) + 0 + f ′′(x̂) ·E[(x − x̂)2] + . . . .

Provided that the higher order moments of x are sufficiently small, we can use
the approximation E[f(x)] ≈ f(x̂). Exploiting the fact that the jth coordinate
of each vector cz is either cj or−cj , we can easily calculate the average value x̂:

x̂ =
1

|Z∗|
∑

z∈Z∗

|cz − cz∗ |2 = 2 · |Z||Z∗|

m∑

j=1

c2j .

When |Z| is sufficiently large (say |Z| > 28), the right hand side can be ap-
proximated by 2 ·∑m

j=1 c
2
j = 2 · c̄2 (remember that Z∗ = Z \ {z∗}, and thus

|Z∗| = |Z| − 1). Substituting this into the relation E[f(x)] ≈ f(x̂), we find

1

|Z∗|
∑

z∈Z∗

Φ

(
−
√
N · |cz − cz∗ |

2

)
≈ Φ

(
−
√
N · c̄2

2

)
.

By applying this approximation to the gain formula derived in Theorem 4.2,
we directly obtain expression (4.10).

An interesting conclusion that can be drawn from the corollary above is
that the gain of the attack is mainly determined by the product N · c̄2. As a
result, if we manage to increase c̄2 by using more linear characteristics, then
the required number of known plaintext-ciphertext pairs N can be decreased
by the same factor, without affecting the gain. Since the quantity c̄2 plays a
very important role in the attacks, we give it a name and define it explicitly.
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Definition 4.2. The capacity c̄2 of a system ofm approximations is defined as

c̄2 =

m∑

j=1

c2j = 4 ·
m∑

j=1

ǫ2j .

4.3.3 Multiple Approximations and Matsui’s Algorithm 2

The approach taken in the previous section can be seen as an extension of Mat-
sui’s Algorithm 1. Just as in Algorithm 1, the adversary analyses parity bits
of the known plaintext-ciphertext pairs and then tries to determine parity bits
of internal round keys. An alternative approach, which is called Algorithm 2
and yields muchmore efficient attacks in practice, consists in guessing parts of
the round keys in the first and the last round, and determining the probability
that the guess was correct by exploiting linear characteristics over the remain-
ing rounds. In this section we will show that the results derived above can
still be applied in this situation, provided that we modify some definitions.

Let us denote by ZO the set of possible guesses for the targeted subkeys
of the outer rounds (round 1 and round r). For each guess zO and for all
N plaintext-ciphertext pairs, the adversary does a partial encryption and de-
cryption at the top and bottom of the block cipher, and recovers the parity bits
of the intermediate data blocks involved in m different (r − 2)-round linear
characteristics. Using this data, he constructsm′ = |ZO| ·m counters tj , which
can be transformed into a m′-dimensional vector ĉ containing the estimated
imbalances.

As explained in the previous section, them linear characteristics involvem
parity bits of the key, and thus induce a set of equivalent key classes, which we
will here denote by ZI (I from inner). Although not strictly necessary, we will
for simplicity assume that the sets ZO and ZI are independent, such that each
guess zO ∈ ZO can be combined with any class zI ∈ ZI , thereby determining
a subclass of keys z = (zO, zI) ∈ Z with |Z| = |ZO| · |ZI |.
At this point, the situation is very similar to the one described in the pre-

vious section, the main difference being a higher dimension m′. The only re-
maining question is how to construct the m′-dimensional vectors cz for each
key class z = (zO, zI). To solve this problem, we will need to make some
assumptions. Remember that the coordinates of cz are determined by the ex-
pected imbalances of the corresponding linear expressions, given that the data
is encrypted with a key from class z. For the m counters that are constructed
after guessing the correct subkey zO, the expected imbalances are determined
by zI and equal to (−1)zI,1c1, . . . , (−1)zI,mcm. For each of the m

′ − m other
counters, however, we will assume that the wrong guesses result in indepen-
dent random-looking parity bits, showing no imbalance at all.4 Accordingly,

4Note that for some ciphers, other assumptions may be more appropriate. The reasoning in
this section can be applied to these cases just as well, yielding very similar results.

4.3. APPLICATION TOMULTIPLE APPROXIMATIONS 59

the vector cz has the following form:

cz = (0, . . . , 0, (−1)zI,1c1, . . . , (−1)zI,mcm, 0, . . . , 0)

With the modified definitions of Z and cz given above, Theorem 4.2 can im-
mediately be applied. This results in the following corollary.

Corollary 4.4. Given m approximations and N independent pairs (Pi, Ci), an ad-
versary can mount an Algorithm 2 style linear attack with a gain equal to:

γ = − log2

[
2 · 1

|Z|
∑

z∈Z∗

Φ

(
−
√
N · |cz − cz∗ |

2

)
+

1

|Z|

]
. (4.12)

The formula above involves a summation over all elements of Z∗. Moti-
vated by the fact that |Z∗| = |ZO| · |ZI | − 1 is typically very large, we now
derive a more convenient approximated expression similar to Corollary 4.3.
In order to do this, we split the sum into two parts. The first part considers
only keys z ∈ Z∗

1 = Z1 \{z∗}where Z1 = {z | zO = z∗O}; the second part sums
over all remaining keys z ∈ Z2 = {z | zO 6= z∗O}. In this second case, we have
that |cz − cz∗ |2 = 2 ·

∑m
j=1 c

2
j = 2 · c̄2 for all z ∈ Z2, such that

∑

z∈Z2

Φ

(
−
√
N · |cz − cz∗ |

2

)
= |Z2| · Φ

(
−
√
N · c̄2

2

)
.

For the first part of the sum, we apply the approximation used to derive Corol-
lary 4.3 and obtain a very similar expression:

∑

z∈Z∗

1

Φ

(
−
√
N · |cz − cz∗ |

2

)
≈ |Z∗

1 | · Φ
(
−
√
N · c̄2

2

)
.

Combining both result we find the counterpart of Corollary 4.3 for an Algo-
rithm 2 style linear attack.

Corollary 4.5. If |Z| is sufficiently large, the gain derived in Theorem 4.4 can accu-
rately be approximated by

γ ≈ − log2

[
2 · |Z| − 1

|Z| · Φ
(
−
√
N · c̄2

2

)
+

1

|Z|

]
, (4.13)

where c̄2 =
∑m

j=1 c
2
j is the total capacity of them linear characteristics.

Notice that although Corollary 4.3 and 4.5 contain identical formulas, the
gain of the Algorithm 2 style linear attack will be significantly larger because
it depends on the capacity of linear characteristics over r − 2 rounds instead
of r rounds.
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4.3.4 Influence of Dependencies

When deriving (4.5) in Sect. 4.3, we assumed statistical independence. This
assumption is not always fulfilled, however. In this section we discuss differ-
ent potential sources of dependencies and estimate how they might influence
the cryptanalysis.

Dependent plaintext-ciphertext pairs.

A first assumption made by equation (4.5) concerns the dependency of the
parity bits xi,j with 1 ≤ i ≤ N , computed with a single linear approximation
for different plaintext-ciphertext pairs. The equation assumes that the prob-
ability that the approximation holds for a single pair equals pj = 1/2 + ǫj ,
regardless of what is observed for other pairs. This is a very reasonable as-
sumption if the N plaintexts are chosen randomly, but even if they are picked
in a systematic way, we can still safely assume that the corresponding cipher-
texts are sufficiently unrelated as to prevent statistical dependencies.

Dependent text masks.

The next source of dependencies is more fundamental and is related to de-
pendent text masks. Suppose for example that we want to use three linear
approximations with plaintext-ciphertext masks (Γ1

P ,Γ
1
C), (Γ2

P ,Γ
2
C), (Γ3

P ,Γ
3
C),

and that Γ1
P ⊕ Γ2

P ⊕ Γ3
P = Γ1

C ⊕ Γ2
C ⊕ Γ3

C = 0. It is immediately clear that the
parity bits computed for these three approximations cannot possibly be inde-
pendent: for all (Pi, Ci) pairs, the bit computed for the 3rd approximation xi,3

is equal to xi,1 ⊕ xi,2.
Even in such cases, however, we believe that the results derived in the

previous section are still quite reasonable. In order to show this, we consider
the probability that a single random plaintext encrypted with an equivalent

key z yields a vector5 of parity bits x = (x1, . . . , xm). Let us denote by Γj
T

the concatenation of both text masks Γj
P and Γj

C . Without loss of generality,

we can assume that the m masks Γj
T are linearly independent for 1 ≤ j ≤ l

and linearly dependent (but different) for l < j ≤ m. This implies that x is
restricted to a l-dimensional subspace R. We will only consider the key class
z′ = (0, . . . , 0) in order to simplify the equations. The probability we want to
evaluate is:

Pz′(x) = Pr [Xj = xj for 1 ≤ j ≤ m | z′] .
These (unknown) probabilities determine the (known) imbalances cj of the
linear approximations through the following expression:

cj =
∑

x∈R

Pz′(x) · (−1)xj .

5Note a small abuse of notation here: the definition of x differs from the one used in Sect. 4.2.1.
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We nowmake the (in many cases reasonable) assumption that all 2l−mmasks
ΓT , which depend linearly on the masks Γj

T , but which differ from the ones
considered by the attack, have negligible imbalances (except forΓT = 0, which
has imbalance 1). In this case, the equation above can be reversed (note the
similarity with the Walsh-Hadamard transform), and we find that:

Pz′(x) =
1

2l



1 +
m∑

j=1

cj · (−1)xj



 .

Assuming thatm · cj ≪ 1we can make the following approximation:

Pz′(x) ≈ 2m

2l

m∏

j=1

1 + cj · (−1)xj

2
.

Apart from an irrelevant constant factor 2m/2l, this is exactly what we need:
it implies that, even with dependent masks, we can still multiply probabilities
as we did in order to derive (4.5). This is an important conclusion, because
it indicates that the capacity of the approximations continues to grow, even
when m exceeds twice the block size, in which case the masks are necessarily
linearly dependent.

Dependent trails.

A third type of dependencies might be caused by merging linear trails. When
analyzing the best linear approximations for DES, for example, we notice that
most of the good linear approximations follow a very limited number of trails
through the inner rounds of the cipher, which might result in dependencies.
Although this effect did not appear to have any influence on our experiments
(with up to 100 different approximations), we cannot exclude at this point that
they will affect attacks using much more approximations.

Dependent key masks.

We finally note that we did not require the independence of key masks in the
previous sections. This implies that all results derived above remain valid for
dependent key masks.

4.4 Discussion – Practical Aspects

When attempting to calculate the optimal estimators derived in Sect. 4.3, the
attacker might be confronted with some practical limitations, which are often
cipher-dependent. In this section we discuss possible problems and propose
ways to deal with them.
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Table 4.1: Attack Algorithm MK 1: complexities

Data compl. Time compl. Memory compl.
Distillation: O(1/c̄2) O(m/c̄2) O(m)
Analysis: - O(m · |Z|) O(|Z|)
Search: - O(2k−γ) O(|Z|)

4.4.1 Attack Algorithm MK 1

First, let us summarize the attack algorithm presented in Sect. 4.2. We will
call this algorithm Attack Algorithm MK 1 (‘M’ for multiple approximations,
“K’ for key recovery). Given m approximations (see Sect. 4.6), the algorithm
proceeds as follows:

Distillation phase. Obtain N plaintext-ciphertext pairs (Pi, Ci). For 1 ≤ j ≤
m, count the number tj of pairs satisfying P

T

i · Γj
P ⊕ CT

i · Γj
C = 0 and

compute the estimated imbalance ĉj = 2 · tj/N − 1.

Analysis phase. For each equivalent key class z ∈ Z , determine the distance

|ĉ− cz|2 =

m∑

j=1

(ĉj − (−1)zj · cj)2

and use these values to construct a sorted list, starting with the class
with the smallest distance.

Search phase. Run through the sorted list and exhaustively try all n-bit keys
contained in the equivalence classes until the correct key is found.

Table 4.1 lists the complexities of these different phases. A few practical
remarks are in order.
When estimating the potential gain in Sect. 4.3, we did not impose any re-

strictions on the number of approximationsm. However, while it does reduce
the complexity of the search phase (since it increases the gain), having an ex-
cessively high number m increases both the time and the space complexity
of the distillation and the analysis phase. At some point this complexity will
dominate, cancelling out any improvement made in the search phase.
Analyzing the complexities in the table, we can make a few observations.

We first note that the time complexity of the distillation phase should be com-
pared to the time needed to encrypt N ∝ 1/c̄2 plaintext-ciphertext pairs.
Given that a single counting operation is much faster than an encryption, we
expect the complexity of the distillation to remain negligible compared to the
encryption time as long asm is only a few orders of magnitude (saym < 100).
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The second observation is that the number of different key classes |Z|
clearly plays an important role, both for the time and the memory complex-
ities of the algorithm. In a practical situation, the memory is expected to be
the strongest limitation. Different approaches can be taken to deal with this
problem:

Straightforward, but inefficient approach. Since the number of different key
classes |Z| is bounded by 2m, the most straightforward solution is to
limit the number of approximations. A realistic upper bound would be
m < 32. The obvious drawback of this approach is that it will not allow
to attain very high capacities.

Exploiting dependent key masks. A better approach is to impose a bound

on the number l of linearly independent key masks Γj
K . This way, we limit

the memory requirements to |Z| = 2l, but still allow a large number of
approximations (for ex. a few thousands). This approach restricts the
choice of approximations, however, and thus reduces the maximum at-
tainable capacity. This is the approach taken in Sect. 4.5.1. Note also that
the attack described in [59] can be seen as a special case of this approach,
with l = 1.

Merging separate lists. A third strategy consists in constructing separate lists
and merging them dynamically. Suppose for simplicity that the m key

masks Γj
K considered in the attack are all independent. In this case,

we can apply the analysis phase twice, each time using m/2 approxi-
mations. This will result in two sorted lists of intermediate key classes,
both containing 2m/2 classes. We can then dynamically compute a sorted
sequence of final key classes constructed by taking the product of both
lists. The ranking of the sequence is determined by the likelihood of
these final classes, which is just the sum of the likelihoods of the ele-
ments in the separate lists. This approach slightly increases6 the time
complexity of the analysis phase, but will considerably reduce the mem-
ory requirements. Note that this approach can be generalized in order
to allow some dependencies in the key masks.

4.4.2 Attack Algorithm MK 2

We now briefly discuss some practical aspects of the Algorithm 2 style mul-
tiple linear attack, called Attack Algorithm MK 2. As discussed earlier, the
ideas of the attack are very similar to Attack Algorithm MK 1, but there are
a number of additional issues. In the following paragraphs, we denote the
number of rounds of the cipher by r.

6In cases where the gain of the attack is several bits, this approach will actually decrease the
complexity, since we expect that only a fraction of the final sequence will need to be computed.
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Choice of characteristics. In order to limit the amount of guesses in rounds 1
and r, only parts of the subkeys in these rounds will be guessed. This
restricts the set of useful (r − 2)-round characteristics to those that only
depend on bits which can be derived from the plaintext, the ciphertext,
and the partial subkeys. This obviously reduces themaximum attainable
capacity.

Efficiency of the distillation phase. During the distillation phase, allN plain-
texts need to be analyzed for all |ZO| guesses zO. Since |ZO| is rather
large in practice, this could be very computation intensive. For exam-
ple, a naive implementation would require O(N · |ZO|) steps and even
Matsui’s counting trick [77] would useO(N+|ZO|2) steps. However, the
distillation can be performed inO(N+|ZO |) steps by gradually guessing
parts of zO and re-processing the counters.

Merging Separate lists. The idea of working with separate lists can be ap-
plied here just as for MK 1.

Computing distances. In order to compare the likelihoods of different keys,

we need to evaluate the distance |ĉ− cz|2 for all classes z ∈ Z . The
vectors ĉ and cz are both |ZO| · m-dimensional. When calculating this
distance as a sum of squares, most terms do not depend on z, however.
This allows the distance to be computed very efficiently, by summing
onlym terms.

4.4.3 Attack Algorithm MD (distinguishing/key-recovery)

The main limitation of AlgorithmMK 1 andMK 2 is the bound on the number
of key classes |Z|. In this section, we show that this limitation disappears if our
sole purpose is to distinguish an encryption algorithm Ek from a random per-
mutation R. As usual, the distinguisher can be extended into a key-recovery
attack by adding rounds at the top and at the bottom.
If we observe N plaintext-ciphertext pairs and assume for simplicity that

the a priori probability that they were constructed using the encryption al-
gorithm is 1/2, we can construct a distinguishing attack using the maximum
likelihood approach in a similar way as in Sect. 4.3. Assuming that all secret
keys k are equally probable, one can easily derive the likelihood that the en-
cryption algorithm was used, given the values of the counters t:

LE(t) ≈ 1

2m

m∏

j=1

(
N

tj

)
·
(
p

tj

j · q
N−tj

j + q
tj

j · p
N−tj

j

)
.

This expression is correct if all text masks and key masks are independent, but
is still expected to be a good approximation, if this assumption does not hold
(for the reasons discussed in Sect. 4.3.4). A similar likelihood can be calculated
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for the random permutation:

LR(t) =

m∏

j=1

(
N

tj

)
·
(

1

2

)N

.

Contrary to what was found for Algorithm MK 1, both likelihoods can be
computed in time proportional to m, i.e., independent of |Z|. The complete
distinguishing algorithm, called Attack Algorithm MD consists of two steps:

Distillation phase. Obtain N plaintext-ciphertext pairs (Pi, Ci). For 1 ≤ j ≤
m, count the number tj of pairs satisfying P

T

i · Γj
P ⊕ CT

i · Γj
C = 0.

Analysis phase. Compute LE(t) and LR(t). If LE(t) > LR(t), decide that the
plaintexts were encrypted with the algorithm Ek (using some unknown
key k).

The analysis of this algorithm is a matter of further research.

4.5 Experimental Results

In Sect. 4.3, we derived an optimal approach for cryptanalyzing block ciphers
using multiple linear approximations. In this section, we discuss the perfor-
mance of a number of practical implementations of attacks based on this ap-
proach. Our target block cipher is DES, the standard benchmark for linear
cryptanalysis. The experiments show that the attack complexities are in per-
fect correspondence with the theoretical results derived in the previous sec-
tions.

4.5.1 Attack Algorithm MK 1

In our first experiment, we apply Algorithm MK 1 to 8 rounds of DES, using
86 linear approximations with a total capacity c̄2 = 2−15.6 (see Definition 4.2).
In order to speed up the simulation, the approximations are picked to con-
tain 10 linearly independent key masks, such that |Z| = 1024. Fig. 4.2 shows
the simulated gain for Algorithm MK 1 using these 86 approximations, and
compares it to the gain of Matsui’s Algorithm 1, which uses the best one only
(c̄2 = 2−19.4). We clearly see a significant improvement. While Matsui’s al-
gorithm requires about 221 pairs to attain a gain close to 1 bit, only 216 pairs
suffice for Algorithm MK 1. The theoretical curves shown in the figure are
plotted by computing the gain using the exact expression for M∗ derived in
Theorem 4.2 and using the approximation from Corollary 4.3. Both fit nicely
with the experimental results.
Note that the attack presented in this section is just a proof of concept, even

higher gains would be possible with more optimized attacks. For a more de-
tailed discussion of the technical aspects playing a role in the implementation
of Algorithm MK 1, we refer to Sect. 4.4.
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Figure 4.2: Gain in function of data for 8-round DES

4.5.2 Attack Algorithm MK 2

Let us now take a look at Attack Algorithm MK 2. Again, we run our experi-
ments on 8 rounds of DES, and this time we compare the results to the gain of
the corresponding Algorithm 2 attack described in Matsui’s paper [77].

Our attack uses eight linear approximations spanning six rounds with a to-
tal capacity c̄2 = 2−11.9. In order to compute the parity bits of these equations,
eight 6-bit subkeys need to be guessed in the first and the last rounds (how this
is done in practice has been discussed in Sect. 4.4.2). Fig. 4.3 plots the gain of
the attack against that of Matsui’s Algorithm 2, which only uses the two best
approximations (c̄2 = 2−13.2). For the same amount of data, the multiple lin-
ear attack clearly achieves a much higher gain. This reduces the complexity of
the search phase by multiple orders of magnitude. On the other hand, for the
same gain, the adversary can reduce the amount of data by a (modest) factor
2. For example, for a gain of 12 bits, the data complexity is reduced from 217.8

to 216.6. This is in close correspondence with the ratio between the capacities.
Note that both simulations were carried out under the assumption of inde-
pendent subkeys (this was also the case for the simulations presented in [77]).
Without this assumption, the gain will closely follow the graphs on the figure,
but stop increasing as soon as the gain equals the number of independent key
bits involved in the attack.

As in Sect. 4.5.1 our goal is not to provide the best attack on 8-round DES,
but to show that Algorithm 2 style attacks do gain from the use of multiple
linear approximations, with a data reduction proportional to the increase in
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the joint capacity. We refer to Sect. 4.4 for the technical aspects of the imple-
mentation of Algorithm MK 2.

4.5.3 Capacity – DES Case Study

In Sect. 4.3 we argued that the minimal amount of data needed to obtain a
certain gain compared to exhaustive search is determined by the capacity c̄2

of the linear approximations. In order to get a first estimate of the potential
improvement of using multiple approximations, we calculate the total capac-
ity of the bestm linear approximations of DES for 1 ≤ m ≤ 216. The capacities
are computed using an adapted version of yet another algorithm by [78] (see
Sect. 4.6). The results, plotted for different number of rounds, are shown in
Fig. 4.4 and 4.5, both for approximations restricted to a single S-box per round
and for the general case. Note that the single best approximation is not visible
on these figures due to the scale of the graphs.

Kaliski and Robshaw [59] showed that the first 10 006 approximations with
a single active S-box per round have a joint capacity of 4.92 · 10−11 for 14
rounds of DES.7 Fig. 4.4 shows that this capacity can be increased to 4 · 10−10

when multiple S-boxes are allowed. Comparing this to the capacity of Mat-
sui’s best approximation (c̄2 = 1.29 · 10−12), the factor 38 gained by Kaliski
and Robshaw is increased to 304 in our case. Practical techniques to turn this
increased capacity into an effective reduction of the data complexity are pre-

7Note that Kaliski and Robshaw calculated the sum of squared biases:
P

ǫ2j = c̄2/4.
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sented in this paper, but exploiting the full gain of 10 000 unrestricted approx-
imations will require additional techniques. In theory, however, it would be
possible to reduce the data complexity form 243 (in Matsui’s case, using two
approximations) to about 236 (using 10 000 approximations).
In order to provide a more conservative (and probably rather realistic) es-

timation of the implications of our new attacks on full DES, we search for 14-
round approximations which only require three 6-bit subkeys to be guessed
simultaneously in the first and the last rounds. The capacity of the 108 best
approximations satisfying this restriction is 9.83 · 10−12. This suggests that
an MK 2 attack exploiting these 108 approximations might reduce the data
complexity by a factor 4 compared to Matsui’s Algorithm 2 (i.e., 241 instead
of 243). This is comparable to the Knudsen-Mathiassen reduction [65], but
would preserve the advantage of being a known-plaintext attack rather than
a chosen-plaintext one.
Using very high numbers of approximations is somewhat easier in practice

for MK 1 because we do not have to impose restrictions on the plaintext and
ciphertext masks (see Sect. 4.4). Analyzing the capacity for the 10 000 best 16-
round approximations, we now find a capacity of 5 · 10−12. If we restrict the
complexity of the search phase to an average of 243 trials (i.e., a gain of 12 bits),
we expect that the attack will require 241 known plaintexts. As expected, this
theoretical number is larger than for the MK 2 attack using the same amount
of approximations.

4.6 Finding characteristics

In the beginning of Sect. 4.3, we started from the assumption that we could

constructm approximations of the form PT ·Γj
P ⊕CT ·Γj

C⊕KT ·Γj
K , each with

an imbalance cj 6= 0. In this last section, we explain how these approxima-
tions are found in practice. The algorithm presented below is directly based
on an algorithm by Matsui [78]. However, instead of computing the single
best approximation, our algorithm returns a list of the m most imbalanced
approximations. This will at the same time allow for some additional opti-
mizations.

4.6.1 Some Notation

As explained in Sect. 3.3.2, the key idea is to build sequences of approxima-
tions called linear characteristics. We assume in this section that the block
cipher consists of r identical rounds, each of which depends on a round key
Ki, and we denote the intermediate values at the input and the output of the
different rounds by P = X0, X1, . . . , Xr = C. Our goal now is to construct
linear characteristics of the form

(ΓX0 ,ΓX1 , . . . ,ΓXr ) ,
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for which there exist key masks ΓKi such that all linear expressions

ΓT

Xi−1
·Xi−1 ⊕ ΓT

Xi
·Xi ⊕ ΓT

Ki
·Ki , with 1 ≤ i ≤ r,

are as biased as possible.8 In order to simplify notations, we write the cor-
responding imbalances as C(ΓXi−1 ,ΓXi). We will assume that these r ap-
proximations are sufficiently independent such that the Piling-up Lemma of
Sect. 3.3.3 applies. The imbalance of a complete characteristic is then given by
the product

C(ΓX0 ,ΓX1 , . . . ,ΓXr ) =
r∏

i=1

C(ΓXi−1 ,ΓXi) .

Finally, we also introduce the notation C(Sr), which returns the set of imbal-
ances corresponding to a set of characteristics Sr.

4.6.2 A Naive Search Algorithm

In order to explain the underlying ideas of the algorithm, we start with a very
naive version, which we will improve in a step-wise manner.

All algorithms described in this section rely on the assumption that we can
easily construct approximations for a single round of the block cipher, and
more in particular, that we can efficiently enumerate pairs of masks (ΓXi−1 ,ΓXi)
in decreasing order of C(ΓXi−1 ,ΓXi), with ΓXi−1 either fixed or not. Consider-
ing the fact that a single round of a block cipher is typically rather simple, this
is a very reasonable assumption. This leads to the following straightforward
depth-first search algorithm:

fill Sr withm arbitrary r-round characteristics (ΓX0 , . . . ,ΓXr )
for all (ΓX0 ,ΓX1) in decreasing order of C(ΓX0 ,ΓX1) do
call naive-search(r, (ΓX0 ,ΓX1))
if this call returns ‘abort’, break the loop
end for

The algorithm calls a procedure ‘naive-search’, which is defined as follows:

8In a typical block cipher where keys are XORed to the data in each round, there exists at most
one mask ΓKi

which results in a non-zero imbalance for given ΓXi−1
and ΓXi

. Hence, there is
no need to include key masks in the characteristic.
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procedure naive-search(r, (ΓX0 , . . . ,ΓXi))
if C(ΓX0 , . . . ,ΓXi) ≤ minC(Sr) then
return ‘abort’
else
if i = r then
replace smallest element of Sr by (ΓX0 , . . . ,ΓXr )

else
for all ΓXi+1 in decreasing order of C(ΓXi ,ΓXi+1) do
call naive-search(r, (ΓX0 , . . . ,ΓXi+1))
if this call returns ‘abort’, break the loop
end for

end if
return ‘continue’
end if

When the algorithm (eventually) returns, the m arbitrary characteristics of Sr

will have been replaced by themmost biased characteristics.

4.6.3 A Much Faster Algorithm

The naive algorithm described above needs to search deeply into a large tree
before it can conclude that the current sequence of masks will not improve
on any of the characteristics already in the set Sr. The main idea of Matsui’s
search algorithm is to first compute the best n-round characteristics for n < r,
and then to use this information when searching for r-round characteristics to
decide much earlier whether or not it is worth to continue following a certain
branch in the three. Based on this idea, we modify the main loop as follows:

for n = 2 to r do
fill Sn withm arbitrary n-round characteristics (ΓX0 , . . . ,ΓXn)
for all (ΓX0 ,ΓX1) in decreasing order of C(ΓX0 ,ΓX1) do
call faster-search(n, (ΓX0,ΓX1))
if this call returns ‘abort’, break the loop

end for
end for

Using the previous sets of characteristics, the ‘naive-search’ procedure can
now be improved in two ways. First, the search can be aborted much earlier
based on the observation that the imbalance of an r-round characteristic, start-
ing with a sequence of masks ΓX0 , . . . ,ΓXi , can never exceedC(ΓX0 , . . . ,ΓXi)·
maxC(Sr−i). Secondly, we can exploit the fact that any (r − i)-round charac-
teristic with an imbalance larger thanminC(Sr−i)must necessarily have been
included in Sr−i. The following pseudo-code shows how this is done:
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procedure faster-search(r, (ΓX0, . . . ,ΓXi))
if C(ΓX0 , . . . ,ΓXi) ·maxC(Sr−i) ≤ minC(Sr) then
return ‘abort’
else
if i = r then
replace smallest element of Sr by (ΓX0 , . . . ,ΓXr )

else
if C(ΓX0 , . . . ,ΓXi) ·minC(Sr−i) ≤ minC(Sr) then
for all (ΓY0 , . . . ,ΓYr−i) ∈ Sr−i in decr. ord. with ΓY0 = ΓXi do
call faster-search(s, (ΓX0, . . . ,ΓXi ,ΓY1 , . . . ,ΓYr−i))
if this call returns ‘abort’, break the loop
end for
else
for all ΓXi+1 in decreasing order of C(ΓXi ,ΓXi+1) do
call faster-search(r, (ΓX0, . . . ,ΓXi+1))
if this call returns ‘abort’, break the loop
end for
end if

end if
return ‘continue’
end if

4.6.4 Exploiting Symmetries

In order to be able to prune the search tree as early as possible, it is impor-
tant to quickly populate the set Sr with relatively good candidates such that
minC(Sr) increases rapidly. This can be done by first trying to extend the best
characteristics found for smaller number of rounds, before constructing them
from scratch:

for n = 2 to r do
fill Sn withm arbitrary characteristics (ΓX0 , . . . ,ΓXn)
for j = n− 1 down to 2 do
for all (ΓX0 , . . . ,ΓXj ) ∈ Sj in decreasing order do
call symmetric-search(n, j, (ΓX0, . . . ,ΓXj ))
if this call returns ‘abort’, break the loop
end for

end for
for all (ΓX0 ,ΓX1) in decreasing order of C(ΓX0 ,ΓX1) do
call symmetric-search(n, j, (ΓX0,ΓX1))
if this call returns ‘abort’, break the loop

end for
end for

4.7. CONCLUSIONS 73

Note that in order to avoid checking a lot of characteristics twice, we must
add an additional condition in the second loop of ‘faster-search’, as done in
the code below.
Finally, we can make some additional optimizations if the block cipher

has a symmetric structure (e.g., a Feistel structure), such that each character-
istic (ΓX0 , . . . ,ΓXr ) has its reversed counterpart (ΓXr , . . . ,ΓX0)with the exact
same imbalance. The reasoning behind the optimization is that there is no
need to construct characteristics ending with an element of Sr−i in the first
loop of ‘faster-search’, if we have already checked all characteristics starting
with those elements before. This is implemented in the procedure ‘symmetric-
search’ below.

procedure symmetric-search(s, j, (ΓX0, . . . ,ΓXi))
if C(ΓX0 , . . . ,ΓXi) ·maxC(Sr−i) ≤ minC(Sr) then
return ‘abort’
else
if i = r then
replace smallest element(s) of Sr by (ΓX0 , . . . ,ΓXr ) and (ΓXr , . . . ,ΓX0)

else
if C(ΓX0 , . . . ,ΓXi) ·minC(Sr−i) ≤ minC(Sr) then
if r − i ≤ j then
for all (ΓY0 , . . . ,ΓYr−i) ∈ Sr−i in decr. ord. with ΓY0 = ΓXi do
call symmetric-search(s, j, (ΓX0, . . . ,ΓXi ,ΓY1 , . . . ,ΓYr−i))
if this call returns ‘abort’, break the loop
end for
end if
else
for all ΓXi+1 in decreasing order of C(ΓXi ,ΓXi+1) do
if C(ΓX0 , . . . ,ΓXi+1) ≤ minC(Si+1) then
call symmetric-search(r, j, (ΓX0, . . . ,ΓXi+1))
if this call returns ‘abort’, break the loop
end if
end for
end if

end if
return ‘continue’
end if

4.7 Conclusions

In this chapter, we have shown that a Maximum Likelihood approach pro-
vides an intuitive framework to deal with multiple linear approximations in
an optimal way. A theoretically interesting feature of this framework is that
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it allows to treat Matsui’s Algorithm 1 and 2 in a very similar fashion. We
have extended both attacks and shown that their behavior can easily and ac-
curately be predicted. In order to illustrate this, we have conducted experi-
ment on round-reduced variants of DES, and have discussed possibilities for
an improvement of the best attacks on full (16-round) DES.

Chapter 5

Classification of S-Boxes

In Chaps. 3 and 4, we discussed the importance of characteristics in differ-
ential and linear cryptanalysis. We saw in Sect. 3.2 that the probabilities of
these characteristics are typically determined by two factors: (1) the number
of so-called active S-boxes, and (2) the differential or linear properties of these
S-boxes. In this chapter, we concentrate on the second point, and propose a
tool for classifying S-boxes which, while being of independent interest, is also
useful for selecting good S-boxes,

5.1 Motivation

When discussing the structure of block ciphers in Sect. 2.1.4, we pointed out
that they can typically be decomposed into building blocks of two different
types: small non-linear components, called S-boxes, which confuse by intro-
ducing non-linearity on word level, and large linear diffusion layers, which
diffuse this non-linearity over the complete block. Both components are in-
terleaved with key addition layers, which mix in secret round keys, and the
result would typically look like the SP network depicted in Fig. 2.4.

An interesting observation that could be made from this figure, is that the
decomposition of a given block cipher into this fixed structure of non-linear S-
boxes and linear diffusion layers is not unique. Suppose for instance that the
output word of an S-box would be linearly transformed before it is fed into
the diffusion layer. In that case, we could consider this linear transform to be
part of the S-box, but we could just as well incorporate it in the diffusion layer.
Similarly, additions with constants can be moved back and forth between S-
boxes and round keys (by modifying the key schedule). In general, it is easy
to see that any affine mapping at the input or the output of an S-box can be
moved across the borders of the S-box.

The conclusion we draw from the observation above, is that if we intend to
study S-boxes independently of the diffusion layer, then it only makes sense

75
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to consider them up to an affinemapping at their input and output. This is ex-
actly what we will do in this chapter. We will first present different algorithms
to detect linear and affine equivalences between S-boxes, and then apply these
tools to classify the complete set of 4× 4-bit S-boxes into equivalence classes.

5.2 The Linear Equivalence Algorithm (LE)

The problemwe try to solve in this section is the following: given two n×n-bit
invertible S-boxes S1 and S2, decide whether or not there exists a pair of linear
mappings A and B such that

S1(x) = B−1 · S2(A · x) , ∀x ∈ {0, 1}n .

If such mappings exist, the S-boxes are said to be linearly equivalent.
A naive approach would be to guess one of the mappings, say A, and then

to compute the other one using the equation B = S2 ◦ A ◦ S−1
1 . If B turns

out to be linear as well, then we have found a solution. If not, we try again
with a different guess. In the worst case, S1 and S2 are not equivalent, and

we will have to try out all O(2n2

) possible linear mappings A to come to this
conclusion.
We now present a simple and much more efficient algorithm, which, as

turned out after we completed our work, was also considered by Patarin et al.
[90] in the context of isomorphisms of polynomials. The idea of the algorithm
is to guess the linear mapping A for as few input points as possible, and then
use the linearity of A and B to follow the implications of these guesses as far
as possible. But before we describe the algorithm, let us first introduce some
notation to conveniently represent operations on a set of n-bit wordsW :

f(W ) = {f(x) | x ∈ W} ,
W ⊕ c = {x⊕ c | x ∈ W} .

The linear equivalence algorithm can be expressed in terms of a number of
special sets which are defined below and are updated in the successive steps of
the algorithm. The relations between these sets are also illustrated in Fig. 5.1.

Sets CA and CB . At any given stage, these sets contain points whose images
under the linear mapping A (or B, respectively) have been determined
and are known not to violate the linearity of B (or A). By construction,
they will always form a closed linear space, i.e., all linear combinations
of points in these sets are again elements of the sets. The goal is to ex-
pand these sets until they cover the complete set {0, 1}n.

Sets NA and NB . These sets contain new points whose images under A (or
B) could be derived using the expression A = S−1

2 ◦ B ◦ S1 (or B =
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Figure 5.1: The relations between the different sets for the LE algorithm

S2 ◦A ◦ S−1
1 ), but which have not been verified to be consistent yet. The

sets can be defined as follows:

NA = S−1
1 (CB) \ CA ,

NB = S1(CA) \ CB .

In order to verify that the images of the points ofNA underA do not violate
the linearity of B, and can therefore be moved to CA, we apply the procedure
described by the pseudo-code below:

procedure check-NA

while NA 6= ∅ do
pick x ∈ NA

for all z ∈ (CA ⊕ x) \NA do
if B[S1(z)]← S2 · A(z) violates the linearity of B then
return ‘abort’
end if

end for
CA ← CA ∪ (CA ⊕ x)
update NA and NB according to their definitions
end while

Each time the image of a new point x is added to the partially determined
linear mapping B (we write this as B[x] ← y), we need to verify, by a simple
Gaussian elimination, whether it is consistent with the previous points.

Unless the procedure aborts because of an inconsistency, it will only return
when all points of NA have been verified and moved to CA. During the pro-
cess, however, many new points will have been added toNB . For these points
we can run a similar procedure ‘check-NB’, which will on its turn generate
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many new elements in NA, etc. Eventually, assuming that the S-boxes are in-
deed equivalent, all points will have been covered, and the mappings A and
B will be completely recovered.
In order to initiate this amplification process, we need either NA 6= ∅ or

NB 6= ∅, and at least one non-zero element in CA or CB , respectively. When
the algorithm starts, we have CA = CB = {0}, and, unless the S-boxes map 0
to itself, |NA| = |NB| = 1. In this case, guessing the image of one additional
point will usually suffice to bootstrap the process, and hence the algorithm
will terminate within O(2n) steps. If the S-boxes do map 0 on itself, we will
need to make at least two guesses and the complexity increases to O(22n).
The complete linear equivalence algorithm is summarized, in a recursive

form, in the code below. In order to illustrate the amplification process de-
scribed above, we also give a concrete example in Fig. 5.2 for two 4 × 4-bit
S-boxes.

procedure LE
while NA 6= ∅ or NA 6= ∅ do
call check-NA

call check-NB

if any of these calls returns ‘abort’ then
return

end if
end while
if CA 6= {0, 1}n then
pick x /∈ CA and set NA ← {x}
for all y /∈ A(CA) do
A[x]← y
call LE

end for
else
return A and B and exit
end if

5.3 The Affine Equivalence Algorithm (AE)

In this section, we generalize the equivalence problem to the affine case. More
specifically, we search for an algorithm, which again takes two n × n-bit S-
boxes S1 and S2 as input, but this time checks whether there exists a pair of
invertible affine mappings Aa and Ba such that B

−1
a ◦ S1 ◦ Aa = S2. Each of

these affine mappings can be expressed as a linear transform followed by an
addition, which leads to an affine equivalence relation of the form

S1(x) = B−1 · S2(A · x⊕ a)⊕ b , ∀x ∈ {0, 1}n ,
withA andB invertible n×n-bit linear mappings, and a and b n-bit constants.
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x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S1(x) 1 B 9 C D 6 F 3 E 8 7 4 A 2 5 0

x′ 0 1 2 3 4 5 6 7 8 9 A B C D E F

S2(x
′) 3 D A 4 8 F E B 0 1 5 9 2 6 C 7

x
A−→ x′

S1,S2−−−−−−−−→ y′
B←− y

0→ 0
S1,S2−−−−−−−−→ 3↔ 1

F↔ 8
S−1

1 ,S−1
2←−−−−−−−− 0← 0

guess→ 1→ 1
S1,S2−−−−−−−−→ D↔ B

E→ 9
S1,S2−−−−−−−−→ 1↔ 5

C↔ 6
S−1

1 ,S−1
2←−−−−−−−− E← A

B↔ C
S−1

1 ,S−1
2←−−−−−−−− 2← 4

inconsistent→ 8↔ E
S−1

1 ,S−1
2←−−−−−−−− C← E

Figure 5.2: The LE algorithm in action
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5.3.1 Basic Algorithm

Considering that the problem is very similar to the linear equivalence prob-
lem, it seems natural to try to reuse the linear algorithm described above as a
subroutine. A straightforward solution would be:

for all a do
for all b do
check whether S1(·)⊕ b and S2(· ⊕ a) are linearly equivalent

end for
end for

This approach adds a factor 22n to the complexity of the linear algorithm,
bringing the total toO(23n). The reasonwhy this algorithm is rather inefficient
is clearly the fact that the linear equivalence needs to be checked for each in-
dividual pair (a, b). The alternative approach presented in this section will try
to avoid this by assigning a unique representative to each linear equivalence
class. Indeed, if we could find an efficient method to identify such a repre-
sentative for a given permutation, then we could check for affine equivalence
using the following, much more efficient, algorithm:

for all b do
insert the linear representative of S1(·)⊕ b in table T1

end for
for all a do
insert the linear representative of S2(· ⊕ a) in table T2

end for
if T1 ∩ T2 6= ∅ then
conclude that S1 and S2 are affine equivalent
end if

The complexity of this alternative algorithm is about 2n times the work
needed for finding the linear representative. If the latter requires less than
O(22n), then the second approach will outperform the first. In the next sec-
tion, we will see that this is indeed the case, and present an algorithm which
constructs representatives inO(2n). As a result, the total complexity of finding
affine equivalences is brought down to O(22n).

A particularly interesting property of this approach is that it can efficiently
solve the problem of finding mutual equivalences in a large set of S-boxes.
Due to the fact that the main part of the computation is performed separately
for each S-box, the complexity will grow only linearly with the number of S-
boxes (and not with the number of possible pairs). We will exploit this prop-
erty in Sect. 5.4.2.
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5.3.2 Finding the Linear Representative

The efficiency of an algorithm that finds the linear representative RS for an
S-box S depends on how this unique representative is chosen. In this chapter,
we decide to define it as follows:

Definition 5.1. The representative RS of an S-box S is the lexicographically
smallest S-box in the linear equivalence class containing S.

The lexicographically ordering in this definition refers to the lookup tables
of the S-boxes, i.e., the smallest S-box is the identity, and for example, S-box
[0, 1, 3, 4, 7, 2, 6, 5] is smaller than the S-box [0, 2, 1, 6, 7, 4, 3, 5].
In order to construct the representative RS of the linear class containing

a given S-box S, we use an algorithm which is based on the same principles
as the algorithm in Sect. 5.2: after making an initial guess, we incrementally
build the linear mappings A and B such that R′

S = B−1 ◦ S ◦ A is as small as
possible. This is repeated for each guess, and the representativeRS is obtained
by taking the smallest R′

S over all guesses.
In the description of the algorithm below, we will refer to the same setsCA,

CB , NA, and NB as in Sect. 5.2. We define them slightly differently, though,
and we also introduce a new pair of sets DA and DB . Fig. 5.3 illustrates the
new relations between the different sets.

SetsDA andDB . These sets contain points for which the linear mapping A
(or B, respectively) is determined. By construction, they will always be
of the form {x | 0 ≤ x < 2m}.

Sets CA and CB . These sets contain the points of DA which have a corre-
sponding point in DB and vice versa, i.e., S ◦ A (CA) = B (CB). The
sets are constructed as follows:

CA = A−1[A(DA) ∩ S−1 ◦B(DB)] ,

CB = B−1[B(DB) ∩ S ◦A(DA)] .

Note that for all points in CA and CB , we can compute R
′
S(x) = B−1 ◦

S ◦A(x) and R′
S
−1

(y) = A−1 ◦ S−1 ◦B(y), respectively.

Sets NA and NB . These sets contain the remaining points ofDA andDB , i.e.,

NA = DA \ CA ,

NB = DB \ CB .

The main part of the algorithm for finding a candidate R′
S consists in re-

peatedly picking the smallest input x for whichR′
S is not known, and trying to

assign it to the smallest available output y. As long as NA contains elements,
this can be done by following the procedure below:
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Figure 5.3: The relations between the different sets for the LR algorithm

while NA 6= ∅ do
pick x = min(CA) = min(NA) and y = min(DB) = |DB|
assign B[y]← S ◦A(x), such that R′

S(x) = y
DB ← DB ⊕ y
update CA, CB , NA, and NB according to their definitions
while NA = ∅ and NB 6= ∅ do
pick x = min(CA) = min(DA) = |DA| and y = min(CB) = min(NB)
assign A[x]← S−1 ◦B(y), such that R′

S(x) = y
DA ← DA ⊕ x
update CA, CB , NA, and NB according to their definitions

end while
end while

When this algorithm finishes, NA and NB are both empty. If at this point
CA covers the complete set {0, 1}n, then R′

S is completely defined. In the
opposite case, we need to guess A for the smallest point of CA (which by
construction will be x = |CA| = |DA|). This will add new elements to DA and
thus to NA, such that we can apply the algorithm once again. In order to be
sure to find the smallest representative, we must repeat this for each possible
guess.
In most cases, we will only need to guessA for a single point, which means

that about 2n possibilities have to be checked. Completely defining R′
S for a

particular guess takes about 2n steps. However, most guesses will already be
rejected after having determined only slightly more than n values, because at
that point R′

S will usually already turn out to be larger than the current small-
est candidate. Due to this, the total complexity of finding the representative is
expected to be O(2n).
In order to make the process described above a bit more concrete, we pro-

vide a 4× 4-bit example in Fig. 5.4.

5.3.3 An Alternative Approach using the Birthday Paradox

The efficiency gain obtained in the previous subsections arises from the fact
that the computation is split into two parts, each of which depends on a single
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x′ 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x′) 1 B 9 C D 6 F 3 E 8 7 4 A 2 5 0

x
A−→ x′

S−−−−−−−−→ y′
B←− y

0→ 0
S−−−−−−−−→ 1↔ 1

1↔ F
S−1

←−−−−−−−− 0← 0

guess→ 2→ 1
S−−−−−−−−→ B↔ 2

3→ E
S−−−−−−−−→ 5↔ 4

4↔ C
S−1

←−−−−−−−− A← 3

5→ 3
S−−−−−−−−→ C↔ 8

6→ D
S−−−−−−−−→ 2→ E

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

R′
S(x) 1 0 2 4 3 8 E

Figure 5.4: Finding the linear representative
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S-box S1 or S2 only. In this section, we apply the same idea in a different
way and present a second algorithm which is directly based on the birthday
method from [90].
First, let us assume that S1 and S2 are indeed equivalent, i.e., S1 = B−1

a ◦
S2 ◦ Aa, with Aa and Ba two (unknown) affine mappings. Suppose now that
we are given two triples x = (x1, x2, x3) and x′ = (x′1, x

′
2, x

′
3), and are asked

to determine whether x′i = Aa(xi) for 1 ≤ i ≤ 3. Note that if this is the
case, then the triples y = (y1, y2, y3) and y′ = (y′1, y

′
2, y

′
3), with yi = S1(xi)

and y′i = S2(x
′
i), must also satisfy y

′
i = Ba(yi). In order to verify this, we

first expand the tuples x and y by adding points xi and yi = S1(xi) where
either xi or yi is an odd linear combination of previous elements of x or y. An
example is given in Fig. 5.5. If we now perform the exact same operations on
x′ and y′, but using S2 instead of S1, then all new points will still be related
by x′i = Aa(xi) and y

′
i = Ba(yi). As soon as the expanded triples x and x′

contain more than n+1 linearly independent points, we can directly compute
Aa, and verify that this mapping holds for all other points. If it does, the same
procedure can be applied to recover and verify Ba from y and y′.
Based on the procedure above, we can now construct an efficient proba-

bilistic algorithm for finding affine equivalences, given that they exist. We
start by generating two sets of about 23n/2 random triples xj and x′

j . If Aa

exists, it is likely, because of the birthday paradox, that these sets will contain
at least one pair of triples which are related by Aa (we call this a collision).
In principle, we could find these collisions by checking each individual pair.
This would however require to apply the procedure described earlier about
23n times. Fortunately, most of these checks can be avoided based on the ob-
servation that any linear relation between an even number of elements of one
expanded triple must necessarily also hold for the other expanded triple, if
both are related by Aa. Hence, it suffices to expand all triples, find all even
linear relations for each of them, and only check pairs with identical relations.
Examples of such relations are marked with arrows in Fig. 5.5.
How far the triples should be expanded is a trade-off between the work

needed for the expansion, and the work saved by reducing the number of
pairs to check, but eventually, the algorithm is not expected to require more
than O(23·n/2) computations. Note that this algorithm is probabilistic (it will
fail if no collisions occur), though its success probability can easily be in-
creased by considering a larger number of random sets. Still, it cannot be
used to determine with certainty that two S-boxes are not equivalent, and this
is an important difference with the previous deterministic algorithms.

5.4 Classification of S-Boxes

Using the tools described in the previous section, it is now relatively straight-
forward to construct an algorithm which achieves our original goal: classi-
fying S-boxes into equivalence classes. But first, let us examine how many
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x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 1 B 9 C D 6 F 3 E 8 7 4 A 2 5 0

x
S−−−−−−−−→ y

x0 = 0
S−−−−−−−−→ y0 = 1

x1 = 1
S−−−−−−−−→ y1 = B

x2 = 2
S−−−−−−−−→ y2 = 9

x3 = 7
S−1

←−−−−−−−− y3 = y0 + y1 + y2 = 3

x4 = x0 + x1 + x2 = 3
S−−−−−−−−→ y4 = C

x5 = x0 + x1 + x3 = 6
S−−−−−−−−→ y5 = F( = x0 + x1 + x2 + x4)

x6 = x0 + x2 + x3 = 5
S−−−−−−−−→ y6 = 6( = x0 + x1 + x4)←

x7 = x1 + x2 + x3 = 4
S−−−−−−−−→ y7 = D( = x1 + x2 + x5)←

x8 = E
S−1

←−−−−−−−− y8 = y0 + y1 + y5 = 5

→ (x2 + x3 + x8 = )x9 = B
S−1

←−−−−−−−− y9 = y0 + y2 + y4 = 4

Figure 5.5: Expanding a triple (x1, x2, x3)
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Table 5.1: Number of linear and affine equivalence classes of permutations

Dimension 1 2 3 4
Permutations 2 24 40 320 20 922 789 888 000
Lin. Eq. Classes 2 2 10 52 246
Aff. Eq. Classes 1 1 4 302
Dimension 5
Permutations 263 130 836 933 693 530 167 218 012 160 000 000
Lin. Eq. Classes 2 631 645 209 645 100 680 144
Aff. Eq. Classes 2 569 966 041 123 963 092

different equivalence classes we expect for a given dimension n.

5.4.1 The Number of Equivalence Classes

Counting linear and affine equivalence classes is an interesting problem in it-
self. It was solved in the 1960s by Lorens [71] and Harrison [48] using Polya
theory. The solution was based on the computation of the cycle index polyno-
mial of the linear and affine groups, and results were given for n ≤ 5. During
the research that led to this thesis, we independently implemented a similar
algorithm, counted the number of equivalence classes for larger n, and veri-
fied that this number is very well approximated by 2n!/|G|2, where |G| is the
size of the linear or affine group.
A quick look at the figures1 in Table 5.1 shows that the number of equiva-

lence classes grows very quickly with the dimension n. The number of classes
is too small to be really interesting for n = 3, and many orders of magnitude
too large to be enumerated for n = 5. We will therefore concentrate on the
case n = 4. Fortunately, this case is also relevant in practice, since 4 × 4-bit
S-boxes are frequently used in concrete designs.

5.4.2 Classification of 4× 4-bit S-boxes

We now present a very simple algorithm to exhaustively enumerate all affine
equivalence classes. In principle, it applies to any dimension n, but as we
just saw, it is only practical for n ≤ 4. The algorithm is based on two simple
lemmas.

Lemma 5.1. All invertible S-boxes can be written as a composition of transpositions.

Lemma 5.2. If S1 and S2 only differ by a transposition (u v), i.e., S2 = S1 ◦ (u v),
then, for any S′

1 in the equivalence class of S1, there exists an S
′
2 in the equivalence

class of S2 such that S
′
1 and S

′
2 only differ by a single transposition.

1Note that the number of linear equivalence classes for n = 5 mentioned in [71] differs by 2
from what we computed in Table 5.1. We suspect this to be an error.
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The basic idea of the algorithm is to construct a list of equivalence classes
by iteratively adding the equivalence classes of all S-boxes that can be reached
within one transposition from the S-boxes contained in the equivalence classes
already included in the list. We start from the identity, and repeat until no new
equivalence classes appear. Since every S-box can be reached from the iden-
tity by applying successive transpositions (Lemma 5.1), we are sure that all
equivalence classes will eventually be covered. On the other hand, Lemma 5.2
tells us that, for every equivalence class, it suffices to check the S-boxes that
can be reached from a single element from this class. The complete algorithm
is summarized below:

add the identity to the queue Q
while the queue Q is not empty do
take the first S-box S from the queue Q
for all b do
if the linear representative of S(x)⊕ b is included in table T then
break and continue with the next element in the queue
end if

end for
add S as a representative to the list of equivalence classes
for all a do
insert the linear representative of S(· ⊕ a) in table T

end for
for all transpositions (u v) do
insert S ◦ (u v) into the queue Q

end for
end while

The result of running this algorithm for n = 4 is a list of 302 equivalence
classes which is graphically represented in Fig. 5.6. The node at the top corre-
sponds to the equivalence class containing the identity (and all affine permu-
tations). The connections between the nodes represent single transpositions.
The graph shows that every S-box can be turned into an affine permutation
by applying at most 8 transpositions. Two interesting nodes which stand out
are the ones on the sixth level at the extreme right, and on the eighth level at
the extreme left of the graph. The first node (class 3 in Table 5.2) turns out to
be equivalent to the inverse over GF (24), the second (class 293 in Table 5.7) is
equivalent to both the exponentiation and the logarithm over GF (24).
The 302 equivalent classes are listed in Tables 5.2–5.8. Each row contains

the hexadecimal lookup table of a representative of the class, and the distribu-
tion of the values in the linear approximation and difference distribution ta-
bles (which is invariant over all S-boxes in the class). The classes are sorted ac-
cording to the largest non-trivial imbalance or differential probability in these
tables.
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Table 5.2: Affine equivalence classes 1–50

Representative |c| = 1/4 1/2 3/4 1 p = 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1
1 401F2B6739A5CDE8 120 30 0 1 90 15 0 0 0 0 0 1
2 801C256943AB7DEF 120 30 0 1 90 15 0 0 0 0 0 1
3 801CF56743AB9DE2 120 30 0 1 90 15 0 0 0 0 0 1
4 20183D6749A5CBEF 120 30 0 1 90 15 0 0 0 0 0 1
5 20183F67495BCDEA 120 30 0 1 90 15 0 0 0 0 0 1
6 20183B6749AFCDE5 120 30 0 1 90 15 0 0 0 0 0 1
7 48123B6709AECD5F 120 30 0 1 90 15 0 0 0 0 0 1
8 801925D746ABC3EF 120 30 0 1 90 15 0 0 0 0 0 1
9 8E1235674CAB9D0F 112 32 0 1 84 18 0 0 0 0 0 1
10 8E12356749FBCD0A 112 32 0 1 84 18 0 0 0 0 0 1
11 8F1235C749AB6DE0 112 32 0 1 84 18 0 0 0 0 0 1
12 8F12356D49ABC7E0 112 32 0 1 84 18 0 0 0 0 0 1
13 C019354762AB8DEF 96 36 0 1 72 24 0 0 0 0 0 1
14 CB12354769A08DEF 96 36 0 1 72 24 0 0 0 0 0 1
15 C912354760AB8DEF 96 36 0 1 72 24 0 0 0 0 0 1
16 8E12354769A0CDBF 96 36 0 1 72 24 0 0 0 0 0 1
17 8A123B674905CDEF 120 30 0 1 93 12 1 0 0 0 0 1
18 40182C3769AB5DEF 112 32 0 1 87 15 1 0 0 0 0 1
19 4018253B69A7CDEF 112 32 0 1 87 15 1 0 0 0 0 1
20 4018253E69ABCD7F 112 32 0 1 87 15 1 0 0 0 0 1
21 6812354B09A7CDEF 112 32 0 1 87 15 1 0 0 0 0 1
22 4018293765ABCDEF 112 32 0 1 87 15 1 0 0 0 0 1
23 8F123567490BCDEA 120 30 0 1 96 9 2 0 0 0 0 1
24 401825F769ABCDE3 120 30 0 1 96 9 2 0 0 0 0 1
25 D01235E769ABC84F 96 36 0 1 78 18 2 0 0 0 0 1
26 CA123547690B8DEF 96 36 0 1 78 18 2 0 0 0 0 1
27 C01235F769AB8DE4 96 36 0 1 78 18 2 0 0 0 0 1
28 8A123047695BCDEF 96 36 0 1 78 18 2 0 0 0 0 1
29 8D12304769ABC5EF 96 36 0 1 78 18 2 0 0 0 0 1
30 681E354709ABCD2F 96 36 0 1 81 15 3 0 0 0 0 1
31 401825A7693BCDEF 96 36 0 1 80 18 0 1 0 0 0 1
32 C0A23547691B8DEF 64 44 0 1 64 24 0 2 0 0 0 1
33 D0A23547691BC8EF 64 44 0 1 64 24 0 2 0 0 0 1
34 8F123C6749AB5DE0 119 28 1 1 78 21 0 0 0 0 0 1
35 801C25B749A63DEF 119 28 1 1 78 21 0 0 0 0 0 1
36 801C25D749AB36EF 119 28 1 1 78 21 0 0 0 0 0 1
37 C0123F6749AB8DE5 111 30 1 1 72 24 0 0 0 0 0 1
38 C012356D49AB87EF 111 30 1 1 72 24 0 0 0 0 0 1
39 8A123569470BCDEF 119 28 1 1 81 18 1 0 0 0 0 1
40 801C2E6749AB3D5F 119 28 1 1 81 18 1 0 0 0 0 1
41 40182D3769ABC5EF 119 28 1 1 81 18 1 0 0 0 0 1
42 40182A37695BCDEF 119 28 1 1 81 18 1 0 0 0 0 1
43 6812354C09AB7DEF 111 30 1 1 75 21 1 0 0 0 0 1
44 6812354D09ABC7EF 111 30 1 1 75 21 1 0 0 0 0 1
45 6812354907ABCDEF 111 30 1 1 75 21 1 0 0 0 0 1
46 DA123567490BC8EF 119 28 1 1 84 15 2 0 0 0 0 1
47 E01A3567492BCD8F 119 28 1 1 84 15 2 0 0 0 0 1
48 8A123597460BCDEF 119 28 1 1 84 15 2 0 0 0 0 1
49 801D2567493BCAEF 119 28 1 1 84 15 2 0 0 0 0 1
50 801625D749ABC3EF 119 28 1 1 84 15 2 0 0 0 0 1
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Table 5.3: Affine equivalence classes 51–100

Representative |c| = 1/4 1/2 3/4 1 p = 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1
51 8C12354769AB0DEF 111 30 1 1 78 18 2 0 0 0 0 1
52 68D2354709ABC1EF 111 30 1 1 78 18 2 0 0 0 0 1
53 68E2354709ABCD1F 111 30 1 1 78 18 2 0 0 0 0 1
54 401F253769ABCDE8 111 30 1 1 78 18 2 0 0 0 0 1
55 401A2867395BCDEF 111 30 1 1 78 18 2 0 0 0 0 1
56 401A2568397BCDEF 111 30 1 1 78 18 2 0 0 0 0 1
57 608F354719ABCDE2 111 30 1 1 78 18 2 0 0 0 0 1
58 608C354719AB2DEF 111 30 1 1 78 18 2 0 0 0 0 1
59 681C354709AB2DEF 111 30 1 1 78 18 2 0 0 0 0 1
60 681D354709ABC2EF 111 30 1 1 78 18 2 0 0 0 0 1
61 801C256743AB9DEF 111 30 1 1 78 18 2 0 0 0 0 1
62 801A2563497BCDEF 111 30 1 1 78 18 2 0 0 0 0 1
63 801D253749ABC6EF 111 30 1 1 78 18 2 0 0 0 0 1
64 801A256749DBC3EF 111 30 1 1 78 18 2 0 0 0 0 1
65 801E354769ABCD2F 111 30 1 1 78 18 2 0 0 0 0 1
66 6018D54729ABC3EF 111 30 1 1 78 18 2 0 0 0 0 1
67 6812F54709ABCDE3 111 30 1 1 78 18 2 0 0 0 0 1
68 68123A47095BCDEF 111 30 1 1 78 18 2 0 0 0 0 1
69 80132A6749FBCDE5 111 30 1 1 78 18 2 0 0 0 0 1
70 401825B769A3CDEF 111 30 1 1 78 18 2 0 0 0 0 1
71 801625C749AB3DEF 111 30 1 1 78 18 2 0 0 0 0 1
72 8017256C49AB3DEF 111 30 1 1 78 18 2 0 0 0 0 1
73 4018259763ABCDEF 111 30 1 1 78 18 2 0 0 0 0 1
74 6812394705ABCDEF 111 30 1 1 78 18 2 0 0 0 0 1
75 6819354702ABCDEF 111 30 1 1 78 18 2 0 0 0 0 1
76 8019253746ABCDEF 111 30 1 1 78 18 2 0 0 0 0 1
77 801C253749AB6DEF 111 30 1 1 81 15 3 0 0 0 0 1
78 80132F67495BCDEA 111 30 1 1 81 15 3 0 0 0 0 1
79 6D12354709ABC8EF 95 34 1 1 72 18 4 0 0 0 0 1
80 8B12354769A0CDEF 95 34 1 1 72 18 4 0 0 0 0 1
81 8D12354769ABC0EF 95 34 1 1 72 18 4 0 0 0 0 1
82 68F2354709ABCDE1 95 34 1 1 72 18 4 0 0 0 0 1
83 68C2354709AB1DEF 95 34 1 1 72 18 4 0 0 0 0 1
84 8512304769ABCDEF 63 42 1 1 78 0 14 0 0 0 0 1
85 8A123547690BCDEF 111 30 1 1 80 18 0 1 0 0 0 1
86 681235A7094BCDEF 111 30 1 1 80 18 0 1 0 0 0 1
87 8A1C3567490B2DEF 118 26 2 1 72 21 2 0 0 0 0 1
88 801C256349AB7DEF 118 26 2 1 72 21 2 0 0 0 0 1
89 20183B6749A5CDEF 118 26 2 1 72 21 2 0 0 0 0 1
90 48123B6709A5CDEF 118 26 2 1 72 21 2 0 0 0 0 1
91 4812356907ABCDEF 118 26 2 1 72 21 2 0 0 0 0 1
92 8612950743ABCDEF 118 26 2 1 72 21 2 0 0 0 0 1
93 68123B4709A5CDEF 110 28 2 1 66 24 2 0 0 0 0 1
94 68123E4709ABCD5F 110 28 2 1 66 24 2 0 0 0 0 1
95 68123F4709ABCDE5 110 28 2 1 66 24 2 0 0 0 0 1
96 F0132C6749AB5DE8 118 26 2 1 75 18 3 0 0 0 0 1
97 8D12350749ABC6EF 118 26 2 1 75 18 3 0 0 0 0 1
98 401E2567398BCDAF 118 26 2 1 75 18 3 0 0 0 0 1
99 801F253749ABCDE6 118 26 2 1 75 18 3 0 0 0 0 1
100 2013FA67495BCDE8 118 26 2 1 75 18 3 0 0 0 0 1
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Table 5.4: Affine equivalence classes 101–150

Representative |c| = 1/4 1/2 3/4 1 p = 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1
101 20183A67495BCDEF 118 26 2 1 75 18 3 0 0 0 0 1
102 20183D6749ABC5EF 118 26 2 1 75 18 3 0 0 0 0 1
103 40182B6739A5CDEF 118 26 2 1 75 18 3 0 0 0 0 1
104 40182C6739AB5DEF 118 26 2 1 75 18 3 0 0 0 0 1
105 201835674CAB9DEF 118 26 2 1 75 18 3 0 0 0 0 1
106 8F12354769ABCDE0 110 28 2 1 69 21 3 0 0 0 0 1
107 801D354769ABC2EF 110 28 2 1 69 21 3 0 0 0 0 1
108 6812C54709AB3DEF 110 28 2 1 69 21 3 0 0 0 0 1
109 48123E6709ABCD5F 110 28 2 1 69 21 3 0 0 0 0 1
110 80123B6749A5CDEF 110 28 2 1 69 21 3 0 0 0 0 1
111 681235E709ABCD4F 110 28 2 1 69 21 3 0 0 0 0 1
112 4812356D09ABC7EF 110 28 2 1 69 21 3 0 0 0 0 1
113 481235670FABCDE9 110 28 2 1 69 21 3 0 0 0 0 1
114 4812356709AECDBF 110 28 2 1 69 21 3 0 0 0 0 1
115 8012356947ABCDEF 110 28 2 1 69 21 3 0 0 0 0 1
116 F01A2567493BCDE8 118 26 2 1 78 15 4 0 0 0 0 1
117 20183F6749ABCDE5 118 26 2 1 78 15 4 0 0 0 0 1
118 401825F739ABCDE6 118 26 2 1 78 15 4 0 0 0 0 1
119 681B354709A2CDEF 110 28 2 1 72 18 4 0 0 0 0 1
120 48123A67095BCDEF 110 28 2 1 72 18 4 0 0 0 0 1
121 80123F6749ABCDE5 110 28 2 1 72 18 4 0 0 0 0 1
122 481235B709A6CDEF 110 28 2 1 72 18 4 0 0 0 0 1
123 481235D709ABC6EF 110 28 2 1 72 18 4 0 0 0 0 1
124 4812356A097BCDEF 110 28 2 1 72 18 4 0 0 0 0 1
125 8012356D49ABC7EF 110 28 2 1 72 18 4 0 0 0 0 1
126 801235674CAB9DEF 110 28 2 1 72 18 4 0 0 0 0 1
127 4812356709FBCDEA 110 28 2 1 72 18 4 0 0 0 0 1
128 4812359706ABCDEF 110 28 2 1 72 18 4 0 0 0 0 1
129 8012356749AECDBF 110 28 2 1 72 18 4 0 0 0 0 1
130 401A2537698BCDEF 118 26 2 1 74 21 0 1 0 0 0 1
131 481235A7096BCDEF 118 26 2 1 77 18 1 1 0 0 0 1
132 80B2354769A1CDEF 110 28 2 1 71 21 1 1 0 0 0 1
133 801235B769A4CDEF 110 28 2 1 71 21 1 1 0 0 0 1
134 80C2354769AB1DEF 110 28 2 1 74 18 2 1 0 0 0 1
135 80D2354769ABC1EF 110 28 2 1 74 18 2 1 0 0 0 1
136 8012E54769ABCD3F 110 28 2 1 74 18 2 1 0 0 0 1
137 8012F54769ABCDE3 110 28 2 1 74 18 2 1 0 0 0 1
138 608235B719A4CDEF 110 28 2 1 74 18 2 1 0 0 0 1
139 801235C749AB6DEF 110 28 2 1 74 18 2 1 0 0 0 1
140 4018296735ABCDEF 110 28 2 1 74 18 2 1 0 0 0 1
141 8012356749FBCDEA 110 28 2 1 74 18 2 1 0 0 0 1
142 C012354769AB8DEF 94 32 2 1 62 24 2 1 0 0 0 1
143 D012354769ABC8EF 94 32 2 1 62 24 2 1 0 0 0 1
144 8E12354769ABCD0F 94 32 2 1 62 24 2 1 0 0 0 1
145 801F2567493BCDEA 94 32 2 1 62 24 2 1 0 0 0 1
146 801B354769A2CDEF 94 32 2 1 62 24 2 1 0 0 0 1
147 801C354769AB2DEF 94 32 2 1 62 24 2 1 0 0 0 1
148 6812B54709A3CDEF 94 32 2 1 62 24 2 1 0 0 0 1
149 6812D54709ABC3EF 94 32 2 1 62 24 2 1 0 0 0 1
150 801235F769ABCDE4 94 32 2 1 62 24 2 1 0 0 0 1
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Table 5.5: Affine equivalence classes 151–200

Representative |c| = 1/4 1/2 3/4 1 p = 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1
151 801625F749ABCDE3 94 32 2 1 62 24 2 1 0 0 0 1
152 4082356B19A7CDEF 94 32 2 1 62 24 2 1 0 0 0 1
153 4812356709ABEDCF 94 32 2 1 62 24 2 1 0 0 0 1
154 4812356709ABCFED 94 32 2 1 62 24 2 1 0 0 0 1
155 80F2354769ABCDE1 94 32 2 1 64 24 0 2 0 0 0 1
156 801925674FABCDE3 117 24 3 1 66 21 4 0 0 0 0 1
157 4018256739DBCAEF 117 24 3 1 66 21 4 0 0 0 0 1
158 B012356749ADC8EF 117 24 3 1 69 18 5 0 0 0 0 1
159 20183C6749AB5DEF 117 24 3 1 69 18 5 0 0 0 0 1
160 40182A67395BCDEF 117 24 3 1 69 18 5 0 0 0 0 1
161 201835674DABC9EF 117 24 3 1 69 18 5 0 0 0 0 1
162 4018259736ABCDEF 117 24 3 1 69 18 5 0 0 0 0 1
163 40823B6719A5CDEF 109 26 3 1 63 21 5 0 0 0 0 1
164 80123E6749ABCD5F 109 26 3 1 63 21 5 0 0 0 0 1
165 2013846E59ABCD7F 109 26 3 1 63 21 5 0 0 0 0 1
166 8012356C49AB7DEF 109 26 3 1 63 21 5 0 0 0 0 1
167 401825673CAB9DEF 109 26 3 1 63 21 5 0 0 0 0 1
168 801235674DABC9EF 109 26 3 1 63 21 5 0 0 0 0 1
169 4018256739AECDBF 109 26 3 1 63 21 5 0 0 0 0 1
170 8012356749AFCDEB 109 26 3 1 63 21 5 0 0 0 0 1
171 401F256739ABCDE8 117 24 3 1 72 15 6 0 0 0 0 1
172 8E12356749ABCD0F 109 26 3 1 66 18 6 0 0 0 0 1
173 8F12356749ABCDE0 109 26 3 1 66 18 6 0 0 0 0 1
174 401D256739ABC8EF 109 26 3 1 66 18 6 0 0 0 0 1
175 801D356749ABC2EF 109 26 3 1 66 18 6 0 0 0 0 1
176 80123C6749AB5DEF 109 26 3 1 66 18 6 0 0 0 0 1
177 8012356E49ABCD7F 109 26 3 1 66 18 6 0 0 0 0 1
178 48E2356709ABCD1F 109 26 3 1 69 15 7 0 0 0 0 1
179 80123A67495BCDEF 117 24 3 1 65 24 1 1 0 0 0 1
180 408235B719A6CDEF 117 24 3 1 65 24 1 1 0 0 0 1
181 8012359746ABCDEF 117 24 3 1 65 24 1 1 0 0 0 1
182 801235B749A6CDEF 117 24 3 1 68 21 2 1 0 0 0 1
183 861D350749ABC2EF 109 26 3 1 62 24 2 1 0 0 0 1
184 201384D759ABC6EF 109 26 3 1 62 24 2 1 0 0 0 1
185 401825A7396BCDEF 109 26 3 1 62 24 2 1 0 0 0 1
186 801235D749ABC6EF 109 26 3 1 62 24 2 1 0 0 0 1
187 4018256739ABEDCF 109 26 3 1 62 24 2 1 0 0 0 1
188 8012356749EBCDAF 109 26 3 1 62 24 2 1 0 0 0 1
189 8A123567490BCDEF 117 24 3 1 80 9 6 1 0 0 0 1
190 401A2567398BCDEF 109 26 3 1 74 12 6 1 0 0 0 1
191 4018253769ABCDEF 109 26 3 1 74 12 6 1 0 0 0 1
192 6018354729ABCDEF 93 30 3 1 65 15 7 1 0 0 0 1
193 6812354709ABCDEF 93 30 3 1 65 15 7 1 0 0 0 1
194 2013FB6749A5CDE8 116 22 4 1 60 21 6 0 0 0 0 1
195 104825F739ABCDE6 116 22 4 1 60 21 6 0 0 0 0 1
196 401825673EABCD9F 116 22 4 1 60 21 6 0 0 0 0 1
197 80132A67495BCDEF 116 22 4 1 63 18 7 0 0 0 0 1
198 801C256749AB3DEF 116 22 4 1 66 15 8 0 0 0 0 1
199 801D256749ABC3EF 116 22 4 1 66 15 8 0 0 0 0 1
200 10482A67395BCDEF 116 22 4 1 59 24 3 1 0 0 0 1
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Table 5.6: Affine equivalence classes 201–250

Representative |c| = 1/4 1/2 3/4 1 p = 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1
201 30128C6749AB5DEF 108 24 4 1 56 24 4 1 0 0 0 1
202 201384E759ABCD6F 108 24 4 1 56 24 4 1 0 0 0 1
203 201384F759ABCDE6 108 24 4 1 56 24 4 1 0 0 0 1
204 4018256739ABCFED 108 24 4 1 56 24 4 1 0 0 0 1
205 D012356749ABC8EF 108 24 4 1 62 18 6 1 0 0 0 1
206 E012356749ABCD8F 108 24 4 1 62 18 6 1 0 0 0 1
207 8D12356749ABC0EF 108 24 4 1 62 18 6 1 0 0 0 1
208 80C2356749AB1DEF 108 24 4 1 62 18 6 1 0 0 0 1
209 401C256739AB8DEF 108 24 4 1 62 18 6 1 0 0 0 1
210 401E256739ABCD8F 108 24 4 1 62 18 6 1 0 0 0 1
211 80132F6749ABCDE5 108 24 4 1 62 18 6 1 0 0 0 1
212 8612350749ABCDEF 116 22 4 1 73 12 5 2 0 0 0 1
213 801A2567493BCDEF 108 24 4 1 67 15 5 2 0 0 0 1
214 8016253749ABCDEF 108 24 4 1 67 15 5 2 0 0 0 1
215 8012C54769AB3DEF 92 28 4 1 48 30 0 3 0 0 0 1
216 8012D54769ABC3EF 92 28 4 1 48 30 0 3 0 0 0 1
217 20138E6749ABCD5F 115 20 5 1 56 21 6 1 0 0 0 1
218 C012356749AB8DEF 107 22 5 1 52 24 4 2 0 0 0 1
219 80D2356749ABC1EF 107 22 5 1 52 24 4 2 0 0 0 1
220 2014386759ABCDEF 115 20 5 1 64 15 6 2 0 0 0 1
221 4012356879ABCDEF 107 22 5 1 58 18 6 2 0 0 0 1
222 4012386759ABCDEF 107 22 5 1 58 18 6 2 0 0 0 1
223 F013256749ABCDE8 114 18 6 1 63 6 15 0 0 0 0 1
224 2013F56749ABCDE8 114 18 6 1 63 6 15 0 0 0 0 1
225 20138C6749AB5DEF 114 18 6 1 54 21 4 3 0 0 0 1
226 7012356849ABCDEF 114 18 6 1 54 21 4 3 0 0 0 1
227 801F256749ABCDE3 106 20 6 1 54 18 6 3 0 0 0 1
228 2018356749ABCDEF 114 18 6 1 69 6 9 3 0 0 0 1
229 4812356709ABCDEF 106 20 6 1 63 9 9 3 0 0 0 1
230 4018256739ABCDEF 113 16 7 1 62 9 8 4 0 0 0 1
231 8013256749ABCDEF 110 10 10 1 65 0 5 10 0 0 0 1
232 408235A7196BCDEF 94 32 2 1 66 23 1 0 1 0 0 1
233 4082356719ABEDCF 94 32 2 1 66 23 1 0 1 0 0 1
234 608235A7194BCDEF 109 26 3 1 66 23 1 0 1 0 0 1
235 6082354719ABCDEF 92 28 4 1 60 17 7 0 1 0 0 1
236 8012354769ABCDEF 92 28 4 1 60 17 7 0 1 0 0 1
237 201384C759AB6DEF 107 22 5 1 48 29 3 0 1 0 0 1
238 301285C749AB6DEF 107 22 5 1 48 29 3 0 1 0 0 1
239 3012C56749AB8DEF 107 22 5 1 54 23 5 0 1 0 0 1
240 4012358769ABCDEF 107 22 5 1 60 17 7 0 1 0 0 1
241 4082356719ABCDEF 105 18 7 1 58 11 9 2 1 0 0 1
242 8012356749ABCDEF 105 18 7 1 58 11 9 2 1 0 0 1
243 80A23547691BCDEF 62 40 2 1 48 33 0 0 0 1 0 1
244 8062351749ABCDEF 90 24 6 1 42 27 6 0 0 1 0 1
245 40132567E8A9CDBF 112 28 0 2 57 21 7 0 0 0 0 1
246 40132567D98BCAEF 96 32 0 2 51 21 9 0 0 0 0 1
247 40132567AC8B9DEF 112 28 0 2 50 30 2 1 0 0 0 1
248 30128B6749A5CDEF 96 32 0 2 44 30 4 1 0 0 0 1
249 104825A7396BCDEF 96 32 0 2 44 30 4 1 0 0 0 1
250 40123567E98BCDAF 96 32 0 2 44 30 4 1 0 0 0 1
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Table 5.7: Affine equivalence classes 251–300

Representative |c| = 1/4 1/2 3/4 1 p = 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1
251 40123567F98BCDEA 96 32 0 2 44 30 4 1 0 0 0 1
252 40132567AF9BCDE8 96 32 0 2 44 30 4 1 0 0 0 1
253 40123567C98BADEF 64 40 0 2 32 36 0 4 0 0 0 1
254 40123567D98BCAEF 64 40 0 2 32 36 0 4 0 0 0 1
255 40132567AD9BC8EF 64 40 0 2 32 36 0 4 0 0 0 1
256 60123547C9AB8DEF 64 40 0 2 32 36 0 4 0 0 0 1
257 60123547D9ABC8EF 64 40 0 2 32 36 0 4 0 0 0 1
258 6512304789ABCDEF 0 56 0 2 64 0 0 14 0 0 0 1
259 20138A67495BCDEF 110 24 2 2 45 21 11 0 0 0 0 1
260 20143567C9AB8DEF 110 24 2 2 50 18 10 1 0 0 0 1
261 40123567D9ABC8EF 94 28 2 2 40 24 8 2 0 0 0 1
262 40123567E9ABCD8F 94 28 2 2 40 24 8 2 0 0 0 1
263 40132567E8ABCD9F 94 28 2 2 40 24 8 2 0 0 0 1
264 40132567B8A9CDEF 110 24 2 2 48 24 4 3 0 0 0 1
265 40132567F9ABCDE8 108 20 4 2 44 12 16 1 0 0 0 1
266 20135467E9ABCD8F 92 24 4 2 28 30 4 5 0 0 0 1
267 40123567C9AB8DEF 92 24 4 2 28 30 4 5 0 0 0 1
268 40123567F9ABCDE8 92 24 4 2 28 30 4 5 0 0 0 1
269 10462537A98BCDEF 96 32 0 2 48 29 3 0 1 0 0 1
270 40132567D89BCAEF 96 32 0 2 48 29 3 0 1 0 0 1
271 30128A67495BCDEF 110 24 2 2 36 35 3 0 1 0 0 1
272 40132567A98BCDEF 92 24 4 2 40 17 11 2 1 0 0 1
273 2013846759ABCDEF 92 24 4 2 40 17 11 2 1 0 0 1
274 1048256739ABCDEF 106 16 6 2 32 23 7 4 1 0 0 1
275 2013856749ABCDEF 104 12 8 2 42 11 5 9 1 0 0 1
276 4612350789ABCDEF 108 20 4 2 58 16 0 5 2 0 0 1
277 4016253789ABCDEF 92 24 4 2 46 22 0 5 2 0 0 1
278 4013256798ABCDEF 90 20 6 2 42 9 15 0 3 0 0 1
279 1046253789ABCDEF 104 12 8 2 24 32 0 3 4 0 0 1
280 2014356789ABCDEF 104 12 8 2 48 8 8 3 4 0 0 1
281 4013256789ABCDEF 100 4 12 2 54 0 0 9 6 0 0 1
282 40123567A98BCDEF 62 36 2 2 36 21 12 0 0 1 0 1
283 40132567A89BCDEF 62 36 2 2 36 21 12 0 0 1 0 1
284 6012354789ABCDEF 60 32 4 2 32 27 0 7 0 1 0 1
285 3012856749ABCDEF 90 20 6 2 24 27 8 3 0 1 0 1
286 4012356789ABCDEF 88 16 8 2 38 13 8 4 2 1 0 1
287 10432567F9ABCDE8 96 24 0 4 24 6 24 3 0 0 0 1
288 20135467A98BCDEF 64 32 0 4 0 36 0 12 0 0 0 1
289 2013746589ABCDEF 96 24 0 4 12 38 0 3 4 0 0 1
290 1043256789ABCDEF 88 8 8 4 12 20 0 9 4 2 0 1
291 2013546789ABCDEF 60 24 4 4 16 9 16 5 0 3 0 1
292 2013456789ABCDEF 84 0 12 4 36 3 0 0 12 3 0 1
293 80A23517496BCDEF 56 28 8 1 0 56 0 0 0 0 0 2
294 40132567C89BADEF 0 56 0 2 0 56 0 0 0 0 0 2
295 40623517A98BCDEF 0 56 0 2 0 56 0 0 0 0 0 2
296 4062351789ABCDEF 56 24 8 2 0 44 0 6 0 0 0 2
297 2013645789ABCDEF 0 48 0 4 0 32 0 12 0 0 0 2
298 3012654789ABCDEF 0 48 0 4 0 32 0 12 0 0 0 2
299 3012456789ABCDEF 56 16 8 4 0 26 0 12 0 2 0 2
300 1023456789ABCDEF 56 0 8 8 0 14 0 0 0 14 0 2
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Table 5.8: Affine equivalence classes 301–302

Representative |c| = 1/4 1/2 3/4 1 p = 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1
301 1032456789ABCDEF 0 32 0 8 0 0 0 24 0 0 0 4
302 0123456789ABCDEF 0 0 0 16 0 0 0 0 0 0 0 16

Figure 5.6: Affine equivalence classes for n = 4, connected by transpositions
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5.5 Extensions

In this section, we briefly discuss a number of possible extensions of the linear
and affine equivalence algorithms presented in the previous sections.

5.5.1 Self-Equivalent S-boxes

The original intention of the affine equivalence algorithm was to discover
equivalence relations between different S-boxes, but nothing prevents us from
running the algorithm for a single S-box S. In this case, the algorithm will re-
turn affine mappings Aa and Ba such that B

−1
a ◦ S ◦ Aa = S. The number

of different solutions for this equation (denoted by s ≥ 1) can be seen as a
measure for the symmetry of the S-box. We call S-boxes that have at least one
non-trivial solution (s > 1) self-equivalent S-boxes. We will see some exam-
ples in Sect. 5.6.

5.5.2 Equivalence of Non-invertible S-boxes

So far, we only considered equivalences between invertible n× n-bit S-boxes,
but similar equivalence relations exist for (non-invertible) n to m-bit S-boxes
with m < n. This leads to a natural extension of our equivalence problem:
find an n×n-bit affine mapping Aa and anm×m-bit affine mapping Ba such
that S1 = B−1

a ◦ S2 ◦Aa for two given n×m-bit S-boxes S1 and S2.
The main problem when trying to apply the algorithms described above

in this new situation, is that the procedure ‘check-NB’ explicitly relies on the
fact that the S-boxes are invertible. In cases where the difference n −m is not
too large, slightly adapted versions of the algorithms still appear to be very
useful, however.
The difference between the extended and the original algorithm resides in

the way information about Aa is gathered. In the original algorithm, each iter-
ation yields a number of additional distinct points which can directly be used
to complete the affine mapping Aa. This time, the S-boxes are not uniquely
invertible and the information obtained after each iteration will consist of two
unordered sets of about 2n−m values which are known to be mapped onto
each other. In order to continue, the algorithm first needs to determine which
are the corresponding values in both sets. This can be done exhaustively if
2n−m is not too large, say less than 8. Once the order has been guessed, 2n−m

points are obtained. Since slightly more than n points should suffice to reject
a candidate for the representative, one would expect that the total complexity
is in the order:

2n ·
(
2n−m!

)n/2n−m

. (5.1)

In order to test the extended algorithm, we can apply it to the eight 6 ×
4-bit S-boxes of DES. The algorithm shows that no affine equivalences exist
between any pair of S-boxes, with the single exception of S4 with itself. The
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equivalence relation is found to be B−1S4(A · x ⊕ a) ⊕ b = S4(x) with A = I
and B a simple bit permutation [4, 3, 2, 1], a = 1011112 and b = 01102. Note
that this specific property of S4 was already discovered by Hellman et al. [52]
by looking at patterns in the lookup table.

5.5.3 Almost Affine Equivalent S-boxes

Another interesting problem related to equivalence is the problem of detecting
whether two S-boxes are almost equivalent. The S-boxes S1 and S2 are called
almost equivalent if there exist two affine mappings Aa and Ba such that S1

and B−1
a ◦ S2 ◦ Aa are equal, except in a few points (e.g., two values in the

lookup table are swapped, or some fixed fraction of the entries aremisplaced).
A solution to this problem in the case of linear equivalence can be found

by observing that the linear equivalence algorithm of Sect. 5.2 requires only
about O(n) S-box queries to uniquely determine the mappings A and B that
correspondwith a particular guess. Once the mappings have been discovered,
all that is left to do is to check the consistency for all other points. In order
to detect “almost” equivalence, we may tolerate inconsistencies for a given
fraction f of the remaining points. The algorithm should make sure, however,
that no inconsistent points are used during the construction of the mappings.
If the fraction of inconsistent points is small, it is sufficient to run the algorithm
aboutO((1−f)−n) times, each time picking different values x /∈ CA, and select
the mappings with the minimal number of inconsistencies. For example for
n = 8, and a fraction f = 0.2 of inconsistencies, one will need to iterate the
algorithm about 10 times. Note that the birthday algorithm of Sect. 5.3.3 can
be adapted in a similar way.

5.6 Equivalent Descriptions of Various Ciphers

In the last section of this chapter, we apply our equivalence tools to various
block ciphers, and show how this can be used to find equivalent descriptions.

5.6.1 Rijndael

When we feed the 8× 8-bit S-box S used in RIJNDAEL [28] to the affine equiv-
alence tool, it will reveal as many as 2040 different self-equivalence relations
(see Table 5.9). Although this number might seem surprisingly high at first,
we will show that it can easily be explained from the special algebraic struc-
ture of the S-box of RIJNDAEL.
In order to avoid the confusion of working inGF (28) andGF (2)8 simulta-

neously, we first introduce the notation [a], which denotes the 8× 8-bit matrix
corresponding to a multiplication by a in GF (28). Similarly, we denote by Q
the 8 × 8-bit matrix which performs the squaring2 operation in GF (28). Con-

2This is possible since squaring in GF (28) is a linear operation inGF (2)8 (see also [6]).
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Table 5.9: RIJNDAEL, CAMELLIA, MISTY, and Kasumi

Cipher Members s
RIJNDAEL/CAMELLIA S, S−1 2040 = 8× 255
MISTY/KASUMI S7 889 = 7× 127

S9 4599 = 9× 511

sidering the fact that the RIJNDAEL S-box is defined as S(x) = A(x−1) with
A a fixed affine mapping (not to be confused with Aa), we can now derive
a general expression for all pairs of affine mappings Aa and Ba that satisfy
B−1

a ◦ S ◦Aa = S:

Aa(x) = [a] ·Qi · x ,
B−1

a (x) = A
(
Q−i · [a] · A−1(x)

)
,

with 0 ≤ i < 8 and a ∈ GF (28) \ {0}. Since i takes on 8 different values3 and
there are 255 different choices for a, we obtain exactly 2040 different solutions,
which confirms the output of the AE algorithm.

The existence of these affine self-equivalences in RIJNDAEL implies that
we can insert an additional affine layer before and after the S-boxes with-
out affecting the cipher. Moreover, since the mixing layer of RIJNDAEL only
consists of additions and multiplications with constants in GF (28), and since

[a] ·Qi · [c] = [c2
i

] · [a] ·Qi, we can easily push the input mapping Aa through
the mixing layer. This allows us to combine Aa with the output mapping of
a previous layer of S-boxes, with the plaintext, the round constants or with
the key. The resulting ciphers are generalizations4 of the eight “squares” of
RIJNDAEL, obtained in a somewhat different way by Barkan and Biham [6].
By modifying the field polynomial used in these 2040 ciphers, one should be
able to expand the set of 240 dual ciphers in The Book of Rijndaels [7] to a set of
61 200 ciphers.
Note that these ideas also apply to a large extent to other ciphers that use

S-boxes based on power functions. These include CAMELLIA, MISTY and KA-
SUMI (see Table 5.9), whose S-boxes S7 and S9 are both designed to be affine
equivalent to a power function over GF (27) and GF (29) respectively.

5.6.2 Other SPN Ciphers

All affine equivalences in the RIJNDAEL S-box are directly related to its simple
algebraic structure, but using our general AE tool, we can also build equiva-
lent representations for S-boxes that are harder to analyze algebraically. Two
examples are SERPENT [2] and KHAZAD [8].

3One can easily check thatQ8 = I and thusQ−i = Q8−i.
4For a = 1we obtain the 8 square ciphers constructed in [6].
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Table 5.10: SERPENT and KHAZAD

Cipher Members s Class

SERPENT S0, S
−1
1 4 13

S−1
0 , S1 4 16
S2, S

−1
2 , S6, S

−1
6 4 14

S3, S
−1
3 , S7, S

−1
7 1 9

S4, S5 1 10
S−1

4 , S
−1
5 1 11

KHAZAD P , P−1, Q, Q−1 4 4

An interesting property that is revealed by the AE algorithm is that the set
of eight S-boxes used in SERPENT (see Table 5.10) contains three pairs of equiv-
alent S-boxes ({S2, S6}, {S3, S7}, {S4, S5}) and one pair of inversely equivalent
S-boxes ({S0, S

−1
1 }). Moreover, four of the S-boxes are self-equivalent. This al-

lows to apply specific modifications to the mixing layer and to change the
order in which the S-boxes are used, and this without affecting the output
of the cipher. Notice also that the two inversely equivalent S-boxes (S0 and
S1) are used in consecutive rounds. The mixing layer probably prevents this
property from being exploited, however.
In the case of KHAZAD, both 4 × 4-bit S-boxes P and Q are found to be

self- and mutually equivalent. This implies that the complete cipher can be
described using affine mappings and a single non-linear 4 × 4-bit lookup ta-
ble. Note that this is not necessarily as bad as it sounds: each cipher can be
described with affine mappings and a single non-linear 2× 1-bit AND.

5.7 Conclusions

In this chapter, we have developed efficient algorithms for detecting the linear
and affine equivalence of bijective S-boxes, and have used them to completely
classify the set of all 4 × 4-bit S-boxes. We have studied extensions of these
algorithms for the case of non-bijective S-boxes with small input/output de-
ficiency, and for detecting almost equivalence between S-boxes. Finally, we
have described equivalences found in the S-boxes of a number of popular ci-
phers: RIJNDAEL, DES, CAMELLIA, MISTY, KASUMI, KHAZAD, and SERPENT.

Chapter 6

Stream Cipher Design

In the previous chapter, we have discussed tools to study the non-linear com-
ponents of encryption schemes. In this chapter we will highlight the impor-
tance of linear components for the diffusion of this non-linearity. To illustrate
this, we will propose a stream cipher with very few non-linear components,
whose security completely relies on the efficient diffusion achieved by its lin-
ear structure.

6.1 Background

In the last few years, widely used stream ciphers have started to be systemat-
ically replaced by block ciphers. An example is the A5/1 stream cipher used
in the GSM standard. Its successor, A5/3, is a block cipher. A similar shift
took place with wireless network standards. The security mechanism speci-
fied in the original IEEE 802.11 standard (called ‘wired equivalent privacy’ or
WEP) was based on the stream cipher RC4; the newest standard, IEEE 802.11i,
makes use of the block cipher AES.
The declining popularity of stream ciphers can be explained by different

factors. The first is the fact that the security of block ciphers seems to be better
understood. Over the last decades, cryptographers have developed a rather
clear vision of what the internal structure of a secure block cipher should look
like. This is much less the case for stream ciphers. Stream ciphers proposed
in the past have been based on very different principles, and many of them
have shown weaknesses. A second explanation is that efficiency, which has
been the traditional motivation for choosing a stream cipher over a block ci-
pher, has ceased to be a decisive factor in many applications: not only is the
cost of computing power rapidly decreasing, today’s block ciphers are also
significantly more efficient than their predecessors.
Still, as pointed out by the eSTREAM Stream Cipher Project, it seems that

stream ciphers could continue to play an important role in those applications

99
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where high througput remains critical and/or where resources are very re-
stricted. This poses two challenges for the cryptographic community: first,
restoring the confidence in stream ciphers, e.g., by developing simple and re-
liable design criteria; secondly, increasing the efficiency advantage of stream
ciphers compared to block ciphers.
In this chapter, we try to explore both problems. The first part of this

chapter reviews some concepts which lie at the base of today’s block ciphers
(Sect. 6.3), and studies how these could bemapped to stream ciphers (Sects. 6.4–
6.5). The design criteria derived this way are then used as a guideline to con-
struct a simple and flexible hardware-oriented stream cipher in the second
part (Sect. 6.6).

6.2 Security and Efficiency Considerations

Before devising a design strategy for a stream cipher, it is useful to first clearly
specify what we expect from it. Our aim in this chapter is to design hardware-
oriented binary additive stream ciphers which are both efficient and secure.
The following sections briefly discuss what this implies.

6.2.1 Security

The additive stream cipher which we intend to construct takes as input a k-bit
secret key K and a v-bit IV. The cipher is then requested to generate up to 2d

bits of key stream zt = SK(IV, t), 0 ≤ t < 2d, and a bitwise exclusive OR of
this key streamwith the plaintext produces the ciphertext. The security of this
additive stream cipher is determined by the extent to which it mimics a one-
time pad, i.e., it should be hard for an adversary, who does not know the key,
to distinguish the key stream generated by the cipher from a truly random
sequence. In fact, as discussed in Sect. 2.2.4, we would like this to be as hard
as we can possibly ask from a cipher with given parameters k, v, and d. This
leads to a criterion calledK-security [26], which can be formulated as follows:

Definition 6.1. An additive stream cipher is called K-secure if any attack
against this scheme would not have been significantly more difficult if the ci-
pher had been replaced by a set of 2k functions SK : {0, 1}v×{0, . . . , 2d−1} →
{0, 1}, uniformly selected from the set of all possible functions.

The definition assumes that the adversary has access to arbitrary amounts
of key stream, that he knows or can choose the a priory distribution of the
secret key, that he can impose relations between different secret keys, etc.
Attacks against stream ciphers can be classified into two categories, de-

pending on what they intend to achieve:

• Key recovery attacks, which try to deduce information about the secret key
by observing the key stream.
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• Distinguishing attacks, the goal of which is merely to detect that the key
stream bits are not completely unpredictable.

Owing to their weaker objective, distinguishing attacks are often much
easier to apply, and consequently harder to protect against. Features of the
key stream that can be exploited by such attacks include periodicity, depen-
dencies between bits at different positions, non-uniformity of distributions of
bits or words, etc. In this chapter we will focus in particular on linear corre-
lations, as it appeared to be the weakest aspect in a number of recent stream
cipher proposals such as SOBER-tw [49] and SNOW 1.0 [38]. Our first design
objective will be to keep the largest correlations below safe bounds. Other
important properties, such as a sufficiently long period, are only considered
afterwards. Note that this approach differs from the way LFSR or T-function
based schemes are constructed. The latter are typically designed by maximiz-
ing the period first, and only then imposing additional requirements.

6.2.2 Efficiency

In order for a stream cipher to be an attractive alternative to block ciphers, it
must be efficient. In this chapter, we will be targeting hardware applications,
and a good measure for the efficiency of a stream cipher in this environment
is the number of key stream bits generated per cycle per gate.

There are two ways to obtain an efficient scheme according to this mea-
sure. The first approach is illustrated by A5/1, and consists in minimizing
the number of gates. A5/1 is extremely compact in hardware, but it cannot
generate more than one bit per cycle. The other approach, which was cho-
sen by the designers of PANAMA [27], is to dramatically increase the number
of bits per cycle. This allows to reduce the clock frequency (and potentially
also the power consumption) at the cost of an increased gate count. As a re-
sult, PANAMA is not suited for environments with very tight area constraints.
Similarly, designs such as A5/1 will not perform very well in systems which
require fast encryption at a low clock frequency. One of the objectives of this
chapter is to design a flexible scheme which performs reasonably well in both
situations.

6.3 How Block Ciphers are Designed

As explained above, the first requirement we impose on the construction is
that it generates key streams without exploitable linear correlations. This
problem is very similar to the one faced by block cipher designers. Hence,
it is natural to attempt to borrow some of the techniques used in the block
cipher world. The ideas relevant to stream ciphers are briefly recapitulated in
the following sections.
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Figure 6.1: Three layers of a block cipher

6.3.1 Block Ciphers and Linear Characteristics

An important problem in the case of block ciphers is that of restricting linear
correlations between input and output bits in order to thwart linear cryptanal-
ysis (see Chaps. 3 and 4). More precisely, let P be any plaintext block and C
the corresponding ciphertext under a fixed secret key, then any linear combi-
nation of bits

ΓT

P · P + ΓT

C · C ,

where the column vectors ΓP and ΓC are called linear masks, should be as
balanced as possible. That is, the correlation (or imbalance)

c = 2 · |{P | Γ
T

P · P = ΓT

C · C}|
|{P}| − 1

has to be close to 0 for any ΓP and ΓC . As explained earlier in this thesis, the
well-established way to achieve this consists in alternating two operations.
The first splits blocks into smaller words which are independently fed into
nonlinear substitution boxes (S-boxes); the second step recombines the out-
puts of the S-boxes in a linear way in order to ‘diffuse’ the nonlinearity. The re-
sult, called a substitution-permutation network in Sect. 2.1.4, is depicted again
in Fig. 6.1.

In order to estimate the strength of a block cipher against linear cryptanal-
ysis, one will typically compute bounds on the correlation of linear character-
istics. A linear characteristic describes a possible path over which a correlation
might propagate through the block cipher. It is a chain of linear masks, start-
ing with a plaintext mask and ending with a ciphertext mask, such that every
two successive masks correspond to a nonzero correlation between consecu-
tive intermediate values in the cipher. The total correlation of the character-
istic is then estimated by multiplying the correlations of all separate steps (as
dictated by the Piling-up Lemma of Sect. 3.3.3).
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6.3.2 Branch Number

Linear diffusion layers, which can be represented by a matrix multiplication
Y = M · X , do not by themselves contribute in reducing the correlation of a
characteristic. Clearly, it suffices to choose ΓX = MT · ΓY , whereM

T denotes
the transpose ofM , in order to obtain perfectly correlating linear combinations
of X and Y :

ΓT

Y · Y = ΓT

Y ·MX = (MTΓY )T ·X = ΓT

X ·X .

However, diffusion layers play an important indirect role by forcing character-
istics to take into account a large number of nonlinear S-boxes in the neighbor-
ing layers (called active S-boxes). A useful metric in this context is the branch
number ofM .

Definition 6.2. The branch number of a linear transformationM is defined as

B = min
ΓY 6=0

[wh(ΓY ) + wh(MTΓY )] ,

where wh(Γ) represents the number of nonzero words in the linear mask Γ.

The definition above implies that any linear characteristic traversing the
structure shown in Fig. 6.1 activates at least B S-boxes. The total number of
active S-boxes throughout the cipher multiplied by the maximal correlation
over a single S-box gives an upper bound for the correlation of the character-
istic.
The straightforward way to minimize this upper bound is to maximize the

branch number B. It is easy to see that B cannot exceed m + 1, with m the
number of words per block. MatricesM that satisfy this bound (known as the
Singleton bound) can be derived from the generator matrices of maximum
distance separable (MDS) block codes.
Large MDS matrices are expensive to implement, though. Therefore, it

is often more efficient to use smaller matrices, with a relatively low branch
number, and to connect them in such a way that linear patterns with a small
number of active S-boxes cannot be chained together to cover the complete
cipher. This was the approach taken by the designers of RIJNDAEL [28].

6.4 From Blocks to Streams

In this section, we try to adapt the concepts described above to a systemwhere
the data is not processed in blocks, but rather as a stream.
Since the data stream enters the system one word at a time, each layer of

S-boxes in Fig. 6.1 can be replaced by a single S-box which substitutes individ-
ual words as they arrive. A general mth-order linear filter can take over the
task of the diffusion matrix. The new system is represented in Fig. 6.2, where
D denotes the delay operator (usually written as z−1 in signal processing lit-
erature), and f and g are linear functions.
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Figure 6.2: Stream equivalent of Fig. 6.1
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Figure 6.3: A 4th-order linear filter

6.4.1 Polynomial Notation

Before analyzing the properties of this construction, we introduce some nota-
tions. First, we adopt the common convention to represent streams of words
x0, x1, x2, . . . as polynomials with coefficients in the finite field:

x(D) = x0 + x1D + x2D
2 + . . . .

The rationale for this representation is that it simplifies the expression for the
input/output relation of the linear filter, as shown in the following equation:

y(D) =
f(D)

g(D)
·
[
x(D) + x0(D)

]
+ y0(D) . (6.1)

The polynomials f and g describe the feedforward and feedback connections
of the filter. They can be written as

f(D) = Dm ·
(
fmD

−m + · · ·+ f1D
−1 + 1

)
,

g(D) = 1 + g1D + g2D
2 + · · ·+ gmD

m .

The Laurent polynomials x0 and y0 represent the influence of the initial state
s0, and are given by x0 = D−m·

(
s0 · g mod Dm

)
and y0 = D−m·

(
s0 · f mod Dm

)
.

Example 6.1. The 4th-order linear filter depicted in Fig. 6.3 is specified by the
polynomials f(D) = D4 · (D−2 +1) and g(D) = 1+D3 +D4. Suppose that the
delay elements are initialized as shown in the figure, i.e., s0(D) = D. Knowing
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s0, we can compute x0(D) = D−3 and y0(D) = D−1. Finally, using (6.1), we
find the output stream corresponding to an input consisting, for example, of a
single 1 followed by 0’s (i.e., x(D) = 1):

y(D) =
D−1 +D +D2 +D4

1 +D3 +D4
+D−1

= D +D3 +D5 +D6 +D7 +D8 +D12 +D15 +D16 +D18 + . . .

6.4.2 Linear Correlations

In order to study correlations in a stream-oriented system we need a suitable
way to manipulate linear combinations of bits in a stream. It will prove con-
venient to represent them as follows:

Tr
[
[γx(D−1) · x(D)]0

]
.

The operator [·]0 returns the constant term of a polynomial, and Tr(·) denotes
the trace to GF(2).1 The coefficients of γx, called selection polynomial, specify
which words of x are involved in the linear combination. In order to simplify
expressions later on we also introduce the notation γ∗(D) = γ(D−1). The
polynomial γ∗ is called the reciprocal polynomial of γ.
As before, the correlation between x and y for a given pair of selection

polynomials is defined as

c = 2 ·
|{(x, s0) | Tr[[γ∗x · x]0] = Tr[[γ∗y · y]0]}|

|{(x, s0)}| − 1 ,

where deg x ≤ max(deg γx, deg γy).

6.4.3 Propagation of Selection Polynomials

Let us now analyze how correlations propagate through the linear filter. For
each selection polynomial γx at the input, we would like to determine a poly-
nomial γy at the output (if it exists) such that the corresponding linear combi-
nations are perfectly correlated, i.e.,

Tr[[γ∗x · x]0] = Tr[[γ∗y · y]0], ∀x, s0 .

If this equation is satisfied, then this will still be the case after replacing x by
x′ = x + x0 and y by y′ = y + y0, since x0 and y0 only consist of negative
powers, none of which can be selected by γx or γy . Substituting (6.1), we find

Tr[[γ∗x · x′]0] = Tr[[γ∗y · f/g · x′]0], ∀x, s0 ,

1The trace fromGF (2n) to GF (2) is defined as Tr(a) = a + a2 + a4 + · · · + a2
n−1
.
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which implies that γ∗x = γ∗y · f/g. In order to get rid of negative powers, we
define f⋆ = Dm · f∗ and g⋆ = Dm · g∗ (note the subtle difference between both
stars), and obtain the equivalent relation

γy = g⋆/f⋆ · γx . (6.2)

Note that neither of the selection polynomials γx and γy can have an infi-
nite number of nonzero coefficients (if it were the case, the linear combinations
would be undefined). Hence, they have to be of the form

γx = q · f⋆/ gcd(f⋆, g⋆) and γy = q · g⋆/ gcd(f⋆, g⋆) , (6.3)

with q(D) an arbitrary polynomial.

Example 6.2. For the linear filter in Fig. 6.3, we have that f⋆(D) = 1 + D2

and g⋆(D) = D4 · (D−4 + D−3 + 1). In this case, f⋆ and g⋆ are coprime, i.e.,
gcd(f⋆, g⋆) = 1. If we arbitrarily choose q(D) = 1 + D, we obtain a pair of
selection polynomials

γx(D) = 1 +D +D2 +D3 and γy(D) = 1 +D2 +D4 +D5 .

By construction, the corresponding linear combinations of input and output
bits satisfy the relation

Tr(x0 + x1 + x2 + x3) = Tr(y0 + y2 + y4 + y5), ∀x, s0 .

6.4.4 Branch Number

The purpose of the linear filter, just as the diffusion layer of a block cipher,
will be to force linear characteristics to pass through as many active S-boxes
as possible. Hence, it makes sense to define a branch number here as well.

Definition 6.3. The branch number of a linear filter specified by the polyno-
mials f and g is defined as

B = min
γx 6=0

[wh(γx) + wh(g⋆/f⋆ · γx)]

= min
q 6=0

[wh(q · f⋆/ gcd(f⋆, g⋆)) + wh(q · g⋆/ gcd(f⋆, g⋆))] ,

where wh(γ) represents the number of nonzero coefficients in the selection
polynomial γ.

From this definition we immediately obtain the following upper bound on
the branch number

B ≤ wh(f
⋆) + wh(g⋆) ≤ 2 · (m+ 1) . (6.4)
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Filters for which this bound is attained can be derived from MDS convolu-
tional (2, 1,m)-codes [98]. For example, one can verify that the 4th-order linear
filter over GF(28) with

f(D) = D4 ·
(
02xD

−4 +D−3 +D−2 + 02xD
−1 + 1

)
,

g(D) = 1 + 03xD + 03xD
2 +D3 +D4 ,

has a branch number of 10. The example uses the same field polynomial as
RIJNDAEL, i.e., x8 + x4 + x3 + x + 1. Note that in the next sections, we will
not try to maximize the branch number, but use much sparser linear filters
instead.

6.5 Constructing a Key Stream Generator

In the previous section, we introduced S-boxes and linear filters as building
blocks, and presented some tools to analyze how they interact. Our next task
is to determine how these components can be combined into a key stream
generator. Again, block ciphers will serve as a source of inspiration.

6.5.1 Basic Construction

A well-known way to construct a key stream generator from a block cipher is
to use the cipher in output feedback (OFB) mode. As explained in Sect. 2.1.5,
this mode of operation takes as input an initial data block (called initial value
or IV), passes it through the block cipher, and feeds the result back to the
input. This process is iterated and the consecutive values of the data block are
used as key stream. We recall that the block cipher itself typically consists of a
sequence of rounds, each comprising a layer of S-boxes and a linear diffusion
transformation.

By taking the very same approach, but this time using the stream cipher
components presented in Sect. 6.4, we obtain a construction which, in its sim-
plest form, might look like Fig. 6.4(a). The figure represents a key stream
generator consisting of two ‘rounds’, where each round consists of an S-box
followed by a very simple linear filter. Data words traverse the structure in
clockwise direction, and the output of the second round, which also serves as
key stream, is fed back to the input of the first round.

While the scheme proposed above has some interesting structural similar-
ities with a block cipher in OFB mode, there are important differences as well.
The most fundamental difference comes from the fact that linear filters, as op-
posed to diffusion matrices, have an internal state. Hence if the algorithm
manages to keep this state (or at least parts of it) secret, then this eliminates
the need for a separate key addition layer (another important block cipher
component, which we have tacitly ignored so far).
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Figure 6.4: Two-round key stream generators

6.5.2 Analysis of Linear Characteristics

As stated before, the primary goal in this chapter is to construct a scheme
which generates a stream of seemingly uncorrelated bits. More specifically,
we would like the adversary to be unable to detect any correlation between
linear combinations of bits at different positions in the key stream. In the
following sections, we will see that the study of linear characteristics provides
some guidance on how to design the components of our scheme in order to
reduce the magnitude of these correlations.

Applying the tools from Sect. 6.4 to the construction in Fig. 6.4(a), we can
easily derive some results on the existence of low-weight linear characteris-
tics. The term ‘low-weight’ in this context refers to a small number of active
S-boxes. Since we are interested in correlations which can be detected by an
adversary, we need both ends of the characteristic to be accessible from the
key stream. In order to construct such characteristics, we start with a selec-
tion polynomial γu at the input of the first round, and analyze how it might
propagate through the cipher.

First, the characteristic needs to cross an S-box. The S-box preserves the
positions of the non-zero coefficients of γu, but might modify their values. For
now, however, let us only consider characteristics for which the values are
preserved as well. Under this assumption and using (6.2), we can compute
the selection polynomials γv and γw at the input and the output of the second
round:

γv = g⋆
1/f

⋆
1 · γu and γw = g⋆

2/f
⋆
2 · γv .
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Since all three polynomials γu, γv, and γw need to be finite, we have that

γu = q · f⋆
1 f

⋆
2 /d , γv = q · g⋆

1f
⋆
2 /d , and γw = q · g⋆

1g
⋆
2/d ,

with d = gcd(f⋆
1 f

⋆
2 , g

⋆
1f

⋆
2 , g

⋆
1g

⋆
2) and q an arbitrary polynomial. Note that since

both γu and γw select bits from the key stream z, they can be combined into a
single polynomial γz = γu + γw.
The number of S-boxes activated by a characteristic of this form is given

by W = wh(γu) + wh(γv). The minimum number of active S-boxes over this
set of characteristics can be computed with the formula

Wmin = min
q 6=0

[wh(q · f⋆
1 f

⋆
2 /d) + wh(q · g⋆

1f
⋆
2 /d)] ,

from which we derive that

Wmin ≤ wh(f⋆
1 f

⋆
2 ) + wh(g⋆

1f
⋆
2 ) ≤ wh(f⋆

1 ) · wh(f⋆
2 ) + wh(g⋆

1) ·wh(f⋆
2 ) .

Applying this bound to the specific example of Fig. 6.4(a), where wh(f⋆
i ) =

wh(g⋆
i ) = 2, we conclude that there will always exist characteristics with at

most 8 active S-boxes, no matter where the taps of the linear filters are posi-
tioned.

6.5.3 An Improvement

We will now show that this bound can potentially be doubled by making the
small modification shown in Fig. 6.4(b). This time, each non-zero coefficient
in the selection polynomial at the output of the key stream generator needs to
propagate to both the upper and the lower part of the scheme. By construct-
ing linear characteristics in the same way as before, we obtain the following
selection polynomials:

γu = q · f
⋆
1 f

⋆
2 + f⋆

1 g
⋆
2

d
, γv = q · f

⋆
1 f

⋆
2 + g⋆

1f
⋆
2

d
, and γz = q · f

⋆
1 f

⋆
2 + g⋆

1g
⋆
2

d
,

with d = gcd(f⋆
1 f

⋆
2 + f⋆

1 g
⋆
2 , f

⋆
1 f

⋆
2 + g⋆

1f
⋆
2 , f

⋆
1 f

⋆
2 + g⋆

1g
⋆
2). The new upper bounds

on the minimum number of active S-boxes are given by

Wmin ≤ wh(f⋆
1 f

⋆
2 + f⋆

1 g
⋆
2) + wh(f

⋆
1 f

⋆
2 + g⋆

1f
⋆
2 )

≤ 2 · wh(f⋆
1 ) · wh(f⋆

2 ) + wh(f⋆
1 ) ·wh(g⋆

2) + wh(g⋆
1) ·wh(f⋆

2 ) ,

or, in the case of Fig. 6.4(b),Wmin ≤ 16. In general, if we consider extensions
of this scheme with r rounds and wh(f⋆

i ) = wh(g
⋆
i ) = w, then the bound takes

the form:
Wmin ≤ r2 · wr . (6.5)

This result suggests that it might not be necessary to use a large number of
rounds, or complicated linear filters, to ensure that the number of active S-
boxes in all characteristics is sufficiently large. For example, if we take w = 2
as before, but add one more round, the bound jumps to 72.
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Of course, since the bound we just derived is an upper bound, the mini-
mal number of active S-boxes might as well be much smaller. First, some of
the product terms in f⋆

1 f
⋆
2 + f⋆

1 g
⋆
2 or f

⋆
1 f

⋆
2 + g⋆

1f
⋆
2 might cancel out, or there

might exist a q 6= d for which wh(γu) + wh(γv) suddenly drops. These cases
are rather easy to detect, though, and can be avoided during the design. A
more important problem is that, by fixing the behavior of S-boxes, we have
limited ourselves to a special set of characteristics, which might not necessar-
ily include the one with the minimal number of active S-boxes. However, if
the feedback and feedforward functions are sparse, and the linear filters suf-
ficiently large, then the bound is increasingly likely to be tight. On the other
hand, if the state of the generator is sufficiently small, then we can perform
an efficient search for the lowest-weight characteristic without making any
additional assumption.

This last approach allows to show, for example, that the smallest instance
of the scheme in Fig. 6.4(b) for which the bound of 16 is actually attained,
consists of two 11th-order linear filters with

f⋆
1 (D) = 1 +D10 , g⋆

1(D) = D11 · (D−3 + 1) ,

f⋆
2 (D) = 1 +D9 , g⋆

2(D) = D11 · (D−8 + 1) .

6.5.4 Linear Characteristics and Correlations

In the sections above, we have tried to increase the number of active S-boxes
of linear characteristics. We now briefly discuss how this number affects the
correlation of key stream bits. This problem is treated in several papers in the
context of block ciphers (see, e.g., [28]).

We start with the observation that the minimum number of active S-boxes
Wmin imposes a bound on the correlation cc of a linear characteristic:

c2c ≤ (c2s)
Wmin

,

where cs is the largest correlation (in absolute value) between the input and
the output values of the S-box. The squares c2c and c

2
s are often referred to

as linear probability, or also correlation potential. The inverse of this quantity is
a good measure for the amount of data that the attacker needs to observe in
order to detect a correlation.

What makes the analysis more complicated, however, is that many linear
characteristics can contribute to the correlation of the same combination of key
stream bits. This occurs in particular when the scheme operates on words, in
which case there are typically many possible choices for the coefficients of the
intermediate selection polynomials describing the characteristic (this effect is
called clustering). The different contributions add up or cancel out, depending
on the signs of cc. If we now assume that these signs are randomly distributed,
then we can use the approach of [28, Appendix B] to derive a bound on the
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expected correlation potential of the key stream bits:

E(c2) ≤ (c2s)
Wmin−n

. (6.6)

The parameter n in this inequality represents the number of degrees of free-
dom for choosing the coefficients of the intermediate selection polynomials.
For the characteristics propagating through the construction presented in

Sect. 6.5.3, one will find, in non-degenerate cases, that the values of n = r ·
(r − 1) · wr−1 non-zero coefficients can be chosen independently. Hence, for
example, if we construct a scheme with w = 2 and r = 3, and if we assume
that it attains the bound given in (6.5), then we expect the largest correlation
potential to be at most c2·48s . Note that this bound is orders of magnitude
higher than the contribution of a single characteristic, which has a correlation
potential of at most c2·72s .

Remark 6.1. In order to derive (6.6), we replaced the signs of the contributing
linear characteristics by random variables. This is a natural approach in the
case of block ciphers, where the signs depend on the value of the secret key. In
our case, however, the signs are fixed for a particular scheme, and hence they
might, for some special designs, take on very peculiar values. This happens
for example when r = 2, w is even, and all non-zero coefficients of fi and gi

equal 1 (as in the example at the end of the previous section). In this case, all
signs will be positive, and we obtain a significantly worse bound:

c2 ≤ (c2s)
Wmin−2·n

.

6.6 Trivium’s Design

We now present an experimental 80-bit key stream cipher based on the ap-
proach outlined above. In this section, we concentrate on the basic design
ideas behind the scheme. The complete specifications of the cipher, which was
submitted to the eSTREAM Stream Cipher Project under the name TRIVIUM,
can be found in Sect. 6.7.

6.6.1 A Bit-Oriented Design

The main idea of TRIVIUM’s design is to turn the general scheme of Sect. 6.5.3
into a bit-oriented stream cipher. The first motivation is that bit-oriented
schemes are typically more compact in hardware. A second reason is that,
by reducing the word-size to a single bit, we may hope to get rid of the clus-
tering phenomenon which, as seen in the previous section, has a significant
effect on the correlation.
Of course, if we simply apply the previous scheme to bits instead of words,

we run into the problem that the only two existing 1 × 1-bit S-boxes are both
linear. In order to solve this problem, we replace the S-boxes by a component
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Figure 6.5: How to design 1-bit S-boxes?

which, from the point of view of our correlation analysis, behaves in the same
way: an exclusive OR with an external stream of unrelated but biased random
bits (see Fig. 6.5). Assuming that these random bits equal 0 with probability
(1 + cs)/2, we will find as before that the output of this component correlates
with the input with correlation coefficient cs.
The introduction of this artificial 1× 1-bit S-box greatly simplifies the cor-

relation analysis, mainly because of the fact that the selection polynomial at
the output of an S-box is now uniquely determined by the input. As a conse-
quence, we neither need to make special assumptions about the values of the
non-zero coefficients, nor to consider the effect of clustering: the maximum
correlation in the key stream is simply given by the relation

cmax = cWmin
s . (6.7)

The obvious drawback, however, is that the construction now relies on exter-
nal streams of random bits, which have to be generated somehow. TRIVIUM
attempts to solve this problem by interleaving three identical key stream gen-
erators, where each generator obtains streams of biased bits (with cs = 1/2)
by ANDing together state bits of the two other generators.

6.6.2 Specifying the Parameters

Let us now specify suitable parameters for each of those three identical ‘sub-
generators’. Our goal is to keep all parameters as small and simple as possible,
given a number of requirements.
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1. The first requirementwe impose is that the correlations in the key stream
do not exceed 2−40. Since each sub-generator will be fed with streams of
bits having correlation coefficient cs = 1/2, we can derive from (6.7) that
a minimum weightWmin of at least 40 is needed. The smallest values of
w and r for which this requirement could be satisfied (with a fairly large
margin, in fact) are w = 2 and r = 3.

2. Now that w and r are fixed, we raise our requirements and impose that
the minimum weight actually reaches the upper bound of (6.5). In this
case, this translates to the condition Wmin = 72, which is fulfilled if
wh(γu) + wh(γv) + wh(γw) ≥ 72 for all q 6= 0, where

γu = q · f
⋆
1 f

⋆
2 f

⋆
3 + f⋆

1 f
⋆
2 g

⋆
3 + f⋆

1 g
⋆
2g

⋆
3

d
, γv = . . . , etc.

3. Although the preceding sections have almost exclusively focused on lin-
ear correlations, other security properties such as periodicity remain im-
portant. Controlling the period of the scheme is difficult because of
the non-linear interaction between the sub-generators, but we can try
to decrease the probability of short cycles by maximizing the periods of
the individual sub-generators after turning off the streams feeding their
1×1-bit S-boxes. The connection polynomial of these (completely linear)
generators is given by f⋆

1 f
⋆
2 f

⋆
3 + g⋆

1g
⋆
2g

⋆
3 , and ideally, we would like this

polynomial to be primitive. Our choice of w prevents this, though: for
w = 2, the polynomial above is always divisible by (D + 1)3. Therefore,
we just require that the remaining factor is primitive, and rely on the ini-
tialization of the state bits to avoid the few short cycles corresponding
to the factor (D + 1)3 (see Sect. 6.8.2).

4. Finally, we also impose some efficiency requirements. The first is that
state bits of the sub-generators should not be used for at least 64/3 itera-
tions, once they have been modified. This will provide the final scheme
with the flexibility to generate up to 64 bits in parallel. Secondly, the
length of the sub-generators should be as short as possible and a multi-
ple of 32.

We can now exhaustively run over all possible polynomials f⋆
1 , . . . , g

⋆
3 in

order to find combinations for which all previous requirements are fulfilled
simultaneously. Surprisingly enough, it turns out that the solution is unique:

f⋆
1 (D) = 1 +D9 , g⋆

1(D) = D31 · (D−23 + 1) ,

f⋆
2 (D) = 1 +D5 , g⋆

2(D) = D28 · (D−26 + 1) ,

f⋆
3 (D) = 1 +D15 , g⋆

3(D) = D37 · (D−29 + 1) .

In order to construct the final cipher, we interleave three of these sub-generators
and interconnect them through AND-gates. Since the reasoning above does
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Figure 6.6: TRIVIUM

not suggest which state bits to use as inputs of the AND-gates, we simply
choose to minimize the length of the wires. The resulting scheme is shown in
Fig. 6.6. The 96 state bits s1, s4, s7, . . . , s286 belong to the first sub-generator,
s2, s5, s8, . . . , s287 to the second one, etc.

6.7 Specifications of Trivium

In this section, we give the complete specifications of TRIVIUM. The syn-
chronous stream cipher is designed to generate up to 264 bits of key stream
from an 80-bit secret key and an 80-bit initial value (IV). As for most stream ci-
phers, this process consists of two phases: first the internal state of the cipher
is initialized using the key and the IV, then the state is repeatedly updated and
used to generate key stream bits. We first describe this second phase.
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Table 6.1: Parameters of TRIVIUM

Parameters
Key size: 80 bit
IV size: 80 bit
Internal state: 288 bit

6.7.1 Key stream generation

The proposed design contains a 288-bit internal state denoted by (s1, . . . , s288).
The key stream generation consists of an iterative process which extracts the
values of 15 specific state bits and uses them both to update 3 bits of the state
and to compute 1 bit of key stream zi. The state bits are then rotated and the
process repeats itself until the requestedN ≤ 264 bits of key stream have been
generated. A complete description is given by the following simple pseudo-
code:

for i = 1 to N do
t1 ← s66 + s93
t2 ← s162 + s177
t3 ← s243 + s288

zi ← t1 + t2 + t3

t1 ← t1 + s91 · s92 + s171
t2 ← t2 + s175 · s176 + s264
t3 ← t3 + s286 · s287 + s69

(s1, s2, . . . , s93)← (t3, s1, . . . , s92)
(s94, s95, . . . , s177)← (t1, s94, . . . , s176)
(s178, s179, . . . , s288)← (t2, s178, . . . , s287)
end for

We remind the reader that here, as in the rest of this chapter, the ‘+’ and ‘·’
operations stand for addition and multiplication over GF(2) (i.e., XOR and
AND), respectively. A graphical representation of the key stream generation
process is given in Fig. 6.6.

6.7.2 Key and IV setup

The algorithm is initialized by loading an 80-bit key and an 80-bit IV into the
288-bit initial state, and setting all remaining bits to 0, except for s286, s287, and
s288. Then, the state is rotated over 4 full cycles, in the same way as explained
above, but without generating key stream bits. This is summarized in the
pseudo-code below:
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(s1, s2, . . . , s93)← (K80, . . . ,K1, 0, . . . , 0)
(s94, s95, . . . , s177)← (IV80, . . . , IV1, 0, . . . , 0)
(s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1)

for i = 1 to 4 · 288 do
t1 ← s66 + s91 · s92 + s93 + s171
t2 ← s162 + s175 · s176 + s177 + s264
t3 ← s243 + s286 · s287 + s288 + s69

(s1, s2, . . . , s93)← (t3, s1, . . . , s92)
(s94, s95, . . . , s177)← (t1, s94, . . . , s176)
(s178, s179, . . . , s288)← (t2, s178, . . . , s287)
end for

6.7.3 Alternative Description

Alternatively, TRIVIUM’s key stream generation algorithm can also be written
in the following recursive way, proposed by Bernstein [11]:

for i = 1 to N do
ai = ci−66 + ci−111 + ci−110 · ci−109 + an−69

bi = ai−66 + ai−93 + ai−92 · ai−91 + bn−78

ci = bi−69 + bi−84 + bi−83 · bi−82 + cn−87

zi = ci−66 + ci−111 + ai−66 + ai−93 + bi−69 + bi−84

end for

This notation is often more convenient when describing attacks against the
stream cipher.

6.8 Security

In this sectionwe briefly discuss some of the cryptographic properties of TRIV-
IUM. The security requirement we would like to meet is that any type of cryp-
tographic attack should not be significantly easier to apply to TRIVIUM than
to any other imaginable stream cipher with the same external parameters (i.e.,
any cipher capable of generating up to 264 bits of key stream from an 80-bit se-
cret key and an 80-bit IV). Unfortunately, this requirement is not easy to verify,
and the best we can do is to provide arguments why we believe that certain
common types of attacks are not likely to affect the security of the cipher. A
summary of the results discussed in the next sections is given in Table 6.2.

6.8.1 Correlations

When analyzing the security of a synchronous stream cipher, a cryptanalyst
will typically consider two different types of correlations The first type are
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correlations between linear combinations of key stream bits and internal state
bits, which can potentially lead to a complete recovery of the state. The second
type, exploited by distinguishing attacks, are correlations between the key
stream bits themselves.

Obviously, linear correlations between key stream bits and internal state
bits are easy to find, since zi is simply defined to be equal to s66 + s93 + s162 +
s177 + s243 + s288. However, as opposed to LFSR based ciphers, TRIVIUM’s
state evolves in a nonlinear way, and it is not clear how the attacker should
combine these equations in order to efficiently recover the state.

An easy way to find correlations of the second type is to follow linear char-
acteristics through the cipher and to approximate the outputs of all encoun-
tered AND gates by 0. However, as explained in the previous section, the
positions of the taps in TRIVIUM have been chosen in such a way that any
characteristic of this specific type is forced to approximate at least 72 AND
gate outputs. An example of a correlated linear combination of key stream
bits obtained this way is

z1 + z16 + z28 + z43 + z46 + z55 + z61 + z73

+ z88 + z124 + z133 + z142 + z202 + z211 + z220 + z289 .

If we assume that the correlation of this linear combination is completely ex-
plained by the specific characteristic we considered (i.e., the contributions of
other characteristics to the correlation of this linear combination can be ne-
glected), then it would have a correlation coefficient of 2−72. Detecting such a
correlation would require at least 2144 bits of key stream, which is well above
the security requirement.

Other more complicated types of linear characteristics with larger correla-
tions might exist in principle, but given the size of the state and the sparse-
ness of the feedback and feedforward functions, the linear combination given
above has a good chance to be optimal, and hence, it seems unlikely that the
correlations of other characteristics will exceed 2−40. The preliminary results
given by Maximov and Biryukov [80] seem to confirm this.

Table 6.2: Cryptanalytical results

Attack Time Data Reference
Linear distinguisher 2144 2144 Sect. 6.8.1
Guess-and-determine attack 2195 288 Sect. 6.8.3
Guess-and-determine attack 2135 288 [61]
Guess-and-determine attack 290 261 [80]
Solving system of equations 2164 288 [92]
Exhaustive key search 280 80
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6.8.2 Period

Because of the fact that the internal state of TRIVIUM evolves in a nonlinear
way, its period is hard to determine. Still, a number of observations can be
made. First, if the AND gates are omitted (resulting in a completely linear
scheme), one can show that any key/IV pair would generate a stream with a
period of at least 296−3 − 1. This has no immediate implications for TRIVIUM
itself, but it might be seen as an indication that the taps have been chosen
properly.
Secondly, TRIVIUM’s state is updated in a reversible way, and the initial-

ization of (s178, . . . , s288) prevents the state from cycling in less than 111 it-
erations. If we believe that TRIVIUM behaves as a random permutation after
a sufficient number of iterations, then all cycle lengths up to 2288 would be
equiprobable, and hence the probability for a given key/IV pair to cause a
cycle smaller than 280 would be 2−208.

6.8.3 Guess and Determine attacks

In each iteration of TRIVIUM, only a few bits of the state are used, despite the
general rule-of-thumb that sparse update functions should be avoided. As a
result, guess and determine attacks are certainly a concern. A straightforward
attack would guess (s25, . . . , s93), (s97, . . . , s177), and (s244, . . . , s288), 195 bits
in total, after which the rest of the bits can immediately be determined from
the key stream.
More sophisticated attacks can significantly reduce this number, though.

A first idea, proposed by Khazaei [61], is to guess ai−109, bi−91, and ci−82 for
i = 0, 2, . . . , 88 (we use here the alternative description of Sect. 6.7.3). Once
these 135 bits are fixed, it can easily be verified that each key stream bit ti
with 0 ≤ i ≤ 90 + 66 is reduced to a linear function in 288 − 135 unknowns.
By solving this linear system for all 2135 guesses, the attacker will eventually
recover the complete internal state.
A considerably improved guess-and-determine attack is presented byMax-

imov and Biryukov [80]. Instead of guessing one out of two bits of a, b, and c
over a certain interval, the authors propose to guess every third bit. In order
to get a solvable linear system, they additionally assume that all three AND
gates produce zero bits at every third step over a number of consecutive cy-
cles. This assumption is only fulfilled with a small probability, and the attack
will therefore have to be repeated for different positions in the stream. With
some additional tricks, and given about 261 bits of known key stream, the at-
tack complexity can be reduced to an estimated 290 key setups.

6.8.4 Algebraic attacks

TRIVIUM seems to be a particularly attractive target for algebraic attacks. The
complete scheme can easily be described with extremely sparse equations of
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low degree. However, its state does not evolve in a linear way, and hence the
efficient linearization techniques [25] used to solve the systems of equations
generated by LFSR based schemes will be hard to apply. Other techniques
might be applicable, though, and their efficiency in solving this particular sys-
tem of equations needs to be investigated.
Recently, some interesting research has been conducted on this topic by

several cryptanalysts. In [92], Raddum presents a new technique to solve sys-
tems of equations associated with TRIVIUM. His attack has a very high com-
plexity ofO(2164)when applied to the full cipher, but breaks BIVIUM-A, a key
stream generator similar to the one shown in Fig. 6.4(a), in a day. This same
variant is also analyzed by McDonald et al. [81], who show that its state can
be recovered in seconds using off-the-shelve satisfiability solvers. While these
experiments are useful to test new techniques, it is important to note that the
final remark of Sect. 6.5.2, combined with the use of 1-bit S-boxes, indeed im-
plies a fundamental weakness of two-round ciphers such as BIVIUM-A.
Finally, Fischer and Meier [41] analyze TRIVIUM in the context of algebraic

attacks based on augmented functions. They show that TRIVIUM’s augmented
function can easily be analyzed, and conclude that TRIVIUM seems to be resis-
tant against this particular type of algebraic attacks.

6.8.5 Resynchronization attacks

A last type of attacks are resynchronization attacks, in which the adversary
is allowed to manipulate the value of the IV, and tries to extract information
about the key by examining the corresponding key stream. TRIVIUM tries to
preclude this type of attacks by cycling the state a sufficient number of times
before producing any output. It can be shown that each state bit depends
on each key and IV bit in a nonlinear way after two full cycles (i.e., 2 · 288
iterations). We expect that two more cycles will suffice to protect the cipher
against resynchronization attacks. This seems to be confirmed by the analysis
of Turan and Kara [102].

6.9 Implementation Aspects

We conclude this chapter with a discussion of some implementation aspects
of TRIVIUM.

6.9.1 Hardware

As stated in Sect. 6.2.2, our aim was to design a cipher which is compact in
environments with restrictions on the gate count, power-efficient on platforms
with limited power resources, and fast in applications that require high-speed
encryption. In TRIVIUM, this flexibility is achieved by ensuring that state bits
are not used for at least 64 iterations after they have been modified. This
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Table 6.3: Gate counts of 1-bit to 64-bit hardware implementations

Components 1-bit 8-bit 16-bit 32-bit 64-bit
Flip-flops: 288 288 288 288 288
AND gates: 3 24 48 96 192
XOR gates: 11 88 176 352 704
Estimated NAND gates: 3488 3712 3968 4480 5504
NAND gates, 0.13µm CMOS [44] 2599 2801 3185 3787 4921

way, up to 64 iterations can be computed at once, provided that the 3 AND
gates and 11 XOR gates in the original scheme are duplicated a corresponding
number of times. This allows the clock frequency to be divided by a factor 64
without affecting the throughput.

Based on the figures stated in [70] (i.e., 12 NAND gates per Flip-flop, 2.5
gates per XOR, and 1.5 gates per AND), we can compute a first estimation
of the gate count for different degrees of parallelization. The actual results
found by Good and Benaissa [44] for 0.13µm Standard Cell CMOS show that
these estimations are rather pessimistic, however. Both figures are compared
in Table. 6.3.

The hardware efficiency of TRIVIUM has been independently evaluated by
several other research teams. Gürkaynak et al. [47] report a 64-bit implementa-
tion in 0.25µm 5-metal CMOS technology with a throughput per area ratio of
129Gbit/s ·mm2, three times higher than for any other eSTREAM candidate.
Gaj et al. [42] come to similar conclusions, and also note that TRIVIUM is per-
ceived to be the easiest eSTREAM candidate to implement amongst students
following an introductory course on VHDL at the George Mason University.
FPGA implementations of TRIVIUM are independently studied by Bulens et al.
[22], Good et al. [45], and Rogawski [97]. The general conclusion, here as well,
is that TRIVIUM offers a very good trade-off between throughput and area. Fi-
nally, Feldhofer [39] analyzes implementations of TRIVIUM for RFID tags, and
shows that the power consumption is reduced to one fourth compared to a
low-power AES implementation.

6.9.2 Software

Despite the fact that TRIVIUM does not target software applications, the cipher
is still reasonably efficient on a standard PC. The measured performance of
the reference C-code on a 1 700MHz Pentium M processor can be found in
Table 6.4.
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Table 6.4: Measured performance on an Intel® Pentium™M CPU 1700MHz

Operation
Stream generation: 5.3 cycles/byte
Key setup: 51 cycles
IV setup: 774 cycles

6.10 Conclusion

In this chapter we have presented a simple synchronous stream cipher called
TRIVIUM, which seems to be particularly well suited for application requiring
a flexible hardware implementation. The design is based on the study of the
propagation of linear characteristics, and shows that the effect of a few small
non-linear components can be amplified considerably by a carefully designed
linear structure. TRIVIUM is currently being evaluated in the framework of
the eSTREAM Stream Cipher Project. It is still in an experimental stage, and
further research will reveal whether it meets its security requirements or not.
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Chapter 7

Conclusions and Open
Problems

To conclude this thesis, we summarize its main contributions and suggest a
number of directions for further research.

7.1 Contributions of this Thesis

In this thesis, we have investigated different aspects of symmetric encryp-
tion algorithms. After a brief discussion of the main principles of symmetric
encryption and an explanation of the rationale behind different types of en-
cryption algorithms, we have concentrated on a number of topics which are
all connected by one central theme: the importance of (non)linearity in sym-
metric cryptography. The specific contributions made in these different topics
are discussed below.

• Most attacks against block ciphers are based on the ability to build a
distinguisher for the inner rounds. In order to illustrate this principle,
we have presented two dedicated attacks, both of which exploit specific
weaknesses in the linear structure of the ciphers SAFER++ and ARIA.
Apart from being illustrative, these attacks have also introduced some
new techniques: an alternative way to mount multiset attacks, and a
new type of linear attack operating on word level instead of on bit level.

• Linear cryptanalysis is one of the most important general analysis tech-
niques in symmetric cryptography. In this thesis, we have introduced a
rigorous statistical framework based on the concept of Maximum Like-
lihood, which allows to derive optimal attack strategies capable of ex-
ploiting multiple linear approximations. We have derived simple ex-
pressions to predict the efficiency improvements achieved by these at-
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tacks, and have demonstrated their accuracy by running experiments
on round-reduced variants of DES.

• S-boxes, which are typically the only source of non-linearity in a block
cipher, play an important role in the protection against linear and dif-
ferential cryptanalysis. In order to reduce S-boxes to their essence (i.e.,
their non-linearity), we have presented algorithms which allow to make
abstraction of affinemappings at the input and the output of the S-boxes.
We have introduced the notion of a linear representative, and have used
this concept to partition the set of all 2 · 1013 4 × 4-bit S-boxes into 302
equivalence classes.

• In the last part of this thesis, we have presented a new design strategy
for stream ciphers based on the same techniques that are used to pro-
tect block ciphers against linear cryptanalysis. We have shown that a
carefully designed linear structure can be surprisingly efficient in dif-
fusing the nonlinearity of very few small nonlinear components. Based
on this strategy, we have developed a compact and efficient hardware
oriented stream cipher called TRIVIUM, which has been submitted to
the eSTREAM Stream Cipher Project. At the time of writing, it has
successfully passed two selection rounds, and is amongst the 8 hard-
ware candidates retained for the third evaluation phase. Because of its
simple structure and efficiency, TRIVIUM has attracted the interest of
both cryptanalysts [4, 41, 61, 62, 80, 81, 92, 102] and hardware imple-
menters [22, 39, 42, 44, 46, 47, 63, 97].

• In the appendix, we have presented techniques to generate characteris-
tics for SHA-1. This problem, which could previously only be solved on
a case-by-case basis after a long and tedious manual analysis, has been
a major obstacle in the development of new collision attacks.

7.2 Future Research

Finally, we suggest some directions for further research.

• Generalizing the concept of byte-wise linear cryptanalysis introduced
in the attack on ARIA, and finding links with multiple (bit-wise) linear
cryptanalysis.

• Effectively implementing a 16-round DES attack based on multiple lin-
ear approximations.

• Completely classifying larger S-boxes is infeasible. Instead, try to ex-
trapolate properties observed for 4× 4-bit S-boxes to larger S-boxes.

• Classifying diffusion layers up to a reordering of the input/output words
and an affine mapping on each individual input/output word.
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• Analyzing the security of TRIVIUM, and trying to formalize the resis-
tance against guess-and-determine attacks.

• Designing a class of light-weight stream ciphers which allow to trade
area against security.

• Translating the ideas used in TRIVIUM to hash functions, using the du-
ality between linear and differential cryptanalysis.

• Improving the attacks on hash functions and finding collisions for 80-
round SHA-1
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Appendix A

Differential Characteristics in
SHA-1

In this appendix, we present the results of research that was carried out as part
of this doctoral work, but is not directly related to symmetric encryption. The
problem considered in the following sections should be put into the context of
the recent attacks [105, 106, 107, 108] against several widely known hash func-
tions including SHA-1. A critical step in these attacks is the construction of
good differential characteristics. Since algorithms similar to the one presented
in Sect. 4.6 turn out to be ineffective in this case, new techniques are required.

A.1 Cryptographic Hash Functions

A cryptographic hash function h is an algorithmwhich maps a message string
m of arbitary length to a string y = h(m) of fixed length n, called hash value.
Hash functions are used (and sometimes misused) as an elementary build-
ing block in a large variety of cryptographic systems, but their primary use is
to assign n-bit ‘fingerprints’ to messages of arbitrary length, with the intent
that no two messages will ever be assigned the same fingerprint. An impor-
tant class of applications where this property is useful are digital signature
schemes: if h(m) can be considered to be a unique representation of m, then,
instead of the complete message, it suffices to sign this compact hash value.

It is clear, however, that if more than 2n different messages are hashed, at
least one pair of messages will have to share the same hash value. Hence,
the purpose of a hash function is not to prevent the existence of such colliding
messages (they are unavoidable), but to ensure that it would take an infeasible
effort to find them. We make this more precise in the next section.
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A.1.1 Security Requirements

The security properties that hash functions are expected to provide, are sum-
marized in the following three basic requirements:

Collision resistance: it is infeasible in practice to find two messages m and
m∗ 6= m such that h(m) = h(m∗).

Second preimage resistance: for a givenmessagem, it is infeasible in practice
to find a second messagem∗ 6= m such that h(m) = h(m∗).

Preimage resistance: it is infeasible in practice to find, for a given hash value
y, a messagem such that h(m) = y.

The second requirement is a weaker variant of the first, but suffices, for in-
stance, in applications where the adversary has no control whatsoever over
the data that will be hashed and signed. The third requirement is important
in public-key signatures schemes, in order to prevent adversaries from con-
structing valid (albeit meaningless) messages for arbitrary signatures.
The resistance of a hash function to collision and (second) preimage attacks

depends in the first place on the length n of the hash value. Regardless of
how a hash function is designed, an adversary will always be able to find
preimages or second preimages after trying out about 2n different messages.
Finding collisions requires a much smaller number of trials: about 2n/2, as
we will see in Sect. A.2.1. As a result, hash functions producing less than 160
bits of output are currently considered inherently insecure. Moreover, if the
internal structure of a particular hash function allows collisions or preimages
to be found more efficiently than what could be expected based on its hash
length, then the function is considered to be broken.

A.1.2 SHA-1

In the remainder of this appendix, we will focus on one particular hash func-
tion: SHA-1 [84]. This algorithm, designed by the USNational Security Agency
(NSA) in 1995, is widely used, and is representative for a large class of hash
functions which started with MD4 and includes most algorithms in use today.
SHA-1 is an iterated hash function which processes messages of up to 264

bits in blocks of 512 bits, and produces a 160-bit hash value. It consists of
the iterative application of a compression function (denoted by f in Fig. A.1),
which transforms a 160-bit chaining variable Hj−1 into Hj , based on a mes-
sage block mj . A fixed IV , specified in the standard [84], is used to initialize
the first chaining variable H0, and the last chaining variable determines the
final hash value.
At the core of the compression function lies an invertible transformation

on 160-bit blocks, which takes a 512-bit key as a parameter, and can be seen as
a block cipher. SHA-1’s compression function is constructed by applying this
block cipher to the chaining variable Hj−1, using the current 512-bit message
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H1 H2 h(m)

m1 m2 m3

Figure A.1: An iterated hash function

block mj as a key, and then adding the same Hj−1 again to the output. This
feed-forward construction is very common, and is also known as the Davies-
Meyer mode of operation (see [82]).
The block cipher itself consists of two parts: the message expansion and

the state update transformation. In the following paragraphswe describe both
parts in more detail.

Message Expansion

The purpose of the message expansion is to expand a single 512-bit input
message block into eighty 32-bit words W0, . . . ,W79. This is done by split-
ting the message block into sixteen 32-bit wordsM0, . . . ,M15, which are then
expanded linearly according to the following recursive rule, where the opera-
tions≪ n and≫ n denote rotations over n bit positions to the left and to the
right, respectively:

Wi =

{
Mi for 0 ≤ i < 16,

(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) ≪ 1 for 16 ≤ i < 80.

State Update Transformation

The state update transformation takes as input a 160-bit chaining variable
Hj−1 which is used to initialize five 32-bit registers A,B, . . . , E. These reg-
isters, referred to as state variables, are then iteratively updated in 80 steps,
indexed by i = 0, . . . , 79. Each step takes as parameters a step constantKi and
one wordWi of the expandedmessage. A single step consists of the following
operations (see also Fig. A.2):

Ai+1 = Ei + (Ai ≫ 5) +Wi + f(Bi, Ci, Di) +Ki ,

Bi+1 = Ai ,

Ci+1 = Bi ≫ 2 ,

Di+1 = Ci ,

Ei+1 = Di .
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Ai Bi Ci Di Ei

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

Wi

Ki

5

2

f

Figure A.2: The state update transformation

The operation f is a boolean function which changes every 20 steps (called a
round): the first 20 steps use the function fIF, steps 40 to 59 use the function
fMAJ, and the 40 remaining steps use the function fXOR. The definitions of
these three functions are given below.

fIF(B,C,D) = (B ∧ C)⊕ (¬B ∧D) ,

fMAJ(B,C,D) = (B ∧ C)⊕ (B ∧D)⊕ (C ∧D) ,

fXOR(B,C,D) = B ⊕ C ⊕D .

The step constants Ki can be found in [84]. Since they do not play any role in
this chapter, we do not list them here.
Note that the state update transformation can also be described by a re-

cursive rule in variable Ai only: if we introduce the variables A−1 = B0,
A−2 = C0 ≪ 2, A−3 = D0 ≪ 2, and A−4 = E0 ≪ 2, then the following
recursion holds:

Ai+1 = (Ai−4 ≫ 2) + (Ai ≪ 5) +Wif(Ai−1, Ai−2 ≫ 2, Ai−3 ≪ 2) +Ki .

Because of this property, we will only consider the state variable Ai in the
remainder of this paper.

A.2 Collision Attacks Revisited

Our objective in this appendix is to develop a method to find SHA-1 charac-
teristics which are suitable for collision attacks. However, in order to solve
this problem, we first have to determine exactly what ‘suitable’ means in this
context. In this section, we will therefore consider collision attacks and char-
acteristics in a general setting, and analyze how the choice of the characteristic
affects the work factor of the attack.
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A.2.1 How Dedicated Collision Attacks Work

If we are given an n-bit hash function whose output values are uniformly dis-
tributed and use it to hash an arbitrary pair of messages, then we expect the
hash values to collide with a probability of 2−n. Hence, without knowing any-
thing about the internals of the hash function, we should be able to find a col-
lision after trying out 2n pairs. Since any set of 2n pairs will do, this approach
can be turned into a birthday attack requiring only 2n/2 hash evaluations.
Instead of testing arbitrary pairs, dedicated collision attacks try to use the

internal structure of the hash function to locate a special subset of message
pairs which (1) are considerably more likely to collide than random pairs, and
(2) can efficiently be enumerated. A particularly effective way to construct
such subsets is to restrict the search space to message pairs with a fixed differ-
ence. The goal is to pick these differences in such a way that they are likely to
propagate through the hash function following a predefined differential char-
acteristic which eventually ends in a zero difference (a collision).
As was observed in [23], the probability for this to happen can be increased

by restricting the subset even further and imposing conditions not only on the
differences but also on the values of specific (expanded) message bits. More-
over, since the internal variables of a hash function only depend on the mes-
sage (and not on a secret key as for example in block ciphers), we can also
restrict the set of message pairs by imposing conditions on the state variables.
Depending on their position, however, these conditions might have a consid-
erable impact on the efficiency to enumerate themessages fulfilling them. This
important point is analyzed in detail in Sect. A.2.3.

A.2.2 Generalized Characteristics

In order to reflect the fact that both the differences and the actual values of
bits play a role in their attack, Wang et al. [107] already extended the notion of
differential characteristics by adding a sign to each non-zero bit difference (1
or −1). In this appendix we generalize this concept even further by allowing
characteristics to impose arbitrary conditions on the values of pairs of bits.
The conditions imposed by such a generalized characteristic on a particu-

lar pair of words (X,X∗) will be denoted by ∇X . In order to make the nota-
tion more compact, the pair itself will be written asX2 = (X,X∗). It will turn
out to be convenient to represent∇X as a set, containing the values for which
the conditions are satisfied, for example

∇X = {X2 | x7 · x∗7 = 0, xi = x∗i for 2 ≤ i < 6, x1 6= x∗1, and x0 = x∗0 = 0} .
In general, 16 different conditions can be imposed at each bit position, and in
order to save space in the rest of this paper, we introduce a symbol for each
of them in Table A.1 (including the symbol ‘#’ for the impossible condition).
Using this convention, we can rewrite the example above as

∇X = [7?----x0] .
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Table A.1: Possible conditions on a pair of bits

(xi, xi
∗) (0, 0) (1, 0) (0, 1) (1, 1)

? X X X X

- X - - X

x - X X -
0 X - - -
u - X - -
n - - X -
1 - - - X

# - - - -
3 X X - -
5 X - X -
7 X X X -
A - X - X

B X X - X

C - - X X

D X - X X

E - X X X

A generalized characteristic for SHA-1 is then simply a pair of sequences
∇A−4, . . . ,∇AN and ∇W0, . . . ,∇WN−1, which we will represent as a table
(see for instance Table A.7).

A.2.3 Work Factor and Probabilities

Let us now assume that we are given a complete characteristic for SHA-1,
specified by ∇A−4, . . . ,∇AN and ∇W0, . . . ,∇WN−1. Our goal is to estimate
how much effort it would take to find a pair of messages which follows this
characteristic. The algorithmwe plan to use is a very simple depth-first search:
we first pick a value forW 2

0 such thatW
2
0 ∈ ∇W0, we compute A

2
1, and verify

that A2
1 ∈ ∇A1. Next, we pick W

2
1 ∈ ∇W1 such that A

2
2 ∈ ∇A2, then W

2
2 ∈

∇W2 such that A
2
3 ∈ ∇A3, etc. If, at a certain step i, we cannot find any value

W 2
i which satisfies these conditions, we backtrack.
In order to estimate the work factor of this algorithm, we will compute the

expected number of visited nodes in the search tree. But first we introduce
some definitions.

Definition A.1. The message freedom FW (i) of a characteristic at step i is the
number of ways to choose W 2

i without violating any (linear) condition im-
posed on the expanded message, given fixed valuesW 2

j for 0 ≤ j < i.

We note that since the expanded message in SHA-1 is completely deter-
mined by the first 16 words, we always have FW (i) = 1 for i ≥ 16.
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Definition A.2. The uncontrolled probability Pu(i) of a characteristic at step i is
the probability that the output A2

i+1 of step i follows the characteristic, given
that all input pairs do as well, i.e.,

Pu(i) = P
(
A2

i+1 ∈ ∇Ai+1 | A2
i−j ∈ ∇Ai−j for 0 ≤ j < 5, andW 2

i ∈ ∇Wi

)
.

Definition A.3. The controlled probability Pc(i) of a characteristic at step i is the
probability that there exists at least one pair of message wordsW 2

i following
the characteristic, such that the outputA2

i+1 of step i follows the characteristic,
given that all other input pairs do as well, i.e.,

Pc(i) = P
(
∃W 2

i ∈ ∇Wi : A2
i+1 ∈ ∇Ai+1 | A2

i−j ∈ ∇Ai−j for 0 ≤ j < 5
)
.

With the definitions above, we can now easily express the number of nodes
Ns(i) visited at each step of the compression function during the collision
search. Taking into account that the average number of children of a node
at step i is FW (i) · Pu(i), that only a fraction Pc(i) of the nodes at step i have
any children at all, and that the search stops as soon as step N is reached, we
can derive the following recursive relation:

Ns(i) =

{
1 if i = N ,

max
{
Ns(i+ 1) · FW (i)−1 · P−1

u (i), P−1
c (i)

}
if i < N .

The total work factor is then given by

Nw =

N∑

i=1

Ns(i) .

This is the quantity that we would like to minimize when constructing char-
acteristics in Sect. A.3.

A.2.4 Examples

In order to understand what the different quantities defined above represent,
it might be helpful to walk through a small example. Table A.2 shows two
hypothetical search trees with corresponding values of FW , Pu, and Pc. The
nodes which are visited by the search algorithm, and hence contribute to the
complexity of the collision search, are filled. Note that the values of Pc(i)
do not always influence the complexity of the attack. The trees in Table A.2,
however, are examples where they do.
Let us now illustrate the previous concepts with two examples on 64-step

SHA-1. In the first example, shown in Table A.3, we consider a generalized
characteristic which does not impose any conditions, except for a fixed IV
value at the input of the compression function and a collision at the output
(A64−4, . . . , A64). The values of Ns(i) in the table tell us that the search algo-
rithm is expected to traverse nearly the complete compression function 2160
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Table A.2: How Pc affects the search tree

i treea FW Pu(i) Pc(i) Ns(i)
0: 4 1/2 1 1
1: 4 1/2 1 1
2: 1 1/2 1/2 2
3: 1 1 1 1
4: 1

i tree FW Pu(i) Pc(i) Ns(i)
0: 4 1/2 1 1
1: 4 1/2 1/2 2
2: 1 1/2 1/2 2
3: 1 1 1 1
4: 1

aBoth and represent values ofW 2

i−1
which lead to a consistent A2

i ; the nodes visited by
the search algorithm are filled. Inconsistent values are denoted by .

Table A.3: Example 1, collision without additional conditions

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
-4: 00001111010010111000011111000011
-3: 01000000110010010101000111011000
-2: 01100010111010110111001111111010
-1: 11101111110011011010101110001001
0: 01100111010001010010001100000001 ???????????????????????????????? 64 0.00 0.00 0.00
1: ???????????????????????????????? ???????????????????????????????? 64 0.00 0.00 0.00

· · · · · ·
12: ???????????????????????????????? ???????????????????????????????? 64 0.00 0.00 0.00
13: ???????????????????????????????? ???????????????????????????????? 64 0.00 0.00 0.00
14: ???????????????????????????????? ???????????????????????????????? 64 0.00 0.00 32.00
15: ???????????????????????????????? ???????????????????????????????? 64 0.00 0.00 96.00
16: ???????????????????????????????? ???????????????????????????????? 0 0.00 0.00 160.00
17: ???????????????????????????????? ???????????????????????????????? 0 0.00 0.00 160.00

· · · · · ·
59: ???????????????????????????????? ???????????????????????????????? 0 -32.00 0.00 160.00
60: -------------------------------- ???????????????????????????????? 0 -32.00 0.00 128.00
61: -------------------------------- ???????????????????????????????? 0 -32.00 0.00 96.00
62: -------------------------------- ???????????????????????????????? 0 -32.00 0.00 64.00
63: -------------------------------- ???????????????????????????????? 0 -32.00 0.00 32.00
64: --------------------------------
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times before finding a colliding pair (note that from here on all values listed
in tables will be base 2 logarithms).

In the example of Table A.4, we force the state variables and the expanded
message words to follow a given differential characteristic starting from the
output of the 16th step (i.e., A16, . . . , E16). How such sparse differential char-
acteristics can be found will be briefly explained in Sect. A.3. The most signifi-
cant effect is that the five consecutive uncontrolled probabilities of 2−32 in the
previous example move up to steps 11–15, where their effect on the number
of nodes is completely neutralized by the degrees of freedom in the expanded
message, resulting in a considerable reduction of the total work factor.

The examples above clearly show that small probabilities have a much
larger impact on the work factorwhen they occur after step 16 (whereFW (i) =
1). Therefore, when constructing characteristics, we will in the first place try
to optimize the probabilities in the second part of the compression function
(steps 16 to N − 1), even if this comes at the cost of a significant decrease of
probabilities in the first part.

A.3 Constructing Characteristics

Having the necessary tools to estimate the work factor corresponding to any
given generalized characteristic, we now turn to the problem of finding char-
acteristics which minimize this work factor.

The search method presented in this section constructs characteristics by
iteratively addingmore conditions as long as it improves thework factor. Dur-
ing this process, two important tasks need to be performed: (1) determining
when and where to add which condition, and (2) letting conditions propagate
and avoiding inconsistent conditions. We first discuss the second problem.

A.3.1 Consistency and Propagation of Conditions

When analyzing the interaction of bit conditions imposed at the inputs and the
outputs of a single step of the state update transformation, three situations can
occur: (1) the conditions are inconsistent, (2) the conditions are consistent as
such, and (3) the conditions are consistent, provided that a number of addi-
tional bit conditions are fulfilled as well (the conditions are said to propagate).
This third case is illustrated in Table A.5, where the conditions imposed on the
expandedmessage words in the previous example propagate to the state vari-
ables. It should be noted that such consistency checks can be implemented in
a very efficient way using trellises, thanks to the fact that bits at different bit
positions only interact through the carries of the integer additions.
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Table A.4: Example 2, imposing a sparse diff. characteristic from step 16 on

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
· · ·

0: 01100111010001010010001100000001 -xx----------------------------- 32 0.00 0.00 0.00
1: ???????????????????????????????? xxx-----------------------x-x-x- 32 0.00 0.00 0.00

· · · · · ·
7: ???????????????????????????????? -xx-----------------------xx--x- 32 0.00 0.00 0.00
8: ???????????????????????????????? -xx----------------------x----xx 32 0.00 0.00 5.00
9: ???????????????????????????????? --x----------------------x------ 32 0.00 0.00 37.00
10: ???????????????????????????????? xxx----------------------x----x- 32 0.00 0.00 69.00
11: ???????????????????????????????? -xx---------------------------x- 32 -32.00 -29.00 101.00
12: x------------------------------- x------------------------------x 32 -32.00 -31.00 101.00
13: x------------------------------- --------------------------x----- 32 -32.00 -31.00 101.00
14: -------------------------------- ------------------------------xx 32 -32.00 -31.19 101.00
15: x-----------------------------xx -x-----------------------x-x--x- 32 -32.00 -27.83 101.00
16: ------------------------------x- -x-----------------------x------ 0 -7.00 -4.00 101.00
17: x-----------------------------x- xxx----------------------x-x--x- 0 -7.00 -2.00 94.00
18: -------------------------------- x-x----------------------------- 0 -5.00 -3.00 87.00
19: ------------------------------x- x------------------------x------ 0 -4.00 -3.00 82.00

· · · · · ·
49: ------------------------------x- -------------------------x------ 0 -2.00 -1.00 7.00
50: -------------------------------- x-----------------------------x- 0 -3.00 -2.00 5.00
51: -------------------------------- -------------------------------- 0 -1.00 -1.00 2.00
52: -------------------------------- x------------------------------- 0 -1.00 -1.00 1.00
53: -------------------------------- x------------------------------- 0 0.00 0.00 0.00
54: -------------------------------- -------------------------------- 0 0.00 0.00 0.00

· · · · · ·
60: -------------------------------- -------------------------------- 0 0.00 0.00 0.00
61: -------------------------------- -------------------------------- 0 0.00 0.00 0.00
62: -------------------------------- -------------------------------- 0 0.00 0.00 0.00
63: -------------------------------- -------------------------------- 0 0.00 0.00 0.00
64: --------------------------------

Table A.5: Propagation of conditions in Example 2

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
· · ·

0: 01100111010001010010001100000001 -xx----------------------------- 32 0.00 0.00 0.00
1: ??x----------------------------- xxx-----------------------x-x-x- 32 0.00 0.00 0.00
2: ??????????????????????????????x- --x----------------------x----xx 32 0.00 0.00 0.00
3: ???????????????????????????????? x-xx---------------------x------ 32 0.00 0.00 0.00

· · · · · ·
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A.3.2 Determining Which Conditions to Add

In Sect. A.2.4 we noted that conditions in a characteristic affect the work factor
in very different ways depending on the step where they are enforced. This
is also reflected in the procedure which we are about to propose: in order
to determine where to add which conditions, we will proceed in a number of
distinct stages, each of which tries to optimize a specific part of the generalized
characteristic.
Note that the second stage in this process has long been an important ob-

stacle, which could only be overcome by a long and tedious manual analysis
of differential characteristics. This explains why many researchers who tried
to improve the attacks on SHA-1 were forced to use the exact same character-
istics as those originally found by Wang et al. [107].

Stage 1

As observed in Sect. A.2.4, the work factor of the collision search algorithm
is mainly determined by the shape of the characteristic after step 16. Hence,
our first goal is to find a high probability differential characteristic, which can
start with any difference in the state variables after step 16, but ends in a zero
difference in the last step (later on, when we consider multi-block collisions,
this constraint will be removed as well).
In general, the sparser a differential characteristic, the higher its probabil-

ity, and in the case of the SHA family, it has been shown before that sparse
characteristics can easily be found by linearizing all components of the state
update transformation, representing the resulting compression function as a
linear code, and searching for low-weight vectors (see [58, 91, 93, 107]).
Once a suitable differential characteristic is found for the linearized variant

(called an L-characteristic), we will use it to fix the differences in all state vari-
ables and expanded message words from step 16 on. Because of the linearity
of the message expansion, this will automatically fix the difference in the first
16 message words as well.

Stage 2

At this point, the largest part of the work factor is most likely concentrated in
step 16 (see, e.g., Table A.4), where the state variables A16−4, . . . , A16, which
are not constrained in any way in the previous steps, are suddenly forced to
follow a fixed difference. In order to eliminate this bottleneck, we want to
guide the state variables to the target difference by imposing conditions to the
first steps as well.
Although the probability of this part of the characteristic is not as critical

as before, we still want the differences to be reasonably sparse. Unfortunately,
because of the high number of constraints (the message difference and both
the differences at the input of the first step and at the output of step 16 are
fixed already), suitable L-characteristics are extremely unlikely to exist in this
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case. In order to solve this problem, we introduce a probabilistic algorithm
which bears some resemblance to the algorithms used to find low-weight code
words, but instead of feeding it with a linear code, we directly apply it to the
unmodified (non-linear) compression function.
The basic idea of the algorithm is to randomly pick a bit position which

is not restricted yet (i.e., a ‘?’-bit), impose a zero-difference at this position (a
‘-’-bit), and calculate how the condition propagates. This is repeated until all
unrestricted bits have been eliminated, or until we run into an inconsistency,
in which case we start again. The algorithm can be optimized in several ways,
for example by also picking ‘x’-bits once they start to appear, guessing the
sign of their differences (‘u’ or ‘n’), and backtracking if this does not lead to a
solution. It turns out that inconsistencies are discovered considerably earlier
this way.
An interesting property of the proposed procedure is that the sparser a

characteristic, the higher the probability that it will be discovered. The num-
ber of trials before a consistent characteristic is found, is very hard to predict,
though. Experiments show that this number can range from a few hundreds
to several hundreds of thousands.

Stage 3

In the final stage, we try to further improve the work factor corresponding
to the characteristic by performing local optimizations. To this end, we run
through all bit positions of every state variable and every expanded message
word, check which conditions can be added to improve the total work factor,
and finally pick the position and corresponding condition which yields the
largest gain. By repeating this many times, we can gradually improve the
work factor. The example in Table A.6 shows how our previous characteristic
looks like after applying this greedy approach for a number of iterations. A
possible further improvement of this approach, which has been investigated
recently, is to also consider the joint effect on the work factor of a number of
special combinations of conditions.
An interesting issue here, is when to stop adding new conditions. In order

to answer this question, we first notice that every additional condition reduces
the size of the search tree, but at the same time lowers the expected number
of surviving leaves at step N . In general, the work factor will improve as long
as the search tree is reduced by a larger factor than the number of surviving
leaves. At some point, however, the expected number of leaves will drop be-
low one, meaning that message pairs which actually follow the characteristic
are only expected to exist with a certain probability. This is not necessarily a
problem if we are prepared to repeat the search for a number of different char-
acteristics, and in fact, that is exactly how we constructed the second block of
the 64-step collision presented in the next section. In this case, three differ-
ent characteristics were used, the third of which is shown in Table A.8 (notice
that the expected number of characteristics needed to find one surviving leave
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Table A.6: Example 3, after adding conditions to minimize workfactor

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
· · ·

0: 01100111010001010010001100000001 0uu01010110011010000111101110101 0 0.00 0.00 0.00
1: n0n01010100000011010100000101000 unn00001000110100010110111u1u0n0 0 0.00 0.00 0.00
2: 00u1unnnnnnnnnnnnnnnnnnnnnnn01u0 00n1110100110011111111011n1011uu 0 0.00 0.00 0.00
3: 1000101001100100100111u11100u111 n0un011000011010110011010u111100 0 0.00 0.00 0.00
4: u000u01n11uu010u11u10100101010u0 un0n011010010000100010110n1u01uu 0 0.00 0.00 0.00
5: n01001000n100011n1n000101uu0n010 uu1n1010111110011101110110n000u0 0 0.00 0.00 0.00
6: 010100110n0101u00100001000001100 10n10000111111000000000000010011 0 0.00 0.00 0.00
7: 1011111unnnnnnnnnn100000nu101n10 1nu0100000010111001----001nu01u1 4 -1.00 0.00 0.00
8: n1100110111000000101---00110nu00 0nu1101110111------------u0011nu 12 -8.00 0.00 0.00
9: n01010010000111101110----n10111n 11u1100001111-----------0u100111 11 -0.13 0.00 0.00
10: n011010010111-----------000000n0 nnn111101----------------n1010u0 16 -4.00 -0.68 0.68
11: u0110101011-------------n1100100 1un1001-0-----------------0011u1 18 -6.00 -1.68 5.36
12: u0010100101-------------0-110001 u10110-0-0----------------11000u 18 -11.00 -2.96 17.36
13: u11100101110010----------0100000 0010010100000-------------u00101 13 -4.00 -2.42 24.36
14: 01110011011111-------------11000 1001000111111-------------1001uu 11 -3.00 -2.00 33.36
15: u1010110101-1-------------1001uu 0n110--0-----------------n0n00n0 19 -10.14 -0.14 41.36
16: 1100011000000000-----------110n0 1u0100101000-------------u100100 0 0.00 0.00 50.22
17: u000111011------------------11u1 unn11101000000-----------n0n10n1 0 -0.22 -0.21 50.22
18: 11101-----------------------1001 n1u0--1-----------------01100101 0 -1.00 -0.48 50.00
19: --0--------------------------1u1 u00110-0-----------------n101011 0 -1.00 -0.54 49.00
20: ----0------------------------1-- 10u00-1-1----------------011100n 0 0.00 0.00 48.00
21: -------------------------------u 00n--0-------------------nu01010 0 0.00 0.00 48.00
22: -------------------------------- n1000-0------------------010010u 0 -1.00 -1.00 48.00

· · · · · ·
60: -------------------------------- ------------------------0------- 0 0.00 0.00 0.00
61: -------------------------------- -----------------------1-0------ 0 0.00 0.00 0.00
62: -------------------------------- ------------------------1-1----- 0 0.00 0.00 0.00
63: -------------------------------- -----------------------0-------- 0 0.00 0.00 0.00
64: --------------------------------

can directly be read from Ns(0), in this example 21.24 ≈ 3). Coming back to
our original question, we can conclude that we should in principle continue
adding conditions as long as the gain in work factor justifies the cost of gener-
ating additional characteristics.

A.4 A Collision for 64-Step SHA-1

To conclude this chapter, we show an example of a 64-step SHA-1 collision
found using the techniques described in this chapter. The colliding messages
consist of two blocks, where the difference at the output of the first iteration
of the compression function cancels the difference at the output of the second
iteration through the feed-forward. The generalized characteristics for both
blocks were constructed in three stages as explained earlier, and are shown in
Tables A.7 and A.8. A simple depth-first search over about 240 nodes, which
corresponds to a computational effort equivalent to 235 evaluations of the
compression function, was used to construct a message pair which actually
follows this characteristic. The colliding messages are given in Table A.9.

Note that, by applying the improvement in Stage 3 briefly mentioned ear-
lier, this result can been extended to compute a 70-step SHA-1 collision within
an effort of 244 compression function evaluations. More details will be pub-
lished in [35].
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Table A.7: Characteristic used for the first block of the 64-step collision

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
-4: 00001111010010111000011111000011
-3: 01000000110010010101000111011000
-2: 01100010111010110111001111111010
-1: 11101111110011011010101110001001
0: 01100111010001010010001100000001 011000111101101011101111110111nu 0 0.00 0.00 1.07
1: 0000001110001111100010001001000n 0n1100001010000011010-010u1n01u1 1 0.00 0.00 1.07
2: 0n0010010100001010110-00011u0un0 0u01001011101101----11011n100100 4 -3.00 0.00 2.07
3: 1u10100001110010100-1un110nuu110 unn10000000000-1001----10u0u11u1 5 -4.00 0.00 3.07
4: 1un0010110011110un1100-0n1n11nu1 n0n01101101101001-01111-10110101 2 -2.00 0.00 4.07
5: n1u10110101un00010nu10u111000010 u1100101101000111111----1n101011 4 -4.00 0.00 4.07
6: 100u100u01111nu00u1110nu111u1un1 10u01110011001101-1------101011n 7 -5.00 0.00 4.07
7: nn1100101n1101011-1111-11u1001u0 00n100101010-101------100nu11111 7 -5.00 0.00 6.07
8: 01110111001100u00010--0n11110u11 u1010000001100---00---11-000010u 7 -6.00 0.00 8.07
9: 1n1u000101uuuu0uu1110-1010n110n0 1n00010100000101-100--10-u1111n0 4 -3.00 0.00 9.07
10: 1011000101n11111n111u-01n00un100 nu1101010110001--011----1u0110un 6 -5.00 0.00 10.07
11: nnnnnnnnnnnnnnnnnnnnnnn-nnnnn0n1 1u01111111111111---------0u110n1 9 -9.00 0.00 11.07
12: 00110100000011110110000110011000 010110010110110101101---1-0101nu 4 -3.00 0.00 11.07
13: 0100000000001000000111100-011000 0n001000010101-----------n1010n1 11 -4.00 0.00 12.07
14: 10011000100011000-0------0110101 nu00001010011-----------1n1100uu 11 -2.00 0.00 19.07
15: 1101101011111--1----------00010n uu101101010-1-1--------1-1n011n1 11 -0.07 0.00 28.07
16: 11111100------------------0-0111 1101001010100-----------1010101u 0 -1.00 -1.00 39.00
17: 0000----------------------1-1111 1u0011100111------------111011u0 0 -1.00 -0.99 38.00
18: ----0-----------------------01u- un00111011-0-0----------0n0011nu 0 0.00 0.00 37.00
19: -------------------------------n 1u1100011111------------1un011n0 0 0.00 0.00 37.00
20: -------------------------------- n1101001100--------------011000n 0 -1.00 -1.00 37.00
21: ------------------------------n- 1u1000110-1-0-----------0u1000n0 0 -2.00 -2.00 36.00
22: ------------------------------n- 1n011010011-------------0u0110n1 0 -2.00 -2.00 34.00
23: -------------------------------- 0n10011011--------------011111n0 0 -1.00 -1.00 32.00
24: -------------------------------- 00101001-0-0------------001010n1 0 -1.00 -1.00 31.00
25: ------------------------------n- 0001110111--------------1u100100 0 0.00 0.00 30.00
26: -------------------------------- n00010000--------------0-11111n1 0 -1.00 -1.00 30.00
27: -------------------------------- n001111-1-1-------------11101010 0 0.00 0.00 29.00
28: -------------------------------- u10111110----------------11001n0 0 -1.00 -1.00 29.00
29: ------------------------------n- n0011100----------------1u110010 0 0.00 0.00 28.00
30: -------------------------------- 001010-1-1-------------101010110 0 -2.00 -2.00 28.00
31: ------------------------------n- u0110101----------------0u110111 0 0.00 0.00 26.00
32: -------------------------------- u101001----------------011111010 0 -2.00 -2.00 26.00
33: ------------------------------u- 00010-1-0-------------110n100000 0 0.00 0.00 24.00
34: -------------------------------- u011010----------------001101110 0 -2.00 -2.00 24.00
35: ------------------------------n- 101111----------------010u111001 0 0.00 0.00 22.00
36: -------------------------------- n111-1-1---------------1010110u0 0 -1.00 -1.00 22.00
37: -------------------------------- 110110-----------------100000000 0 0.00 0.00 21.00
38: -------------------------------- n1001------------------010111110 0 0.00 0.00 21.00
39: -------------------------------- u11-0-1----------------101101011 0 0.00 0.00 21.00
40: -------------------------------- 01010-------------------01011100 0 0.00 0.00 21.00
41: -------------------------------- 1011-------------------100100000 0 0.00 0.00 21.00
42: -------------------------------- 00-0-0-----------------100111001 0 0.00 0.00 21.00
43: -------------------------------- 1101-------------------001111011 0 0.00 0.00 21.00
44: -------------------------------- 011---------------------10010000 0 0.00 0.00 21.00
45: -------------------------------- 1-1-0------------------101111000 0 0.00 0.00 21.00
46: -------------------------------- 110-------------------1011010010 0 0.00 0.00 21.00
47: -------------------------------- 01---------------------101011000 0 0.00 0.00 21.00
48: -------------------------------- -0-0-------------------101100001 0 0.00 0.00 21.00
49: -------------------------------- 10--------------------1101010111 0 0.00 0.00 21.00
50: -------------------------------- 0---------------------1010101n11 0 -1.00 -1.00 21.00
51: -----------------------------n-- 0-1-------------------10u100011- 0 0.00 0.00 20.00
52: -------------------------------- 1----------------------001000u11 0 -1.00 -1.00 20.00
53: -------------------------------- ----------------------110111n00u 0 -2.00 -2.00 19.00
54: ----------------------------n--- -1---------------------u111011-u 0 -1.00 -1.00 17.00
55: -------------------------------- ----------------------101010u00u 0 -1.00 -1.00 16.00
56: -------------------------------- -----------------------0111n10u- 0 -2.00 -1.91 15.00
57: ---------------------------n---- 0---------------------u111000-u- 0 -1.00 -1.00 13.00
58: -------------------------------- ---------------------0-1010un1u- 0 -2.00 -1.83 12.00
59: ----------------------------u--- ----------------------1n01n11u-- 0 -2.00 -1.87 10.00
60: --------------------------n----- ---------------------u-11000xu-0 0 -2.00 -1.00 8.00
61: -------------------------------- ----------------------0000n01ux- 0 -2.00 -1.00 6.00
62: -------------------------------- ---------------------1000n00n-x- 0 -3.00 -1.89 4.00
63: -------------------------n------ --------------------u-10010-n-n- 0 -1.00 -1.00 1.00
64: --------------------------------
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Table A.8: Third characteristic used for the 2nd block of the 64-step collision

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
-4: 11110011111100010000010000n10011
-3: 01101110111000001010001110011101
-2: 11001011101100100011110111000100
-1: 1001011011110100100111001n110101
0: 10100000000111101110010101101000 0011101100101010101101-0111000nu 1 0.00 0.00 1.24
1: 1111001001110010110010-10000n1nu 1n1010101101000---0100101u1n11u1 3 -3.00 0.00 2.24
2: uu10001001100001000001nu01un01u0 0u1001101001110010011--11n101110 2 -2.00 0.00 2.24
3: 0u10010110111100000nnnn01011u1nn nun1110111101010010011010n0u01n0 0 0.00 0.00 2.24
4: 0nu1110110110n0010uuuu0uunuu1u10 n0n11101101111100010001000001110 0 0.00 0.00 2.24
5: 1000111nu111u0001n11111100100001 u01010110100011010-00101-u100000 2 -1.00 0.00 2.24
6: u11110un101n0u0111-1011n010u1010 10n1011011100-10110----10011011u 5 -2.00 0.00 3.24
7: u001u11nn0101011100n---0u011n111 11u10011111001----00-0-10uu00011 6 -4.00 0.00 6.24
8: 1n010101001u01n10000-0-11000u011 u0111110010110----0----1-001110n 9 -7.00 0.00 8.24
9: 01001u1n10100110100101-1-uu10100 1n11110101100------------u0001n0 12 -10.00 0.00 10.24
10: uuuuuuuuuuuuuuuuuuuuuu--1100u011 nu01000011000100---------n1001nu 9 -8.00 0.00 12.24
11: 0100111011111100011111un-0111100 1n00101101111001001------1n001u0 6 -6.00 0.00 13.24
12: 1100000010111111111111111111u110 101010011011001001000---001010nn 3 -2.00 -1.00 13.24
13: 0110000101111111111111--0110110n 1n000001011011111--------n1110u0 8 -2.24 0.00 14.24
14: 0101111110011010110--------010u0 uu01000110110-----------1u0-11nn 12 -4.00 0.00 20.00
15: 01010010010000010-----------00nu un110110000-0-0--------1-0n000n1 11 -1.00 0.00 28.00
16: 001001001011---------------10010 1100010100000-----------1101001n 0 0.00 0.00 38.00
17: 100000----------------------1000 0n1101111101------------11-001u1 0 -1.00 -0.99 38.00
18: ----0------------------------0u1 nn11101111-0-1----------0n0010nu 0 0.00 0.00 37.00
19: -------------------------------n 0u1100011010------------1un000n1 0 -1.00 -1.00 37.00
20: -0------------------------------ n0101010011------------11-10110n 0 -1.00 -1.00 36.00
21: ------------------------------n- 1u0001000-0-0-----------0u1000n1 0 -1.00 -1.00 35.00
22: ------------------------------n- 0n010001010-------------0u-011n1 0 -2.00 -2.00 34.00
23: -------------------------------- 1n10010111---------------00101n1 0 -1.00 -1.00 32.00
24: -------------------------------- 11011111-0-1------------000101n1 0 -1.00 -1.00 31.00
25: ------------------------------n- 0010000100--------------0u010000 0 0.00 0.00 30.00
26: -------------------------------- u10011101---------------001000u0 0 -1.00 -1.00 30.00
27: -------------------------------- n100100-0-0-------------01010001 0 0.00 0.00 29.00
28: -------------------------------- u11001101--------------0-0-100n0 0 -1.00 -1.00 29.00
29: ------------------------------n- n1111011----------------1u110000 0 0.00 0.00 28.00
30: -------------------------------- 100110-1-1-------------00--00100 0 -2.00 -2.00 28.00
31: ------------------------------u- u0000101----------------1n000111 0 0.00 0.00 26.00
32: -------------------------------- u011010---------------0001111100 0 -2.00 -2.00 26.00
33: ------------------------------n- 11111-0-0--------------0-u100101 0 0.00 0.00 24.00
34: -------------------------------- u011010----------------0-0000000 0 -2.00 -2.00 24.00
35: ------------------------------u- 100100----------------010n011010 0 0.00 0.00 22.00
36: -------------------------------- n100-0-1-------------0-1-11010n0 0 -1.00 -1.00 22.00
37: -------------------------------- 010111-----------------100001001 0 0.00 0.00 21.00
38: -------------------------------- u0001------------------0-0001101 0 0.00 0.00 21.00
39: -------------------------------- u00-0-0----------------101010100 0 0.00 0.00 21.00
40: -------------------------------- 11110------------------010000101 0 0.00 0.00 21.00
41: -------------------------------- 0011-------------------011010010 0 0.00 0.00 21.00
42: -------------------------------- 00-1-0-----------------01-001100 0 0.00 0.00 21.00
43: -------------------------------- 1010-------------------001111100 0 0.00 0.00 21.00
44: -------------------------------- 000-------------------11-0011100 0 0.00 0.00 21.00
45: -------------------------------- 0-1-0------------------1-1100101 0 0.00 0.00 21.00
46: -------------------------------- 000-------------------0---010010 0 0.00 0.00 21.00
47: -------------------------------- 11---------------------001010101 0 0.00 0.00 21.00
48: -------------------------------- -0-0------------------1100111001 0 0.00 0.00 21.00
49: -------------------------------- 10---------------------0-1111110 0 0.00 0.00 21.00
50: -------------------------------- 0---------------------11-1100n10 0 -1.00 -1.00 21.00
51: -----------------------------n-- 1-0-------------------10u010110- 0 0.00 0.00 20.00
52: -------------------------------- 1---------------------0000001u10 0 -1.00 -1.00 20.00
53: -------------------------------- ----------------------011011n10u 0 -2.00 -2.00 19.00
54: ----------------------------n--- -1---------------------u-11011-u 0 -1.00 -1.00 17.00
55: -------------------------------- ----------------------111011u01u 0 -1.00 -1.00 16.00
56: -------------------------------- ----------------------01-00n10u- 0 -2.00 -1.91 15.00
57: ---------------------------n---- 1---------------------u101111-u- 0 -1.00 -1.00 13.00
58: -------------------------------- ----------------------10-00un0u- 0 -2.00 -1.83 12.00
59: ----------------------------u--- ----------------------0n01u11u-- 0 -2.00 -1.87 10.00
60: --------------------------u----- ---------------------n-0-111xu-0 0 -2.00 -1.00 8.00
61: -------------------------------- ----------------------0100u01ux- 0 -2.00 -1.00 6.00
62: -------------------------------- -----------------------0-u11n-x- 0 -3.00 -1.89 4.00
63: -------------------------u------ --------------------n-10110-u-n- 0 -1.00 -1.00 1.00
64: --------------------------------
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Table A.9: A 64-step two-block collision

m1 m∗
1 m1 ⊕m∗

1 m2 m∗
2 m2 ⊕m∗

2

63DAEFDD 63DAEFDE 00000003 3B2AB4E1 3B2AB4E2 00000003

30A0D167 70A0D135 40000052 AAD112EF EAD112BD 40000052

52EDCDA4 12EDCDE4 40000040 669C9BAE 269C9BEE 40000040

90012F5F 70012F0D E0000052 5DEA4D14 BDEA4D46 E0000052

0DB4DFB5 ADB4DFB5 A0000000 1DBE220E BDBE220E A0000000

E5A3F9AB 65A3F9EB 80000040 AB46A5E0 2B46A5A0 80000040

AE66EE56 8E66EE57 20000001 96E2D937 B6E2D936 20000001

12A5663F 32A5665F 20000060 F3E58B63 D3E58B03 20000060

D0320F85 50320F84 80000001 BE594F1C 3E594F1D 80000001

8505C67C C505C63E 40000042 BD63F044 FD63F006 40000042

756336DA B5633699 C0000043 50C42AA5 90C42AE6 C0000043

DFFF4DB9 9FFF4D9B 40000022 8B793546 CB793564 40000022

596D6A95 596D6A96 00000003 A9B24128 A9B2412B 00000003

0855F129 4855F16B 40000042 816FD53A C16FD578 40000042

429A41B3 829A41F0 C0000043 D1B663DC 11B6639F C0000043

ED5AE1CD 2D5AE1EF C0000022 B615DD01 7615DD23 C0000022

hash: A750337B 55FFFDBB C08DB36C 0C6CFD97 A12EFFE0
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A.5 Conclusions

In this appendix, we have studied the problem of finding characteristics in
SHA-1, which is an important step in the development of new collision at-
tacks. We have introduced the new concept of a generalized characteristic,
and have shown how to compute the effect of such characteristics on the to-
tal computational effort of the attack. Finally, we have proposed a method
to automate the construction of generalized characteristics which reduce this
computational effort.
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Nederlandse Samenvatting

Analyse en Ontwerp van
Symmetrische
Encryptie-Algoritmen

Hoofdstuk 1: Inleiding

Gedurende de laatste decennia heeft informatietechnologie zich een plaats
veroverd in steeds meer domeinen van onze samenleving. Twee opmerkelij-
ke evoluties waren de spectaculaire groei van het Internet en de razendsnelle
opgang van draadloze digitale telefoonnetwerken zoals GSM. Het succes van
deze nieuwe technologieën kan toegeschreven worden aan een aantal intrin-
sieke voordelen van digitale systemen. Ten eerste is digitale informatie nage-
noeg ongevoelig voor ruis en kan ze naar believen gekopieerd of gewijzigd
worden zonder het minste kwaliteitsverlies. Bovendien is de band tussen de
informatie en haar drager verdwenen, zodat dezelfde informatie naadloos op
erg verschillende toestellen kan verwerkt worden.
Dezelfde eigenschappen die digitale informatiesystemen zo aantrekkelijk

maken, bieden echter ook tal van nieuwe mogelijkheden tot misbruik. In te-
genstelling tot bijvoorbeeld een brief in een gesloten (en verzegelde) omslag,
kan digitale informatie op haar weg van zender naar ontvanger op verschil-
lende manier gemanipuleerd worden, zonder dat dit enig spoor zou nalaten.
Al snel is duidelijk geworden, dat de enige manier om dit te verhelpen zon-
der aan de voordelen van digitale systemen te raken, erin bestaat de infor-
matie zodanig te transformeren dat ze zichzelf beschermt, onafhankelijk van
de drager. De wetenschap die zich hiermee bezighoudt wordt de cryptologie
genoemd.
De bescherming van digitale informatie kan verschillende aspecten om-

vatten, waarvan de belangrijkste zijn: geheimhouding (het voorkomen dat in-
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formatie onthuld wordt aan derden) en authentisering (het garanderen dat de
ontvangen boodschap wel degelijk afkomstig is van de zender, en onderweg
niet werd gewijzigd). In deze thesis behandelen we enkel het eerste probleem.

Hoofdstuk 2: Symmetrische Encryptie

Om de geheimhouding van een boodschap P te waarborgen wanneer deze
over een onveilig kanaal wordt doorgezonden, moet de data versleuteld wor-
den. Hiervoor wordt beroep gedaan op een encryptie-algoritme, dat in het al-
gemeen geval bestaat uit twee wiskundige functies: een encryptiefunctie E
die de klaartekst P omzet in een cijfertekst C = E(P ), en een decryptiefunctie
D = E−1 die precies het omgekeerde doet. Vanzelfsprekend is de geheim-
houding van D (of van de sleutel die in deze functie als parameter gebruikt
wordt), een essentiële voorwaarde voor de veiligheid van dit systeem. Geldt
dit ook voor de encryptiefunctie E, dan spreken we van symmetrische encryp-
tie; indien het algoritme toelaat dat E publiek gemaakt wordt, dan hebben we
te maken met publieke-sleutel encryptie. Zoals de titel laat vermoeden, zullen
we ons in deze thesis beperken tot symmetrische encryptie.

In Hoofdstuk 2 van deze thesis bespreken we de voornaamste soorten
symmetrische encryptie-algoritmen. Wemaken een onderscheid tussen stroom-
cijfers en blokcijfers, en vestigen de aandacht op het verschil in aanpak tussen
blok-encryptie, waarbij de cijfertekst op een (voor de aanvaller) onvoorspelba-
re wijze afhangt van de waarde van de klaartekst, en stroom-encryptie, waar-
bij de encryptie op een onvoorspelbare manier afhangt van de positie van de
symbolen in de klaartekst. We bespreken de typische iteratieve structuur van
blokcijfers en de verschillende modes waarin ze gebruikt kunnen worden, en
bestuderen vervolgens een aantal stroomcijfer-constructies.

Tenslotte verduidelijkenwewat een aanval op een symmetrisch encryptie-
algoritme precies inhoudt, hoe de veiligheid van een algoritme in principe kan
beoordeeld worden, en wat verstaanmoet worden onder een veilig algoritme.

Hoofdstuk 3: Cryptanalyse van Blokcijfers

In dit hoofdstuk verdiepen we ons in de studie van technieken die de be-
veiliging van blokcijfers trachten te doorbreken (de cryptanalyse van blokcij-
fers). Typisch bestaan deze aanvalstechnieken uit twee fasen. In een eerste
fase wordt getracht een sleutel-onafhankelijke eigenschap te vinden waarmee
het blokcijfer, ontdaan van zijn laatste (of eerste) ronde(n), zich onderscheidt
van eenwillekeurige permutatie. In de tweede fase worden dan alle mogelijke
waarden van de relevante sleutelwoorden in deze laatste (of eerste) ronde(n)
doorlopen, totdat de verwachte eigenschap waargenomen wordt, wat erop
wijst dat de waarden correct zouden kunnen zijn. In dit hoofdstuk bespreken
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we drie belangrijke technieken, die alle drie steunen op dit principe: lineaire
cryptanalyse, differentiële cryptanalyse, en multiset cryptanalyse.
In het tweede deel van dit hoofdstuk geven we twee voorbeelden van con-

crete aanvallen, die nog steeds uitgaan van hetzelfde principe, maar die ge-
bruik maken van een aantal nieuwe ideeën. De eerste aanval is gericht op een
gereduceerde versie van het blokcijfer SAFER++, en stelt een nieuw soort mul-
tiset aanval voor dat gebruik maakt van botsingen. De tweede aanval wordt
geı̈llustreerd aan de hand van het blokcijfer ARIA, en kan gezien worden als
een variant van lineaire cryptanalyse die steunt op lineaire combinaties van
woorden in plaats van bits.

Hoofdstuk 4: Lineaire Cryptanalyse Herbekeken

Lineaire cryptanalyse is een van de meest krachtige en algemeen toepasba-
re aanvalstechieken. In dit hoofdstuk bestuderen we deze aanval vanuit een
“Most-Likelihood” perspectief. We ontwerpen een algemeen statistisch ka-
der dat ons toelaat om optimale aanvalsstrategieën af te leiden voor lineaire
aanvallen die simultaan gebruik maken van meerder lineaire benaderingen,
en tonen aan dat Matsui’s oorspronkelijke aanvallen, Algoritme 1 en Algorit-
me 2, in dit kader op vrijwel identieke manier beschreven kunnen worden.
Door het invoeren van het concept van capaciteit van een verzameling lineaire
benaderingen, kunnen we eenvoudige benaderende formules afleiden om de
efficiëntie van de nieuwe aanvallen te voorspellen.
Vervolgens passen we deze aanvallen toe op gereduceerde versies van

DES, en verifiëren we dat hun efficiëntie inderdaad nauwkeurig voorspeld
kan worden. Op basis van deze resultaten bespreken we mogelijke verbete-
ringen van de beste aanvallen op het volledige DES algoritme.
We sluiten dit hoofdstuk af met de constructie van een efficiënt algoritme

om in een blokcijfer dem beste lineaire benaderingen te vinden.

Hoofdstuk 5: Classificatie van S-Boxen

Een belangrijk bouwblok in het ontwerp van blokcijfers die bestand zijn tegen
lineaire en differentiële cryptanalyse zijn substitutie-boxen (S-boxen). In dit
hoofdstuk bestuderen we deze componenten door ze te reduceren tot hun es-
sentie: hun niet-lineariteit. Hiervoor ontwikkelen we algoritmen die toelaten
om abstractie te maken van affiene afbeeldingen aan de in- en uitgang van de
S-boxen, en te detecteren of twee S-boxen equivalent zijn tot op een affiene
afbeelding. We tonen aan hoe de zogenaamde lineaire representant van een S-
box efficiënt kan berekend worden, en gebruiken dit om alle 2 · 1013 4 × 4-bit
S-boxen onder te verdelen in 302 equivalentieklassen.
In het laatste deel van dit hoofdstuk breiden we deze algoritmen uit voor

het detecteren van bijna-equivalente S-boxen, en passen we ze ook aan om
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niet-bijectieve S-boxen te bestuderen. Tenslotte passen we de algoritmen toe
op de S-boxen van een aantal populaire blokcijfers en tonen het bestaan aan
van een groot aantal equivalentie-relaties.

Hoofdstuk 6: Ontwerp van Stroomcijfers

In het vorige hoofdstuk hebbenwe algoritmen voorgesteld om de niet-lineaire
componenten van encryptie-algoritmen te bestuderen. In dit laatste hoofdstuk
richten we onze aandacht op de lineaire componenten en op hun belangrijke
rol in het verspreiden van deze niet-lineariteit. We ontwikkelen een nieuwe
ontwerpstrategie voor stroomcijfers geı̈nspireerd door de technieken die ge-
bruikt worden om de lineaire en differentiële cryptanalyse van blokcijfers te
bemoeilijken. Demethodemaakt gebruik van lineaire filters, en leidt uiteinde-
lijke tot het ontwerp van een nieuw stroomcijfer, TRIVIUM, dat slechts bestaat
uit een erg klein aantal niet-lineaire componenten (3 EN-poorten), en waar-
van de veiligheid volledig berust op een efficiënte spreiding gerealiseerd door
zorgvuldig ontworpen lineaire filters.
Het stroomcijfer TRIVIUM is een van de acht hardware kandidaten dat de

eerst twee selectieronden van het eSTREAM stroomcijfer project overleefde.
In het laatste gedeelte van dit hoofdstuk geven we een kort overzicht van de
huidige status van de publieke evaluatie.

Appendix: Differentiële Karakteristieken in SHA-1

In deze appendix worden de resultaten samengevat van onderzoek dat uit-
gevoerd werd in het kader van dit doctoraat, maar dat geen rechtstreeks ver-
band houdt met symmetrische encryptie. Het probleem dat we bestuderen
is het zoeken van karakteristieken in de hashfunctie SHA-1. Dit probleem,
dat een cruciale rol speelt in de ontwikkeling van botsingsaanvallen, is lang
een belangrijke hindernis geweest die bij iedere nieuwe aanval opnieuw over-
wonnen moest worden via een ingewikkelde en moeizame manuele analyse.
In deze appendix voeren we het concept veralgemeende karakteristiek in, en to-
nen we aan hoe de invloed van deze karakteristieken op de efficiëntie van de
aanval berekend kan worden. Vervolgens stellen we een geautomatiseerde
methode voor om zulke karakteristieken te construeren.
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